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ABSTRACT
The technology for research of thermal

conductivity of various materials is offered. It
consists of experimental determination of one-
dimensional temperature fields in heat-receivers
(samples with thermal sensors) from a researched
materials and use of these fields for the solving of
inverse problems of heat conductivity.
Investigation of materials with low (0.6 Wm-1K-1)
and high (160 Wm-1K-1) thermal conductivity by
the application of offered technology to research
an influence of different factors on temperature
dependence of materials thermal conductivity is
considered.

INTRODUCTION
Thermal conductivity (k) is the fundamental

characteristic of substances and materials.
Without its knowledge it is impossible to create
new materials, to design different products, to
simulate their thermal conditions etc. Now there
are a plenty traditional methods for determination
of materials k. However, only some of them are
realized in practice, for example, stationary
methods, methods of pulse heating and some
other. There is a huge quantity of the publications
devoted the description of these methods, for
example [1-3]. These methods for last some tens
years have allowed to determine thermal
conductivity of significant amount of different
substances and materials. However, it is necessary
to note, that the majority of these methods are
labor-consuming, equipment, as a rule, is made in
individual variant, they have no universality. The
sample for determination of materials thermal
conductivity usually has the insignificant sizes
(except for stationary methods) that complicate
research high porous and powder materials.

Any of traditional method does not allow to
determine materials k in wide ranges of heating

rate and values of thermal conductivity, to spend
researches materials k, which at heating undergo
to various physical-chemical transformations
accompanying with allocation gas products (for
example, metal hydrides, heat-shield materials
with organic resins). The installations on the basis
of stationary and pulse laser methods for
determination of k have the high price (especially
laser method).

From all of these lacks the methods for
determination of thermophysical properties based
on solving of inverse problems of heat conduction
(IPHC) are free. A plenty of these methods are
developed now. However, only some of them
were used for research of thermophysical
properties of various materials. As a rule, authors
of these methods are limited with demonstration
of opportunities of the methods on model
temperature fields.

THE ENGINEERING FOR RESEARCH k OF
MATERIALS

The engineering for research of materials
thermal conductivity consists of several stages,
which are shown in Fig.1. The first stage consists
of manufacturing of heat receiver (HR), which is
represented a sample of a researched material
with thermal sensors (thermocouples). Further
there is a stage of its tests in conditions of one-
sided heating. Result of these tests is the
experimental temperature fields in samples of a
researched material. This information is necessary
for solving of IPHC with use of the additional
information about a researched material and heat
receiver.

As a result of the solving IPHC is received
thermal conductivity temperature dependence in
frameworks of the originally chosen mathematical
model of heat and mass transfer in the material.
The experimental information (temperature fields
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in samples of researched materials), additional
information (data about specific heat and density
of a material, distance of thermocouples from
heating surface of heat receiver etc.) and also the
results of the solving IPHC come in a database.
All this information is used for the analysis of
different factors influence on thermophysical
properties of a material, and also for correction of

As a first asbestos cloth phenolic composite
(ACPC) was chosen. The material contains in the
structure phenol-formaldehyde resin (48%) and
asbestos cloth. The analysis of influence both of
kind and heating rate on effective thermal
conductivity of this material was carried out. It
was supposed, that specific volumetric heat
(product of density on specific heat) of material is   
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Fig.1. Engineering for research of thermal conductivity of materials.

mathematical model of heat and mass transfer in a
researched material in case of need.

Investigation     of   materials    with     low
(0.6 Wm-1K-1) and high (160 Wm-1K-1) thermal
conductivity by the application of offered
engineering for research an influence of different
factors on temperature dependence of materials
thermal conductivity is considered.

constant in all of investigated range of
temperatures. In mathematical model of heat and
mass transfer the presence of various physical-
chemical processes (which take place at heating
of ACPC) was not taken into account.

As materials with high thermal conductivity
the composites on a basis of aluminium-silicon
alloy AL25  were  investigated. The  alloy   AL25
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consists basically of aluminium and silicon (11-13
%) and also small amount of the additives of
metals (~ 4.5%), such as Cu, Mg, Ni. The
research of influence of three powder additives:
aluminium dioxide (22%), silicon carbide (18%)
and mullitesilica (19%), on thermophysical
properties of composites on the basis of alloy
AL25 was carried out. The markings of
compositions with these powders have the
following kind: AL25+22, AL25+18, AL25+19.
Samples of the composites were made by liquid
punching with the further turning processing after
crystallization and cooling. The temperature
dependence of specific heat of these composites
[4] was taken into account on the solving of
IPHC. This characteristic was determined on
standard installation, in which the method of
monotonous heating is realized.

DESIGNS OF HEAT−−−−RECEIVER
For experimental determination of one-

dimensional   temperature   fields  in  samples   of

thermocouples (4) (diameter of electrodes is
0.1mm) with insulating covering of yttrium
dioxide are installed. Thickness of a covering is
some microns. The cuts are filled with a high
thermal conductivity powder (6) for thermal
resistance decreasing (Fig.3). The material of a
powder should be chemically inert to a researched
material. It can be, for example, the powders of
crystal quartz or copper. The powder, which
filling cuts in a sample of a researched material,
does not resist for gas products penetration, if
those are available. These products are the result
of a material thermal destruction. The alternative
to such way can be served a thermocouples
closing in apertures, drilled on radius the smaller
diameter cylinder instead of cuts. These apertures
after installing of thermocouples also are filled
with high thermal conductivity powder.

These two ways of thermocouples closing
were tested on samples of the alloy AL25. For
filling of cuts and apertures the copper powder
was used. As a result of solving IPHC it is not
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Fig. 2. Heat-receiver designs for solid materials with:
a - high thermal conductivity; b - low thermal conductivity.

1 - researched material; 2 - two layers of silica filament; 3 - bushing of heat-insulated material;
4 - thermocouples; 5 - bushing of researched material.

solid, powder and super hard materials the
designs of heat-receiver [5] were developed. In
Fig.2 the designs of heat-receiver (HR) for
materials with high (a) and low (b) thermal
conductivity are submitted. In both designs, the
sample of a researched material represents the
step cylinder (1), in which four cuts parallel to
heated face (Fig.3) were made by a diamond disk
(thickness 0.1mm) in depth half of diameter of the
smaller    cylinder    (1).    In     these    cuts      the

influence of a way for thermocouples closing on
thermal conductivity of this alloy.

Lateral surface of a smaller diameter cylinder
is covered by silica filament. Atop of the filament
the thermocouple wires are installed. They
covered by the second layer of a silica filament.
The sample is located in the bushing (5) of a
researched material (or material with higher
thermal conductivity). It prevents heat outflow
from a lateral  surface  of  sample (1) and  hinders   
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with violation of one-dimensionality of a
temperature field in this sample. Further all
design is located in the bushing (3) which is made
of heat-insulated material (Fig.2a). For materials
with low thermal conductivity the bushing (5) is
not used (Fig.2b).

     
Fig.3. Engineering of thermocouples closing in
samples of solid materials. The designations are

similar Fig.2. 6 - powder of high thermal
conductivity material.

The one-dimensionality of a temperature field
in a sample of a researched material is provided
with conditions of uniform heating of its surface
and design features of heat receiver.

For investigated materials smaller diameter of
a  sample  (1)  made  18 mm, external diameter of

the help of inverse problems solving of heat
conduction.

EXPERIMENTAL TEMPERATURE FIELDS
The experimental temperature fields in

samples of researched materials are the base
information for determination of their k by
solving IPHC. One-dimensional temperature
fields in samples of asbestos material and alloy
AL25, received in conditions of one-sided
heating, are given below. The error of
temperature measurement made 7-10 %.

Asbestos composite
Samples ACPC were tested at convective and

radiation one-sided heating. The conditions of
their tests are submitted in table 1. The  design  of
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Fig.4. Temperature fields in samples of ACPC.
1 - N19, 2 - N28. Т1-Т4 are four thermocouples

indications.   

Table 1. Test specifications of samples ACPC and depths of thermocouples closing.

N Test conditions
of samples

Heat flux,
MW/m2

Number of
sample

Depths of thermocouples from
heating surface

h1,
mm

h2,
mm

h3,
mm

h4,
mm

1 Concentrated solar
radiation

0,50 19 5,40 6,35 7,30 8,30

2 “ 6,3 28 15,3 17.3 19,6 21,7
3 Air plasma 2,32 22 2,40 3,40 4,35 5,30
4 Combustion products

of kerosene in oxygen
4,0 5 2,00 3,05 4,10 5,10

bushing (3) made 25 mm, height of a sample (1)
made 30-40 mm. The developed designs of heat
receivers can be used both for determination of
thermal conductivity of various materials and in
structure of different products for determination
of boundary conditions on its heating surface with

HR of this material for experimental
determination of temperature fields is submitted
in Fig.2b. After closing of thermocouples in cuts
they were filled by quartz powder.

ACPC sample prepared with thermocouples
was  located  in  water-cooling holder. The holder
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with heat-reseiver was entered into a jet of high-
temperature gas (or in a focal volume of a solar
energy concentrator) on beforehand selected
distance from a nozzle exit section before
combining of axes of a jet and sample.

The registration of thermocouple indications
was realized with the help of the loop
oscillograph. Cold junctions of four working
thermocouples (tungsten-rhenium 5/20) were
heat-insulated and their temperature was
measured with the help of copper-constantan
thermocouple. Its indications also were registered
by loop oscillograph. The experimental results are
submitted in Fig.4 and Fig.5. The sample N28
ACPC was tested in conditions of quasistationary
process of heating. This process of heating is
characterized by constancy both of heating
surface temperature and linear rate of its
movement. Surface temperature of all
investigated samples ACPC was controlled with
the help of photoelectric pyrometer. About the
presence of quasistationary process of heating in
sample N28 indicate the equidistance of curves
T1 and T2 in Fig.4 since temperature 2000C to
disconnect moment of heating. All other samples
of this material were tested in conditions of non-
stationary heating.
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Fig.5. Temperature fields in samples of ACPC.
1 – N5, 2 – N22.

The indications of 4-th thermocouple of
sample N5 coincide with the indications of 3-d
thermocouple of sample N22 (Fig.5).

Composites on AL25 basis
The experimental determination of

temperature fields in samples of the composites
was realized at intensive one-sided heating. As a
source of heat was used melt of lead overheat to
temperature approximately 4000C.

Sample of a researched material sharply
lowered in melt on depth approximately 5mm.
The registration of thermocouple indications was
realized also with the help of loop oscillograph.
Distance from heating surface of tested samples
to first thermocouple was 2mm, and distance
between thermocouples was 2.4mm for all
composites.

It was tested three samples for each
composite. As an example, in Fig.6 the
experimental temperature field in sample N1 of
alloy AL25 is given. This field is typical for all
materials on the basis of this alloy, tested in the
given conditions of one-sided heating. The
character of the thermocouple indications is
growth of temperature took place. Then slow
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Fig.6. Experimental temperature field in sample
N1 of alloy AL25.

increase of temperature to the moment of HR
extraction from the melt.

METHODS FOR DETERMINATION k
MATERIALS

Two methods for solving of inverse problems
of heat conduction were used for determination of
temperature dependence of materials thermal
conductivity in conditions of one-sided heating.
The methods of solving IPHC are realized in the
programs KV [6] and FRIEND [7].

In KV is used a method based on laws of heat
transfer at quasistationary process of sample
heating. This sample simulates a semi-bounded
body. The registration of a time changing of
temperature in one section of a sample is needed
for realization of this method. In addition, it is
necessary to measure linear rate of material
ablation simultaneously (for example, with the
help of filming). If independent measurement of
linear rate is absent it is necessary the time
changing of temperature register in two sections
of  a  sample.  In  the  latter   case,  linear   rate of
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material is determined as quotient from division
of distance between thermocouples on constant
time passage of this distance by any temperature.
All range of indications of the first thermocouple
is broken on N intervals, in each of them thermal
conductivity of a material is supposed constant.
The received ratio [6] allows calculate
temperature dependence of thermal conductivity
of a researched material. In this ratio the
temperature dependence of specific volumetric
heat, absorption of heat both at destruction of
resin and by gases, formed as a result of this
process, took into account.

FRIEND is used an iterative method for
solving of inverse problems of heat conduction,
based on the theory of sensitivity functions. The
mathematical model of non-linear non-stationary
equation of heat conduction for unlimited plate
with boundary conditions of the first kind is used.
The unknown temperature dependence of thermal
conductivity is presented as a functional series,
with basis functions of cubic B-splines. For
searching of unknown parameters vector the
iterative identification is used. Thus the increment
of unknown parameters vector is determined from
the solution of linear algebraic equations system
with the help of method of least squares with
method of regularization of A.N. Tikhonov [8].
The regularization parameter equal 100 was used
in activity. For realization of this method the
registration of a time changing of temperature in
3-4 sections of a sample of a researched material
is necessary.

The described above methods supplement
each other. At high heating rates and at presence
of ablation of a material, when the temperature
field is compressed and practically it is
impossible to measure change of temperature in
several sections of a sample, the first method is
used, and at low heating rate is used second.

k OF INVESTIGATED MATERIALS
Asbestos cloth fenolic composite and

composites on the basis of an alloy AL25 were
chosen for demonstration of the technology
application for research of their thermal
conductivity. For these materials the values of
thermal conductivity differ approximately in 270
times at a room temperature. The first material is
used as thermal protection of various products of
rocket engineering and second is used in designs
of internal combustion engines. The error of k
determination depends from an error of
temperature  measurements,  specific heat, density

etc and on our evaluation makes 15-25 %.

Asbestos Material
The influence both of kind and heating rate on

effective thermal conductivity ACPC is shown in
Fig.7. The temperature field in a sample N28 was
processed by two described above methods of
solving IPHC. The results are given on Fig.7 by
points 4 and points 5. These points practically
coincide with other except for high temperatures,
where values k (received with the help of
FRIEND) slump. It is probably connect with the
large difference of the thermocouple indications
at high temperatures (Fig.5). The thermal
conductivity ACPC in a range of resin destruction
temperatures has a minimum (km), which is
displaced in area of high temperatures and values
km decrease at the same time (Fig.7, Table 2).
This minimum of thermal conductivity ACPC is
caused by the maximal rate of resin thermal
decomposition. It is accompanied by the maximal
rate of gas products allocation at this
decomposition. By this reason the maximal
porosity took place in coke ACPC at temperature
of minimum thermal conductivity (Tk m).
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Fig7. Influence both kind and rate of heating on
thermal conductivity of ACPC.

1 - N5, 2 - N19, 3 - N22, 4 - N28 (KV),
5 - N28 (FRIEND).

The methodical calculations have shown that
the account of temperature dependence of specific
volumetric heat and the absorption of heat at
decomposition and by gases do not influence on
temperature Tk m.

With increasing of temperature the pores in
coke “are healed” by carbon, which is falling out
from gas products of resin destruction. This
process and other (for example, growth of
radiation component k) promote for growth of
thermal conductivity of coke. The decreasing of
k m  value   with   increasing   of   heating   rate  is
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connected with change of orientation of pores and
channels in coke of material. With increasing of
heating rate pores and channels in coke have a
tendency to orient parallel heating surface. The
analysis of pores structure in coke ACPC was
carried out with the help of metallurgical
microscope.
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Fig.8. Influence of heating rate on temperature, at
which k of ACPC has a minimum.

The introduction of parameter Tkm allows
analyze influence of heating rate on process of
resin destruction of heat-sheild materials with
different fillers simultaneously.
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Fig.9. Thermal conductivity temperature
dependence for composites on the basis of

alloy AL25.
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4 - AL25+19.

Table 2. Influence of heating rate on the minimal value of thermal conductivity ACPC.

N N of sample Max. heating rate,
K/s

km,
Wm-1K-1

Tkm, 0C

1 19 7.6 0.39 350
2 28 57 0.27 530
3 22 196 0.21 650
4 5 300 0.23 650

     The influence of heating rate on temperature
Tkm of asbestos material is shown in Fig.8. The
curve in this figure is constructed with the help of
the least squares method with approximation of
Tkm values by Boltzman function. The behaviour
of temperature Tkm shows, that displacement of
thermal conductivity minimum of this material
take place up to 100K/s. This circumstance, in
turn, speaks that the displacement of thermal
decomposition process of resin in area of high
temperatures has a place up to this heating rate.

In table 2 there are the maximal heating rate of
samples, the minimal values of thermal
conductivity of asbestos material and temperature,
at which k of this material has minimum.

The maximal heating rate of samples ACPC
was estimated under the indications of the first
thermocouple (from the side of a heating surface).
At the solving IPHC with the help of FRIEND the
part of a sample between the first and fourth
thermocouples is considered only.

Composites on AL25 basis
The temperature dependence of thermal

conductivity of the investigated composites are
submitted on Fig.9. They are received by linear
approximation of values of this characteristic
(results of solving IPHC) for three samples of
each composite with the help of the least squares
method. As an example, in this figure the
dispersion of the data k of an alloy AL25 is
shown. The symbols designate values of thermal
conductivity AL25 for 3 samples. The injection in
alloy AL25 the additives of silicon carbide and
aluminium dioxide is resulted to decreasing of its
thermal conductivity. This decreasing becomes
greater with increasing of temperature. It is
generated first of all with that circumstance, that
thermal conductivity of the additives in some
times below this characteristic AL25 [1,2].

It is necessary also to note that for silicon
carbide and aluminium dioxide sharp decreasing
of values of their thermal conductivity has a place
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with growth of temperature. So, according to data
[1,2] temperature increasing from 1000C up to
4000C leads to decreasing of thermal conductivity
values of these materials in 3-4 times. For a
composite with mullitesilica such sharp
decreasing of thermal conductivity is absent.

CONCLUSIONS
The engineering of thermal conductivity

research of different materials is developed. It has
allowed analyze the influence of the different
factors on k of materials with low and high
thermal conductivity.

The increase of heating rate for asbestos
material (it is the typical representative of heat-
shield materials with organic resins) results to
displacement in area of high temperature of its
effective thermal conductivity minimum. The
analysis of k temperature dependence of this
material (k received by solving IPHC with use of
experimental data at various kinds of one-sided
heating) has shown, that the k minimum is
displaced in area of high temperature
approximately up to 100K/s. This circumstance
speaks that the displacement of thermal
decomposition process of resin in area of high
temperatures has a place up to this heating rate.

The injection in alloy AL25 of 3 various
powder additives results in decreasing its thermal
conductivity. The injection in this alloy of silicon
carbide and aluminium dioxide results in sharp
fall of temperature dependence of its thermal
conductivity. For a composite with mullitesilica
such sharp decreasing of thermal conductivity is
absent.
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ABSTRACT 
The classical approach to the linear – or non-

linear – parameter estimation problem deals with 
three types of variables: the dependent variable, 
several independent variables and unknown 
parameters. These are estimated starting from 
experimental values of the signal. In many inverse 
heat transfer problems the location of the detectors 
is usually not perfectly known and the estimated 
parameters can be severely biased if this is not 
taken into account. In order to get a better insight 
into this case, the academic linear least squares 
problem is revisited for high signal over noise 
ratio. The independent variable (nominal abscissa) 
is considered as both a signal and a parameter, 
which requires the minimization of a modified two 
terms least squares functional. The stochastic 
properties of the resulting estimator are reviewed 
and its efficiency is tested. This technique has 
been successfully implemented for thermophysical 
property measurement in a porous medium and is  
presented in the second part of this paper. 
 
NOMENCLATURE 
b bias 
cov variance – covariance matrix 
E expected value 
n number of points 
N number of simulations 
Q variance ratio (= σ ’2/σ 2) 
r linear correlation coefficient between y 

and t or τ 
s plus or minus sign (= rr / ) 

us  statistical standard deviation of u 

vus  statistical covariance between u and v 

S two terms modified least square sum 

St least squares sum for ‘signal’ t 
Sy least squares sum for y 
t dependent noised variable (location) 
X space coordinate or time 
X matrix of the sensitivity coefficients or 
 sensitivity vector 
y dependent noised variable 
Z coefficient 
 
Greek symbols 
αα  extended parameter vector 
β1, β2 straight line parameters 
ββ parameter vector 
δ noise on τ 
δ i j Kronecker symbol 

ε i j noise on a time – space signal 

ε noise on η 
η dependent variable 
ρ12 correlation coefficient between 

parameters 
σ, σ ’ standard deviations of ε  and η 

u∇  gradient with respect to vector u 
 
Subscripts 
cor corrected value 
lin associated to the linear estimation 
 
Superscripts 
k number of a Monte Carlo inversion 
(m) order of a Taylor series expansion  

(m = 0, 1 or 2) 
- average value 

* reduced quantity 

^ estimator or estimated quantity 
t transpose of a matrix or vector 
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INTRODUCTION 
The usual approach to the linear, or non-linear, 

parameter estimation problem [1] consists in 
working with models involving three types of 
variables. The first one is the dependent variable 
η, whose experimental value y, corrupted by 
additional noise, is the signal, which is a 
stochastic variable. This dependent variable is 
linked, through a model, to both one or more 
independent variables X1, X2,..,Xv and to a certain 
number of unknown parameters that have to be 
estimated once experimental values of the signal 
have been recorded. 

In many inverse heat transfer problems, where 
the signal y is produced by a set of detectors (j = 
1, 2,…, d) at different measurement times ti (i = 1, 
2,..., n), one can write: 
 

ijijjjij tXXXy εη += );,,,( 321 ββ   (1) 
 

where X1j, X2j, X3j designate the coordinates of the 
jth detector and X4i = ti the ith time of measurement, 
εij being the noise associated with this 
measurement. ββ is the parameter vector here. 

Usually y and ε are considered as stochastic 
variables while time X4 and location (X1, X2, X3) 
are assumed to be known without any error 
(deterministic variables). The problem of 
estimating ββ is solved by classical regression in 
that case. If modern data acquisition systems yield 
data associated with usually errorless times, any 
heat transfer experimentalist knows that the 
location of the detectors cannot be known with an 
infinite precision. That means that X1, X2 and X3 
should also be considered as stochastic variables 
in order to prevent any estimation of β β with a too 
large bias. This type of model, which differs from 
the classical regression model, is called 
measurement error model in the statistical 
literature, and has been extensively studied for 
more than a century [1 p. 199, 2, 3 p. 492-496, 4]. 

It is this problem that will be presented next, in 
a very academic linear case, the straight line 
model, where only one independent variable (v = 
1) will be considered. 

 
THE STRAIGHT LINE CASE 

The following linear model is considered: 
 

τββτηη 2);( +== 1ββ   (2) 
 

where η and τ are the dependent and independent 
variable respectively and β1 and β2 the two 

parameters. One first assumes that experimental 
noised data yi are available at ‘locations’ τi  (i = 1 
to n): 
 

iiiy ετη += );( ββ   (3) 
 
where εi is an uncorrelated unbiased noise of 
constant standard deviation σ and ββ  = [β1  β2]

t. 
 

ijjii EE δσεεε 2)(0)( ==  (4) 

 
EXACT INDEPENDENT VARIABLE 

If the τi’s are known exactly, the best 
estimation technique consists in minimizing the 
ordinary least squares sum: 
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where X is the sensitivity matrix and y the 
measurement vector: 
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In this case the solution is explicit: 
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In these expressions sτ

2 is the statistical 
variance of the locations (a measure of the 
dispersion of these locations) and sτ y the statistical 
covariance between signal and location of 
measurement. 

The covariance matrix of the estimation error 
can also be calculated: 
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where σ1 and σ2 are the standard deviations of the 
estimators of β1 and β2, and ρ12 their correlation 
coefficient. 
 
UNKNOWN INDEPENDENT VARIABLE 

If no information is available for the τi’s, the 
first idea is to integrate these unknowns into a new 

extended parameter vector [ ] ttt ττββαα =  

[ ] t
212 .... nτττββ1= . 

 
The matrix of the new sensitivity coefficients 

can be calculated: 
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It can easily be shown that this matrix is 

singular since the sensitivity vectors Xα j (the 
column vectors of Xαα) are linearly dependent: 

00
1

2212 =−+β ∑
=

+ααα

n

j
)j(XXX  (10) 

This means that it is impossible to estimate β1 
and β2 without any prior information about the 
τi’s. 
 
UNCERTAIN INDEPENDENT VARIABLE  

Usually only approximate (nominal) values ti of 
the dependent variables τi are available: 

 
iiit δτ +=    (11) 

 
where δi is an uncorrelated unbiased noise, of 
constant standard deviation σ’, which is not 
correlated with εj. 
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In the Measurement Error Model terminology, 

model (3, 4, 11, 12), where the unknown 
dependent variable τi is deterministic, is called a 
functional model, while cases where τi  are 
stochastic variables with either fixed or variable (i 
dependent) expected values are called a structural 
or a ultrastructural model [2, 4]. We will deal here 
with the functional model only. 

With this new information two kinds of 
measurements are available, the yi’s and the ti’s, 
and three kinds of parameters are sought after, 
parameters β1 and β2 and the unknown ‘locations’ 
τi. These locations are therefore considered both 
as a ‘signal’ (the ti’s) and as unknown parameters 
(the τi’s). In order to take into account the two 
different kinds of signals, that do not have the 
same unit, under the form of a least squares sum, 
the two kinds of residuals have to be normalized 
by the two different standard deviations σ and σ’. 
The sum that has to be minimized with respect to 
parameter vector αα becomes: 

 

)13()(
'

1
)(

1

'
);(

),(

22

2

1

2

1

ττττβ,β,

ββ
ττββ

ty

n

i

ii
n

i

ii

SS

ty
S

σσ

σ
τ

σ
τη

+=








 −
+







 −
= ∑∑

==

 
or, in a matrix – column vector form: 
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This estimation problem is not linear any 

more. The estimates of β β and ττ are obtained 
through solution of the following system: 
 
 

0)ˆ,ˆ( =∇ ττββββ yS   (15) 
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2)/'(with σσ=Q  
 

Equation (16) allows the calculation of the 
estimator of τ τ in terms of the estimator of   β β: 
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One can notice at that point that errorless t 

measurements (Q = 0) lead to t=ττ̂  while no 
knowledge on t ( ∞→Q ), or, equivalently 

errorless y’s, leads to iiy τββ ˆˆˆ
21 += . This 

means that in these two extreme cases either Sy or 
St  in the least square sum S – equation (13) - is 
equal to zero. Even if it is not a function that has 
to be estimated, coefficient Q behaves like a 
regularization coefficient. One can also say that 
the second St term brings some information, which 
corresponds to a Bayesian maximum likelihood 
approach [1, 4, 5]. 

 
Equation (15) provides the classical linear 

estimator of β β in terms of ττ̂ : 
 

( ) yXXX )ˆ()ˆ()ˆ(ˆ t-1t ττττττββ =   (18) 
 

Substitution of the iτ̂  ’s  given by equation 
(17) into equation (18) provides the following 
equations (for 0≠Q ): 

 

ty 21
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where the upper bar designates the statistical 
average, 22 and ty ss the statistical variances of y and 
t respectively, and st y the statistical covariance of t 
and y - see equation (7) for the definition of these 
coefficients. Equation (20a) has two solutions of 
opposite signs that can be discriminated using the 
linear correlation coefficient r between the t’s and 
the y’s: 
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Figure 1. Example of estimation (S minimization) 
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If σ’ tends to zero, one can show, using a first 

order series expansion of 2β̂  with respect to Q, 

that 2β̂  and, consequently, 1β̂  tends to the 
classical linear estimator given by equation (7). 

 
If it is σ  that tends to zero, it can be shown, 

using the same kind of series expansion with 

respect to 1/Q, that 1/ 2β̂  tends to the value of 2β̂  
given by the linear estimator – equation (7). This 
means that in this case we meet the classical linear 
model where τ  has to be expressed as a function 
of η (permutation of the dependent and 
independent variables). 

 
This shows that the non linear estimator given 

by equations (21), (19) and (17) is only a 
generalization of the classical linear estimator (7). 

This estimator – equations (17, 21) - has been 
previously derived (for the β1 = 0 case), starting 
from a maximum likelihood estimation (MLE) 
associated with a Lagrange multipliers approach 
[1, p.198-199]. It is also derived using MLE in [3, 
p. 23]. In our approach, we assume that Q, the 
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variance ratio is known, and we do not try to 
estimate it using MLE. 

An example of estimation is given in Figs. 1 
and 2, for n = 20 locations distributed uniformly 
between 1 and 20, for the case β1 = β2 = 1 and σ = 
σ’ = 3. 

It can be noted that if a normalization of both 
dependent and independent variables and on their 
associated noises  is done, according to: 
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model (2) becomes: 
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Figure 2. Example of estimation of the dependent 
variable (S minimization) 
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In the normalized (t*, y*) plane, the least 
square sum S* represents the minimum of the 
square of the distance between the experimental 
points ),( **

ii yt and the recalculated points 

)ˆˆˆˆ,ˆ( **
2

*
1

**
iii τββητ += . This means that equation 

(17) represents an orthogonal projection (for Q = 
1) of the experimental points onto the least square 
straight line. This is the reason why minimization 
of sum (13) is called orthogonal regression [4, p. 
9]. The classical linear estimator - equation (6) - is 
associated with a corresponding  vertical 
projection (parallel to the y axis). 
 
BIAS AND VARIANCE OF THE NON 
LINEAR ESTIMATOR 

Since the previous estimator [ ] ttt ˆˆˆ ττββαα =  is 
not a linear combination of the data (the y’s and 
t’s), it will be biased, which means that its 
expected value will a priori differ from its exact 
value: 

 
αααα ≠)ˆ(E     (26) 

 
A good way to find an estimate of this bias, as 

well as an estimate of the standard deviation of the 
estimator, is to use a second order Taylor 
expansion of the estimate with respect to the 
noise. Since two types of noise are now 
considered (ε for y and δ for t), the previous 
normalization (based on the two standard 
deviations σ and σ’) will be used. In order to 
alleviate the notation, the star superscript will be 
dropped, which corresponds to a use of the 
dimensional notation with Q = σ  = σ’ = 1. 

 
Replacing y by (ηη + εε) and t by (ττ + δδ) in 

equation (20b) defining Z and written in a column 
vector form, and later on in equation (21) defining 

2β̂ , will produce such a second order 
development. To indicate how this procedure can 
start, the denominator of Z is expanded: 
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st y = st y
(0) + st y

(1) + st y
(2) + o(θθ tθ θ )   with θθ = 
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where the upper subscript (m) designates the mth 
order term (in εε  and δδ) in the development of sty 
and where notation o (x) designates a term of 
higher order than x. 
 

Such an approach yields for both parameters 

jβ̂  (j = 1, 2): 
 

ojjjj +++= )2()1()0( ˆˆˆˆ ββββ (θθ  tθθ  )     (29) 
 

This allows the calculation of the bias bj and 

the standard deviation σj of jβ̂  (within the above 
second order approximation): 

 

jjjjjj EEb βββββ −+=−= )ˆ(ˆ)ˆ( )2()0(    (30) 
 

since 0)ˆ( )1( =jE β  and )ˆ(var )1(2
jj βσ =   (31) 

 
The results for the dimensional parameters 

can be calculated, taking into account the fact that 
the two kinds of noise δδ and εε are not correlated:  
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The two standard deviations have limit 

values, as Q tends to zero, that correspond to the 
linear case – see equations (8). It can also be 
noticed that the estimators of the slope and of the 
intercept are consistent since both their bias and 
standard deviations tend towards zero for large n 
values. 

These asymptotic values for the standard 
deviations and bias for the estimators of the slope 
and of the intercept have been obtained here for 
any value of n and for small normalized noise over 
signal ratios (σ/sη and σ’/sτ < 1) and for noises δ 
an ε not correlated with the distribution of the 
exact dependent variable τ. Our standard 
deviations (33) differ, in principle, from the 
asymptotic standard deviations given in [4, p. 52-
53] which correspond to large samples (large n), 
for any value of the signal over noise ratios.  

The common limiting factor for the four 
parameters (32, 33) of the probabilistic 
distributions of the estimators, is the ‘signal over 
noise ratio’ (sτ  /σ’) of the (deterministic) 
distribution of the independent variable. If this 
ratio becomes small, the bias grows faster than the 
standard deviation and the sought after parameters 
will not be found. In the example presented in Fig. 
1 and 2, this ratio is close to 2 which can be seen 
in Fig. 2 where the experimental locations are not 
always an increasing function of the exact location 
(ordered according to its increasing value): this 
ordering is nearly blurred by the high standard 
deviation of the nominal locations (and the too 
low dispersion of the corresponding exact 
locations). 

 
Detailed characteristics of this inversion are 

given in Table 1 where the non linear estimates 

jβ̂  are given (see eqs. (19) and (21)), as well as 
their bias bj, calculated according to eqs. (32), 
taking either the exact values of β2 and sτ 

(theoretical) or their counterparts 2β̂  and st that 
are affected by noise (noised). The bias bj, either 
theoretical – see equation (32) – or estimated 
(noised) are also shown, as well as the linear 

estimates jβ̂ lin, calculated according to equation 
(7). A corrected estimate, that takes into account 
the bias – eqs (30) – is also given, with: 

 

jjj b−= ββ ˆˆ
cor   (34) 

 
The two components of the modified least square 
sum, St and Sy – see eq. (14) – are also given, as 
well as the average residuals: 
 

2/12/1 )/(;)/( nSresnSres yytt ==  (35) 
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In this extreme situation the bias correction 
has no positive effect and the uncorrected non 
linear estimates yields better results for β1 and β2. 
This bias correction is not very effective for one 
single inversion since the bias over standard 
deviation ratio is rather low. Even if the linear 
estimation of β2 is not too bad, it is clear that its Sy 
residuals do not compare well with the non linear 
case. 

 
 

Table 1. Characteristics of the estimation 
presented in Figs. 1 and 2 

j 1 2 

jβ  1 1 

jβ̂  3.04 0.837 

jb  (theo.) -0.142 0.0135 

jb̂  
(noised) 

-0.077 0.239 

jσ  6.54 0.165 

cor
ˆ

jβ  
(noised) 

3.130 0.598 

lin
ˆ

jβ  3.79 0.765 

jjb σ/  0.0217 0.0823 
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MONTE CARLO VALIDATION OF THE 
THEORETICAL BIAS AND STANDARD 
DEVIATION 

In order to validate the stochastic estimates of 
both bias and standard deviation of the estimates, 
it is necessary to implement a repetitition of the 
realizations of the simulated measurements by 
generation of new δδ and εε noises, at each 
realization, before a corresponding inversion. This 
“crude” Monte Carlo approach [1, p. 125] has 
been adopted for a number N = 10000 realizations 
in a case where the bias effect is most effective 
(high value of β 2). The corresponding results are 

shown in Table 2. If k
jβ̂  designates the estimates 

for the kth inversion, the averages and statistical 
standard deviation for the N inversions are noted: 
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(36) 

A corrected value for jβ̂  is also given, which 
takes into account the estimated bias 
 

jjj b̂ˆˆ
cor

−= ββ    (37) 

 
This table shows that the bias correction is 

very effectient and that the statistical standard 
deviations s match very well their theoretical 
counterparts σ. The linear estimator is unable to 
reach the exact parameter values. 
 
 
Table 2. Statistics on 10000 Monte Carlo 
simulations of inversion 

j 1 2 

jβ  1 100 

jβ̂  -14.0 101.3 

jj ββ −ˆ  -15.0 1.33 

jb  (theo.) -14.2 1.35 

cor
ˆ

jβ  1.11 100.0 

j
s

β̂
 144.9 12.2 

jσ  139.4 11.6 

lin
ˆ

jβ  200.4 80.9 

linˆ
j

s
β

 100.1 8.01 

linjσ  1.39 0.116 

jjb σ/  -0.102 0.116 
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In fact these analytical and simulated results show 
that the bias of the estimator decrease in 1/n while 
the standard deviations of the non linear estimate 
decrease in 1/n1/2, which means that in most 
practical situations the bias over standard 
deviation ratio (bj/σj) remains low and 
consequently the bias can be neglected. 
 
  
CONCLUSION 

It has been shown within the simple case of 
the linear straight line model that both the errors 
on the ordinates (dependent variables) and on the 
abscissa (independent variables) could be taken 
into account by the minimization of a two term 
functional. The weighing factor, that has to 
account for the non identical units of these 
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variables, can be chosen in a unique way, as the 
ratio 1/Q of the variances of the variables.  

On a theoretical point of view, this non linear 
estimator, that relates to the family of the 
“Measurement Error Models” [4] constitutes a 
generalization of the classical linear estimator that 
does not consider errors in the abscissa. Its 
approximate bias and  standard deviation can be 
analytically expressed thanks to a second order 
Taylor expansion for high signal over noise ratios. 
It has been shown that the bias remains negligible 
in most practical situations. The effect on the 
estimations of an only approximate knowledge of 
Q remains to be studied. 

On a practical point of view, the use of such a 
minimization with a penalization term that takes 
into account a prior but uncertain information on 
the independent variable, with a non arbitrary 
weighing term, can be very interesting in the 
particular case where this variable correspond to 
the uncertain locations of some temperature 
sensors. This case will be studied in the second 
part of this article, in the particular case of the 
estimation of dispersion coefficients in a porous 
medium.  

Such an optimization technique could also be 
used in applications where a material is heated by 
a Joule effect power whose measurements are 
noised, with simultaneous noised temperature 
measurements for thermal property estimation 
(two sources of noise).  
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ABSTRACT 

This experimental work aims to estimate the 
thermal dispersion coefficients for a packed bed 
of glass spheres through which water is flowing. 
Thermocouples in the downstream neighborhood  
of a linear heat source measure the temperature 
response to a step heat input. Thermal dispersion 
coefficients can then be obtained by the classical 
estimation method of least squares. However, 
thermocouple locations and water velocity in the 
set-up are not precisely known, which leads to 
incorrect estimates. Only one of these two 
parameters can be estimated additionally by the 
classical method. A two terms least squares 
functional, as introduced in part I of this paper, 
which takes the thermocouple positions as normal 
stochastic variables can simultaneously give 
estimates for both parameters. Experimental 
estimation results for the longitudinal thermal 
dispersion coefficient are presented for a range of 
Péclet numbers up to 100. 
 
NOMENCLATURE 
a thermal diffusivity, m2/s 
a, b estimators for parameters 
cp heat capacity, J/kg/K 
d particle diameter, m 
I identity matrix 
N number of thermocouples for estimation 
Pe particle Péclet number, ud/af 
Q variance ratio, (σx/σT)2 

R regularization matrix, see Eq. (11) 
S sum of squares 
s integration variable 
T temperature, K 
t time, s 

uD, u Darcy velocity, m/s 
W linear heating power, W/m 
x vector defined in Eq. (11) 
X sensitivity matrix 
x,y,z  space coordinates, m 
 
Greek symbols 
αα, ββ parameter vectors 
ε porosity 
λλ, λx,… thermal dispersion tensor, W/m/K 
µ mean value 
ΩΩ weighting matrix 
ρ density, kg/m3 

σ standard deviation 
 
Subscripts and superscripts 
f fluid phase 
s solid phase 
t total, or transposed vector/matrix 
0 equilibrium 
 
INTRODUCTION 

The understanding of heat transport in a 
porous medium through which a fluid is flowing 
is essential for many chemical engineering 
applications, for all devices where the exchange 
or storage of thermal energy is improved by a 
porous matrix and for the design of nuclear waste 
storage sites.  

The situation is characterized by diffusion in 
the solid matrix and both convection and 
diffusion in the fluid phase. Pore geometry and 
the microscopic velocity field make the problem 
extremely complicated. Up-scaling techniques 
such as volume averaging or homogenization 
allow to describe the phenomenon on a macro-
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scopic scale. The simplest model describes the 
evolution of one average temperature by a 
convection-diffusion equation with a (velocity-
dependent) thermal dispersion tensor characteri-
zing the system [1]. More complete models 
involve two energy equations for the average 
temperatures of fluid and solid phases which are 
coupled by many parameters [2]. In thermal 
dispersion, fluid velocity is measured by the 
dimensionless Péclet number which is the ratio of 
the characteristical times of diffusion and 
convection on the pore scale. Classically, the one-
temperature model was supposed to work only for 
small Péclet numbers, where diffusion can 
guarantee local thermal equilibrium (〈Ts〉 = 〈Tf〉). 
But Moyne et al. [1] have shown that a local 
average temperature 〈T〉 can always be defined so 
that the one-equation model keeps being valid.  

The present experimental work is set out to 
measure the thermal dispersion coefficients of the 
one-temperature model, and to determine their 
velocity dependence for Péclet numbers up to 
100. Furthermore, the applicability of this simple 
model is to be tested. In literature, only few 
experimental results are reported [3-5].  
 
THEORETICAL MODEL 

The one-temperature model for the local 
average temperature 〈T〉 in a porous medium 
through which a fluid is flowing is given by  
 

( ) ⋅∇=
∂

∂
t
T

c
tpρ (λλ T∇ ) ( ) Tc Dfp ∇⋅− uρ   (1) 

 
where the total heat capacity of the porous 
medium is calculated by the mixing law 
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and where λλ is the thermal dispersion tensor and  
uD the Darcy velocity of the fluid (volumetric flux 
per total cross section). (For simplicity, we will 
further denote the average temperature by T.) 

For the case of an isotropic homogeneous 
porous medium with fluid flow in x-direction, Eq. 
(1) simplifies to 
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where λx is the longitudinal, and λy = λz the lateral 
thermal dispersion coefficient; u is the x-
component of uD. 

In the experiments we use a linear heat source 
along the z-axis which is switched on at t = 0 to 
dissipate the power per unit length W. Before 
excitation, the medium is at thermal equilibrium, 
i.e. T = T0 everywhere. For an infinite porous 
medium (with T → T0 for x,y → ∞) the evolution 
of the rise in temperature ∆T = T – T0 can be 
calculated by successive use of an exponential 
transform [6] and Green’s functions [7] to obtain 
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This integral is then solved numerically. 
 
EXPERIMENTS 

In this section we introduce the set-up used for 
the experiments and show a typical temperature 
response diagram. 
 
Experimental set-up 

For the experiments, a consolidated porous 
medium of glass beads with a diameter d = 2 mm 
is used; its porosity ε is about 36%. Water is 
flowing vertically downwards through this packed 
bed. Table 1 gives the thermal properties of the 
experimental system. 

 
 

Table 1. Thermal properties of the system 
 water glass 

ρcp (kJ/m3) 4170 2080 
λ (W/m/K) 0.607 1 

 
 
A high-resistance electrical heating wire 

(diameter 260 µm) is set perpendicular to fluid 
flow and excited with a step power function. 
Altogether 13 thermocouples of type E (diameter 
127 µm) are used to measure the temperature 
response. Figure 1 shows the dimensions of the 
porous medium as well as the locations of the 
heating wire and the thermocouples. 

In a previous work [8] we have shown that the 
sensitivity of the temperature signal to the thermal 
dispersion coefficients is highest on the positive 
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x-axis, and that axial temperature response 
measurements allow for an estimation of both, 
longitudinal and lateral, thermal dispersion 
coefficients; therefore most of the thermocouples 
(1 to 7) are located there. Thermocouples 8 to 11 
are set off-axis to determine the lateral extent of 
the temperature signal and to verify that wall 
effects may be neglected (assumption of infinite 
geometry). The thermocouples upstream of the 
heat source (12 and 13) are used to monitor T0 
and to assess the effect of natural convection for 
very small Péclet numbers. (Only for Pe ≤ 1, 
thermocouple 12 measures a change in tempera-
ture. But velocity estimation, as described later, 
seems to show that natural convection lowers 
water velocity for Péclet numbers up to 10.) 

 

Figure 1. Experimental set-up: dimensions of 
porous medium (20 cm in z-direction), heating 
wire and thermocouple positions and numbers 

 
Figure 2. Temperature response signal (Pe ≈ 6) 

The heating power level needs to be chosen in 
a way that temperature differences stay small 
enough, so that all physical properties can be 
taken as constant and boiling is excluded in the 
immediate surroundings of the heating wire, but 
that the signal to noise ratio is high enough for the 
temperature measurements. Generally, it is set 
such that ∆T takes values of the order of 1 K at 
the thermocouple positions. The thermoelectrical 
voltage of the thermocouples (between a thermal-
ly insulated reference junction and the measure-
ment junction) is amplified 2000 times and 
measured with a frequency of 2 KHz. To reduce 
electric noise, we use a first-order low pass filter 
of 44 Hz and average data groups of 80 points 
(corresponding to 2 periods of 50 Hz noise!). This 
allows us to record temperature at an effective 
frequency of 8 Hz with a noise of about 0.01 K. 
Additionally, any offset of the data acqui-sition 
system or the thermocouples is corrected by the 
signals measured at t < 0. Heating power is 
measured electrically.  

Average water velocity is monitored by a 
flowmeter outside the porous medium. This intro-
duces a systematical error because of the channe-
ling effect near the box’s walls: typically, velocity 
in the center of the packed bed will be a few 
percent less than the average value [9]. 

It also has to be mentioned, that the exact 
locations of heating wire and thermocouples are 
not known, since the glass beads are filled in the 
box after the wires have been set: they probably 
displace them, typically by the diameter of a 
sphere, and visual estimation of their position is 
not possible anymore. 

 
Temperature response diagrams 

Experiments were carried out in the range of 
Péclet numbers up to 100 which corresponds to 
Darcy velocities of about 7 mm/s. For each water 
velocity, thermal equilibrium of the porous 
medium was established, then the heating was 
switched on and all temperature response signals 
where recorded. Figure 2 gives an example for 
one such experiment at low water velocity. From 
these response curves, the thermal dispersion 
coefficients λx and λy are to be estimated, which 
constitutes an inverse problem. But imprecise 
knowledge of thermocouple locations and water 
velocity needs to be accounted for. 
 
PARAMETER ESTIMATION 
 
Ordinary least squares estimator 

The classical method of parameter estimation 
involves the minimization of the sum of squares 
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ST (ββ) = ∑∑
i k

(Texp,ik − T(xi,yi,tk, ββ))2     (5) 

 
where Texp are the experimental temperature 
values, for positions (xi,yi) and times tk, arranged 
in a vector; T is the corresponding theoretical 
temperature vector, depending on parameters ββ. 
The Gauss algorithm [10] given in Eq. (6) leads to 
the ordinary least squares estimator bOLS for the 
searched parameters ββ. 
 

nn bb =+1  

( ) ( )( ) ( ) ( )( )nexpnnn bTTbXbXbX −+
− t1t    (6) 

 
Here Xmj = (∂Tm/∂ββj) is the sensitivity matrix, the 
columns of which are partial derivatives of the 
theoretical temperature [10]. 

The parameter vector ββ, which is to be estima-
ted, necessarily contains the thermal dispersion 
coefficients λx and λy. In [8] we showed that it 
may be extended to include either the Darcy 
velocity u or the thermocouple locations xi. 
However, both of them cannot be estimated 
simultaneously: then the parameters become 
correlated. For central measurement (y = 0), 
neither locations in y-direction nor the heating 
power W can be estimated. This leaves us with the 
following three estimation modes: 
 

ββ1 = [λx  λy]
t 

ββ2 = [λx  λy  u]t       (7) 
ββ3 = [λx  λy  xi]

t 
 
(Note, that in ββ3-mode thermocouple position x 
changes its role from known independent variable 
to estimated parameter.) With these three modes 
the limits of the classical approach are reached. 
 
Regularization 

Both Darcy velocity and thermocouple 
positions can be estimated, if the formalism of 
part I of this article is used. Let us therefore 
define 

 
αα4 = [λ x  λ y  u  xi]

t     (8) 
 

as the parameters to be estimated. Starting from 
estimation mode ββ2 and applying the formalism to 
the independent variable x, one obtains the 
modified sum of squares S given in Eq. (9). 

The sum of squares for the temperature signal 
is hence completed by a second sum which con-
tains the thermocouple positions. Here the nomi-
nal positions xi

nom  are the positions of the thermo- 

 
S(αα4)  
 
 
 (Texp,ik − T(xi,yi,tk, ββ2))

2 

 
 
 (9) 

 
 

couples before the beads were filled in the box. 
This filling randomly displaces the thermo-
couples. The nominal positions are treated as a 
measurement signal for they are the most accurate 
information available. In order to combine the 
two sums, a proper ponderation is needed. The 
sum for the temperatures is weighed by the 
standard deviation of temperature measurement 
noise σT, which is obtained by data acquisition at 
thermal equilibrium. The statistical properties of 
the positions, however, are not so easily available 
and a typical displacement of the order of the 
particle diameter will be taken for σx. (Later we 
will see that the estimation results are only 
affected if σx is changed several orders of 
magnitude.) By introducing this additional 
information on the positions, xi

nom and σx, the 
estimation of both velocity and positions becomes 
possible. When estimating the parameters, the 
second sum will penalise a large deviation of the 
estimated positions from the nominal values. 
      The appropriate algorithm to minimize the 
modified sum of squares S and obtain an estima-
tor for αα4 is given in two alternative forms in Eqs. 
(10). The signal vector has been extended to 
include the nominal positions xi

nom, the sensitivity 
matrix has been extended accordingly to Xext, and 
a weighting matrix ΩΩ with the two weighting 
factors on its diagonal is introduced [10]: 
 
an+1 = an + (Xext(an)

t ΩΩ Xext(an))-1 
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The matrix R is the sensitivity matrix for the 
position signal only, but in Eq. (10b) its role as a 
regularization matrix – in combination with the 
variance ratio Q – is stressed. N is the number of 
thermocouples and IN the identity matrix of 
dimension N × N. The structure of the vectors xnom 
and xn is defined generally. 

This algorithm is a generalization of Eq. (6). 
As can easily be seen, the additional terms vanish 
for σx → ∞, as does the additional sum Sx (in this 
limit, the algorithm breaks down; it corresponds 
to a classical approach for estimating αα4). 
 
Monte Carlo comparison of estimation 
modes 

In order to compare this new estimation proce-
dure (αα4) with the classical modes (ββi) and to 
assess its quality, experimental temperature data 
were simulated by the Monte Carlo method [10] 
for a model porous medium ((ρcp)s = 2 kJ/m3 and 
ε = 0.4) with water flowing at a Darcy velocity of  

 
unom = 1 mm/s   (12a) 

 
(corresponding to Pe = 14). Linear heating power 
was chosen to be Q = 75 W/m, and for the 
thermal dispersion coefficients approximate 
values were taken as  

λ x = 5 W/m/K  (12b) 
λ y = 2 W/m/K  
 

The nominal thermocouple positions were 
 

  (x1,y1)
nom = (2,0) cm 

  (x2,y2)
nom = (4,0) cm (12c) 

(x3,y3)
nom = (6,0) cm 

 
and the times of temperature measurement tk = 
0.5, 1.0, 1.5, …, 120 s. The data points Tik were 
generated by adding uncorrelated normal noise 
with a standard deviation σ T = 0.1 K. All these 
values are taken rather pessimistically compared 
to what can be achieved in experiments in order 
to show that the algorithm is robust. 

Four cases, as defined in Table 2, were treated 
to investigate the influences of the channeling 
effect and thermocouple displacement by filling 
in the glass beads. First, temperature data were 
simulated for the nominal velocity and positions; 
second, water velocity was taken 5% less than the 
nominal value for the simulations; third, thermo-
couple positions were changed by normal-
distributed uncorrelated δxi (µx = 0, σx = 1 mm); 
and last, velocity and positions were both 
modified. (The absence of correlation in position 
error cannot be checked experimentally). 

 
 

Table 2. Definition of the four cases of Monte Carlo simulation, and results for the different estimation 
modes as mean values and standard deviations of estimated parameters 

case 1 case 2 case 3 case 4  
estimation 

mode ↓ 

parameters 
used for signal 
generation →→ 

unom 

xi
nom 

0.95 unom 

xi
nom 

unom 
xi

nom + δxi  
0.95 unom 
xi

nom + δxi  
λx (W/m/K) 5.004 ± 0.375 5.729 ± 0.373 5.027 ± 0.369 5.795 ± 0.397 ββ1

 

λy (W/m/K) 1.999 ± 0.015 1.922 ± 0.013 1.985 ± 0.067 1.907 ± 0.064 
λx (W/m/K) 5.007 ± 0.383 4.971 ± 0.344 5.025 ± 0.393 5.078 ± 0.345 
λy (W/m/K) 1.998 ± 0.018 2.000 ± 0.016 1.983 ± 0.085 1.981 ± 0.085 

ββ2 

u (mm/s) 1.001 ± 0.007 0.950 ± 0.006 1.002 ± 0.015 0.953 ± 0.014 
λx (W/m/K) 4.998 ± 0.378 5.499 ± 0.369 4.966 ± 0.355 5.548 ± 0.351 
λy (W/m/K) 2.001 ± 0.025 1.806 ± 0.020 1.998 ± 0.025 1.806 ± 0.023 
∆x1 (mm) −0.017 ± 0.198 1.043 ± 0.205 0.016 ± 0.206 1.036 ± 0.218 
∆x2 (mm) −0.025 ± 0.376 2.079 ± 0.320 0.024 ± 0.382 2.069 ± 0.401 

ββ3 

∆x3 (mm) −0.020 ± 0.497 3.142 ± 0.507 0.040 ± 0.460 3.118 ± 0.477 
λx (W/m/K) 5.002 ± 0.383 4.968 ± 0.344 4.970 ± 0.380 5.025 ± 0.345 
λy (W/m/K) 1.999 ± 0.021 2.000 ± 0.021 1.996 ± 0.055 1.995 ± 0.056 

u (mm/s) 1.000 ± 0.007 0.950 ± 0.006 1.000 ± 0.014 0.952 ± 0.013 
∆x1 (mm) −0.008 ± 0.150 −0.001 ± 0.171 0.025 ± 0.306 0.027 ± 0.314 
∆x2 (mm) −0.007 ± 0.265 −0.009 ± 0.238 0.039 ± 0.564 0.035 ± 0.582 

αα4 

∆x3 (mm) 0.005 ± 0.191 0.005 ± 0.178 0.049 ± 0.811 0.049 ± 0.786 
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Table 3. Results of parameter estimation of  1000 
MC simulations for fixed positions as in Eq. (13) 

case 3a case 4a  
estimation mode unom 

xi
nom + δxi  

0.95 unom 
xi

nom + δxi  
λx (W/m/K) 5.130 ± 0.406 5.947 ± 0.407 ββ1

 

λy (W/m/K) 2.022 ± 0.016 1.975 ± 0.015 
λx (W/m/K) 5.154 ± 0.414 5.146 ± 0.370 
λy (W/m/K) 2.052 ± 0.019 2.053 ± 0.018 

ββ2 

u (mm/s) 1.002 ± 0.007 0.952 ± 0.006 
λx (W/m/K) 4.985 ± 0.392 5.538 ± 0.389 
λy (W/m/K) 2.000 ± 0.024 1.806 ± 0.022 
∆x1 (mm) −0.007 ± 0.208 1.100 ± 0.226 
∆x2 (mm) 0.009 ± 0.361 2.099 ± 0.347 

ββ3 

∆x3 (mm) 0.006 ± 0.495 3.110 ± 0.494 
λx (W/m/K) 5.066 ± 0.403 5.079 ± 0.362 
λy (W/m/K) 1.971 ± 0.022 1.971 ± 0.022 

u (mm/s) 1.008 ± 0.007 0.958 ± 0.006 
∆x1 (mm) 0.119 ± 0.176 0.118 ± 0.177 
∆x2 (mm) 0.303 ± 0.262 0.316 ± 0.238 

αα4 

∆x3 (mm) 0.528 ± 0.195 0.521 ± 0.179 
 
 
For each case, 1000 measurements were simu-

lated, choosing new thermocouple positions (for 
case 3 and 4) at each simulation. Then the four 
estimation modes were tested on these simulated 
measurements, using the nominal values for 
velocity and positions. In the modes, where these 
are not estimated, a systematical error is commit-
ted. The results for the estimated parameters are 
given in Table 2 as mean values and standard 
deviations for one estimation. Position estimation 
is described by mean value and standard devia-
tion of the differences ∆xi ≡ xi

estimated – xi. Hence 
for a good estimation, thermal dispersion coeffi-
cients should be found as in Eq. (12b), velocity as 
unom (case 1 and 3) or 0.95 unom (case 2 and 4), and 
∆xi close to zero. 

As a first result, case 1 shows that there is no 
loss in accuracy if more than just the thermal 
dispersion coefficients are estimated. If velocity is 
not well known (case 2), ββ2 and αα4 cope equally 
well, leaving only a small bias on the estimated 
λx. In case 3, randomly displaced thermocouple 
positions are well estimated by both ββ3 and αα4. 
Case 4, closest to reality, clearly shows the suita-
bility of αα4, which gives the best results, with 
nearly no bias on all parameters. It combines the 
advantages of ββ2 and ββ3, loosing a little in posi-
tion accuracy. Here, emphasis has to be put on the 
reduction of uncertainty of position: the standard 
deviation of ∆xi as compared to σ x = 1mm. 

It has to be mentioned that in a real experi-
mental set-up thermocouple positions are deter-
mined only once when filling the box, while 
measurement noise will be different for each 
experiment carried out. Hence, strictly speaking, 
the results of Table 2 decribe the statistics of 
many box fillings.  

For this reason, we pick out one situation with 
the positions as given in Eq. (13) and simulate 
1000 measurements without changing them.  
 

  x1 = 2.11 cm 
  x2 = 3.96 cm    (13) 

x3 = 5.91 cm 
 

Hence we get case 3a for the nominal velocity 
and case 4a for the biased one.  

The results in Table 3 show that in αα4-mode 
for both cases all position estimates are biased 
towards positive x-values (and velocity is over-
estimated for compensation); the mean position 
values are 

 
x1

estimated = 2.12 cm 
  x2

estimated = 3.99 cm   (14) 
x3

estimated = 5.96 cm 
 

which describes reality much better than the 
nominal values of Eq. (12c). In case 4a, αα4 gives 
better estimation results for the thermal dispersion 
coefficients than the ββi-modes. Residuals also are 
best for αα4 (nearly uncorrelated), whereas those of 
ββ1 and ββ2 contain artifacts due to wrong positions 
(not shown here). 

So αα4 proved to be the best estimation mode, 
be it for one particular or a whole ensemble of 
set-ups (see Table 2). 

  
 

EXPERIMENTAL ESTIMATION 
This new mode shall now be used for thermal 

dispersion estimation from the temperature data 
of thermocouples 2 to 7 as shown in Fig. 2. 
 
Influence of σσx 

The difference of real experimental data to the 
simulations of the previous section is that the  
standard deviation σx of the thermocouple posi-
tions is not known, but can only be guessed. 
However, a definite value needs to be chosen for 
the estimation procedure in Eq. (10). (σT can be  
measured in thermal equilibrium.) 

If the estimation results are plotted as a 
function of σx (see Figure 3), one can clearly 
distinguish two domains: for σx < 0.1 mm the esti- 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

10
-3

10
-2

10
-1

10
0

10
1

1.44

1.46

1.48

1.5

σ
x
  (mm)

λes
tim

at
ed

x
  (

W
/m

/K
)

(a)

 
   

10
-3

10
-2

10
-1

10
0

10
1

1.055

1.06

1.065

1.07

σ
x
  (mm)

λes
tim

at
ed

y
  (

W
/m

/K
)

(b)

 
 

10
-3

10
-2

10
-1

10
0

10
1

0.402

0.403

0.404

σ
x
  (mm)

ues
tim

at
ed

 (
m

m
/s

)

(c)

 
   

10
-3

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

σ
x
  (mm)

|x
no

m
i

 -
 x

es
tim

at
ed

i
| (

m
m

)

TC 2
TC 3
TC 4
TC 5
TC 6
TC 7

(d)

 
  

 

Figure 3. Estimation results for data of Fig. 2 
as a function of σx. The nominal value in (c) is 

unom = 0.436 mm/s. In (d), xi
nom – xi

estimated is 
positive for i = 2,5,6 and negative for the rest. 

 

 

Figure 5. Residuals of parameter estimation 
corresponding to data of Fig. 2 

 

 
mated parameter values depend on σx (in the limit 
σx → 0 they approach the results for ββ2). For σx > 
0.1 mm, parameter estimation is independent on 
the choice of σx, (for σx → ∞ the algorithm breaks 
down). As pointed out in the previous section, σx 
should be of the order of a particle diameter of the 
packed bed, hence in the millimeter range. This 
means that any physically reasonable value in the 
second domain is safe to be chosen for the 
estimation algorithm. 

 
Experimental results 
For the exemplary measurement of Fig. 2 the 
estimator for αα4 was calculated with the algorithm 
in Eq. (10) and σx = 1 mm. The result is shown in 
Fig. 4 as largely magnified residuals that are the 
remaining differences between experimental and 
best theoretical temperatures. The measurement 
noise of less than 0.01 K can be seen as well as a 
remaining structure which suggests that the 
physical modeling of the problem can still be 
improved. 

In a similar way, thermal dispersion para-
meters have been estimated from the experimental 
temperature signals in the whole range of Péclet 
numbers. The results for the longitudinal disper-
sion coefficient λx are given in Fig. 6 (the arrow 
shows the example of Fig. 2). As common in 
literature, we give the velocity-dependence of λx 
as a power law (the two coefficients were 
obtained by classical nonlinear least squares): 

 
λx = λeq + 0.0414 Pe1.62 W/m/K   (15) 

 
The equivalent thermal conductivity λeq = 0.837 
W/m/K was not estimated but calculated by the 
model of Zehner [11]. The reason for not showing 
the lateral thermal dispersion coefficient is given 
in the next section. 
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Figure 6. Longitudinal thermal dispersion 
coefficient as a function of Péclet number 

 
 

REMAINING CHALLENGES AND 
CONCLUSION 

The experimental results for the longitudinal 
thermal dispersion coefficient are already very 
promising. The estimated values have little noise 
and yield a power law, which corresponds well to 
what is measured or expected by other research 
groups.  

However, we have so far neglected any uncer-
tainty in thermocouple coordinates yi. Of course, 
this is no realistic formulation of the problem, and 
introduces bias effects. In fact, for increasing 
Péclet number, the experimental temperature data 
become more difficult to fit with the theoretical 
model used, and the structure in the residuals 
becomes more important. We could already show 
that an error in yi can explain these effects. Also, 
we could see that this only affects the estimation 
result for λy, which is overestimated, and that λx is 
practically left unchanged. This is why we cannot 
give any definitive results for λy yet. 

The experimental set-up and the estimation 
procedure are currently modified in order to take 
into account this error in y-direction. We do this 
by slightly setting the thermocouples off-axis (yi ≠ 
0), so that the sensitivity of the temperature signal 
to the y-location is not zero any more. First 
modifications of the estimation procedure indicate 
that with this change in set-up design it should be 
possible to estimate the positions in y-direction as 
well. 

In addition, the possibilities of a plane heat 
source, realized by several heating wires, are 
explored. This might give an alternative to 
estimate the Darcy velocity in the center of the 
packed bed and verify the values obtained in the 
linear heating mode. 
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ABSTRACT

The goal is the condition analysis to estimate a

maximum of unknown quantities with limited

volume of observation data. Simultaneous

identification of thermal properties and boundary

conditions are based on the uniqueness solution of

inverse problems and optimal design of

measurements. A number of new theoretical

problems are solved. The main result is the

substantiation of the existence of the maximal

informativeness of experimental data processing

even with very small volume of observation data.

NOMENCLATURE
a Vector of unknown properties
c Specific heat coefficient
f Volumetric heat sources
� Specimen length
m Number of samples
n Sample volume
p Number of sought properties
t Time
t h Heat flux duration
u Temperature field

u � Sampling
u 0 Initial temperature
v1 2, Boundary temperatures
x Spatial variable
A Domain of admissible solutions

R Indeterminacy power of identification
� Absolute error of measurements
� Noise of measurements
� Specimen density
� Thermal conductivity coefficient
� Dimensionless temperature
� Relative identification error
�� �C C-optimal relative estimation error
�� �R R-optimal relative estimation error
	 abs Absolute estimation error
	 rms Root-mean-square estimation error

 Form-factor of estimation error
� Observation design

INTRODUCTION

In the theory of inverse problems many

authors studied the conditions to identify more than

one model parameter. Similar investigations were

highly stimulated by the study on the simultaneous

identification of specific heat and thermal

conductivity coefficients [1-5]. The results

obtained indicate that several estimation methods

can be suggested, which choice depends on the

volume of the initial information. Together with

these investigations the uniqueness solution of

inverse problems and identifiability of

mathematical models were examined [6-10]. Such

studies are aimed to substantiate the correct

mapping of the sought functions on an observation

domain.

In contrast to these studies, we are dealing

with the extension of the number of desired

quantities as much as possible. From a theoretical

viewpoint we want to determine the upper bound of

the useful information on the input signal

components containing in a received signal and

unambiguously reconstructed during observation

data processing. From a practical viewpoint the

problem under study is regarded with the

simultaneous estimation as test object properties

and its boundary conditions.

Namely, the minimal volume of input data

received from the sole experiment and single

sensor observation are the subject of our

investigation. Substantially, we want to answer the

next question. Is it possible to analyze a test object

state on a whole using observation data received

from a single interior point of a specimen?

The positive answer expands the formulation of

the experimental data processing and gives ample

opportunities to identify many properties without

numerous measurements. In addition, the approach

offered elicits the most informative measurements

and best experimental conditions.

DESIGN OF EXPERIMENTS TO ESTIMATE THERMAL PROPERTIES
AND BOUNDARY CONDITIONS SIMULTANEOUSLY

Mikhail Romanovski

CAD/CAE Department, POINT Ltd.

79-1-334, Schelkovskoe shosse, 107497, Moscow, Russia

mromanovski@netscape.net

http://mywebpage.netscape.com/mromanovski/IP.htm

4 th International Conference on Inverse Problems in Engineering

Rio de Janeiro, Brazil, 2002



EXPERIMENTAL DESIGN METHOD

The results obtained in [11] attest that a sole

experiment can evince the information on all the

test object properties. Now, let us expand the

investigation and determine the most informative

measurements at a given experiment. Namely, we

will seek the optimal one sensor location and

minimal number of measurements on time that

guarantee the inverse problem solution with

maximal precision grounded on the sole experiment.

To solve the design experimental problem we

use the method [12]. The one is based

methodologically on the theory of ill-posed

problems. The approach developed formulates the

experimental design from a standpoint of the error

analysis of the inverse problem solution.

According to the method proposed the

estimation error 	 � a a with respect to the

given a and noise level� of measurements is sought

as the solution of the observation matching equation

u u i mi i a i

�
	 � � �( ) , ,1 , (1)

where the functions u i a
( )	 are determined as a

direct problem solution at a given observation

design { }
,

� i i m�1
subjected that the solution a ( )	

minimizes the stabilizing functional �� �a on a set

whose elements differ from the true value a at most

by 	:

a Arg a A a a a
a A

( ) inf [ ], { : }	
	

	

	� �  �
�

� (2)

An essential feature of formulation (1), (2) is

the type and character of the estimation error. They

are determined as a guaranteed error [12]. The one

expresses an operation of the worse measurement

error. Consequently, the solution of the

experimental design problem conveys the

evaluation with the worse measurement

conditions. The further details of the approach

developed are considered in [13, 14].

Special significance has the fact that the

estimation methods without sufficient regularization

and matching with observation give rise to the large

errors despite a stability of a solution obtained [13].

Therefore, the guaranteed estimation error is not a

substantiation of any method exactitude, but generally

evinces satisfactory identification conditions.

To specify the numerical criterion of the

guaranteed estimation error we introduce the rms

estimator 	 	rms k
k

p

p�
�
� 2

1

/ , where 	 k denotes the

absolute estimation error of k th property. Then

the experimental design consists in the finding of

the minimization problem solution 	 	( ) minR

rms�
�

.

The observation design � � �R ensuring the minimal

estimation error 	 ( )R is said to be R-optimal [12].

In addition to the rms estimator other norms of

the estimation error can be considered. Here the

most practical form could be the absolute-error

estimator. By analogy with the preceding case, the

corresponding design � � �C is said to be C-optimal

[12]. The one is based upon the estimator

	 � 	abs
k p

k�
� �

max |
1

. Its minimization is the purpose of

the experimental design. In this case the min-max

estimate 	 	( ) minC

abs�
�

is sought.

The main difference between the experimental

design method developed and traditional approach

grounded on the sensitivity analysis is expressed as

the transition to the direct study of the estimation

errors. The approach based on the Fisher matrix

can determine the optimal sensor location and

conditions of the linear dependence between the

sensitivity coefficients. Formulation (1), (2) ensures

the determination of the error distribution on each

point of the specimen. Also, the existence and

uniqueness of the inverse problem solution are

analyzed not only with the fixed initial data, but on

a wide range of their values. As a result the explicit

picture of the estimation error behavior is elicited.

Due to this fact one can determine new

singularities of the identification. Theoretically, the

sensitivity analysis can reveal many features of the

experimental design. However, such singularities

as �-unidentifiability, threshold and singular

conditions, self-compensation loading have been

revealed in [14], grounding on the approach (1), (2).

An important feature of formulation (1), (2) is

the structural decomposition of experimental

conditions from a viewpoint of their effect on the

estimation error behavior. As it was indicated [14],

there are two types of factors that comprise all the

experimental conditions and completely convey

their effect. The indeterminacy power R of the

identification and form-factor 
 of the estimation

errors are these factors. The first one determines

the condition due to the estimation errors are

decreased to zero. The second one shapes the

estimation error distribution.

So, our solution of the experimental design

problem refers two main goals. Namely, the

optimal measurement scheme and its dependence

upon the experimental conditions will be brought

to a fixed proportion. As a result, the regularities of

the optimal identification will be revealed.
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MAXIMUM ESTIMATES
WITH MINIMAL INPUT INFORMATION

Let us analyze typical thermal experiments

from a viewpoint of the maximal informativeness

being grounded on the minimal volume of input data.

First of all, we will investigate the cases of the

constant parameter models. This will allow us to

carry out the analytical treatment of the experiment

informativeness and therefore the general

regularities of the problem studied will be revealed.

The nonlinear properties and transient boundary

conditions can be also analyzed by the offered

approach. These cases will be investigated after the

general regularities determination.

Simultaneous Estimation of Thermal
Properties and Boundary Temperatures

Let us specify the following model

c
u

t

u

x
f x t

u u x

u v u

t

x

�
�
�

�
�

�
� � � � �

� � �

�
�

�

2

2

0 0

0 1

0 0

0

, , ;

, ;

,

�

�

x
v t

�
� �

� 2 0,

It is required to establish the existence and features

of the optimal observation design

� � �R

i

opt

j

opt

i

j nx t� �
�{ , }( ) ( ) ,

1

1 with one observation

point and n measurement times, for which the

known sampling

u u x t i j ni j i j j, ( , ) , , ,� �� � � �1 1

provides the identification of the constant

unknowns a c v v� { , , , }� 1 2 with the minimal

guaranteed rms-error

� � �
� � � ��

� �
�
�

( )

,
min ,R

x t
rms rms� �

� � �2

2

3

4
.

The relative estimation errors

�1 � ( ) / ,c c c � � � �� � ( ) / ,

� 3 1 1 1� ( ) /v v v , � 4 2 2 2� ( ) /v v v

are the functions of the variables x and t,

a c v v� { , , , }� 1 2 denotes the actual values of

sought quantities.

The solution of the experimental design

problem is sought with the assumption that the

upper bound of measurement errors is known,

max| |
1� �

�
j n

j� �. A similar estimate of the noise level

can be obtained as a rule for every experiment.

We especially underline that any other

information about the noise properties is not

required and not used below. In particular, the law

of the noise distribution may be arbitrary. Below it

will be proved that such volume of initial information

is sufficient to solve the inverse problem.

Formulation (1), (2) gives rise to the

determination of{ }
,

� k k �1 4
and requires the analysis

of their behavior over the variation of the thermal

loading and measurement conditions. The

guaranteed estimation errors { }
,

� k k �1 4
are defined

as the solution of the observation matching equation

max ( , )
,

, ( )
x t

i j i j a
i j

u u x t�
	 � � .

The functions u
a

( )	 are determined from model (3)

at the given observation design � subject to the

condition that the vector of unknowns

a c v v� { , , , }� 1 2 minimizes the stabilizing

functional�[ ] max| |a ak� on a set, whose elements

differ from the true value at most by 	 k

min max| |

| | , , .

k
k

k k k

a

a a k � �	 1 4

For model (3) the observation matching

equation as to the relative errors � 	k k ka� / is of

the following form

max| ( , , , )

(

1
2

1 1 1 2

0 1 2 1 3 2

1

1

2

� � 
�

�   � �

j n
kF

�
� � � �

� � � � � � � 4 2 1 1 2

2 1 1 3 2 4 3 1 1 2

) ( , , , )

( ) ( , , ,

F

F

k

k

� � � �

� � � � � � � � � �

�

�  �  )

( , ) ( ) ( , )

(

, ,
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F Fk k1 1 0 2 1 3 1 0

0 1

1 2 1 2

2

� � � � � �

� �

� �

 

�   � �

�
� � �

� � � � � � �
�

�

�2 2 1 0

3 1 1 3 2 4 1

1 2

) ( , )

( ) |

,

F

,

k

j
R R k= ,n1 ,

where

F
k

kk
k1 3 3

1

24 2 1

2 11
1

1

1
2 1�



�

�
�  






�

�� �

�
�sin( )

( )
exp ( ) � �2 

!
"

#

$
%

&
'
(

)
*
+

,

F
k

k
k

k
2

1

2

1

22 2 1

2 1

1

1
2 1�











 

!
"

�

�

�
�

�� �

�
� ��sin( )

exp ( )
#

$
%,

F
k

k
k

k
3

1

2

1

21 2
4

1

1
� 





,

-
..

/

0
11

�

�

�
�

�� �

�
� ��sin

exp

� �
�

�
� �

x

c
t

� �
, ,

2

R � � � �
��

2 �
�

�
�

�
�

f

u

f

v

f

v

f� � � �
2 0

0

2 1

1

2 2

2

2
, , .

To identify the constant unknowns { , , , }c v v� 1 2

four measurement times (n = 4) for any sensor
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location �1 should be known. The sampling

u u i j i

j� �� �
�{ },

,...

1

1 4 conveys the minimal volume of

measurements for the simultaneous identification

studied.

The observation scheme with the single sensor

is not unique from a viewpoint of the system (4)

solvability. The two u u i j i

j� �� �
�{ }, ,

,

1 2

1 2 and four

u u i j i

j� �� �
�{ }, ,...,1 4

1 point samples assure the

existence of the inverse problem solution also. All

these schemes are the subject of the further

investigation. Below the attention is paid to the main

question regarded to the analysis of the object

properties, if one has a single sensor sampling.

The system (4) solution does not exist, if the

observation is set in one of the points

x* { , / , }� 0 2� � . This means that the corresponding

measurements are unidentifiable for any external

loadings and every specimen described by model

(3). In these cases the general estimation error

� rms 3 �. If the measurements are carried out in

the middle of a specimen, x* /� � 2, then the

inverse problem solution depends on the

combination � �1 2� of the boundary temperatures

and the sought values � 3 and � 4 become the

arbitrary magnitudes. Note, that this affirmation is

valid for the constant model parameters

{ , , , }c v v� 1 2 . Other inverse problem formulation

can reconstruct the solution uniqueness at the point

x � � / 2.

Among the main design features it should be

determined, first of all, the optimal measurement

scheme structure and the factors that able to

decrease the estimation errors.

As it follows from (4) the values { }
,

� k k �1 4

depend on the criterion R and factors





 
 


1 0

1 2

2 2 1 3 0 1 4 0 2

2
� 

�

�  �  � 

�
� �

� � � � � �

,

, , .

The ones determine the significance of the system

(4) terms. Due to these factors, the decreasing or

increasing of the magnitudes { }
,

� k k �1 4
are

occurring and the corresponding optimal sensor

location is established.

The first factor R directly determines the

values of the estimation errors. The factors

{ }
,


 k k �1 4
render the mode of the estimation error

distribution. Variations of 
1 and 
 2 denote four

distinctive cases of the estimation error behavior.

Their bounds are defined by zero values of factors


1 , 
 2 (Fig.1b, d) and 
4 � 0 (Fig.1c) or 
 4 0� .

Thus, the factors R and { }
,


 k k �1 4
entirely

convey all the cases of the experiment effect on the

solution accuracy of the inverse problem studied.

Being grounded on the system (4) numerical

analysis, we will elicit the further experimental

design peculiarities. The rms-error was minimized

on time for each point of the specimen. The results

obtained are shown in Fig. 1. The solution
~ min ( , )� �opt

t
rms x t� depicts the typical character

of the optimal design and elicit its main

regularities. In particular, the conditions of the

simultaneous estimation, mode of the estimation

error and factors decreased the measurement noise

effect are revealed.

As it seems, there are a number of the optimal

sensor locations, namely, in the middle area of the

specimen and in the neighborhood of a specimen

boundary. The optimal position depends on the

variance between the initial and boundary

temperatures. In general, there are up to five local

minimums (Fig. 1b, curves 8 and 12). Their

existence is explained by the non-uniqueness of the

minimization problem solution. The concurrences

of curves signify the transition from one set of

optimal times to other ones.

The character of the function ~�opt becomes

simpler, if the estimation errors�1 and� 2 are taken

into account only. In this case the point x � � / 2 is

not singular [14].

From a theoretical viewpoint it is interesting to

note the optimal solution existence near the

specimen boundary (Fig.1a, curves 1-3). These

cases take place for the small boundary

temperatures, | | , ,v kk � �1 12. Similar experiment

conditions are the worst thermal loadings. For

| | , ,v kk � �1 12 the optimal sensor location very

quickly moves to the middle area of the specimen

(Fig. 1a, curves 4-7). This area is the position of the

global minimum for many cases of the thermal

loadings. The optimal sensor location can be

approximately termed as x opt( ) .� 0 45� and

x opt( ) .� 0 55�. For the case | | , ,v kk � �1 12 the

optimal sensor location is the neighborhood of the

point x opt( ) .� 01� or x opt( ) .� 0 9�.

An essential feature of the optimal time

determination is the dense localization of the

values 5� i j
}

,�1 4
near the certain dimensionless

magnitudes. Their magnitudes depend, first of all,

on the factor 
1 . The largest variations of these

values are held in the case 
1 06 (Fig. 1a). In all

other cases the optimal time variations are not

significant. So, the inverse problem studied has the
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Figure 1 Estimation Error Dependence on Sensor Location and Thermal Loading Variation (in all cases v u2 0� )
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strictly defined scheme of the optimal sensor

location and measurement time.

Notice that the above consequence was

revealed for the strongly nonlinear dependence

between the sought parameters and input/output

signals. Similar outcomes are impossible for the

traditional design methods. Thereto, a number of

design peculiarities are elicited below.

There are brightly denominated areas of the

unsatisfactory accuracy of the inverse problem

solution. The ones are located near the points

x � � / 6, x � � / 2 and x � 5 6/ �. The measurements

in these points and their neighborhoods result in the

large estimation errors. While the first and third

locations result in the large errors as for the thermal

properties and boundary temperatures, in the middle

of the specimen only the boundary temperatures

are reconstructed with the large errors. Note, that

the sensor bias from the singular point x* /� � 2

only on the value 0.05� provides the optimal

identification as the thermal properties and

boundary temperatures.

For all optimal observation designs the

estimation errors of the boundary temperatures

appear less the estimation errors of the thermal

properties. The change of the measurement scheme

[14] can significantly improve the precision of the

thermal properties identification.

It is necessary to make a point on the 5
 k k
}

,�1 4

unlimited growth. The curve 20 (Fig.1d) shows that

the temperature gap between u 0 and { } ,vk k �1 2 does

not reduce the estimation error to zero. However

the variations of factors 5
 k k
}

,�1 4
considerably

affect on the shape of the estimation error

distribution (Fig.1). Consequently, these factors are

the form-factors of the inverse problem studied.

The largest variations of the estimation errors take

place near the specimen boundary. Here the

periodical decreasing and increasing of the local

optimum values are occurring, when the boundary

temperature v1 or v2 sequentially increases from

the small value to very large magnitude (Fig.1).

The condition of the absolute decreasing of the

estimation errors is the requirement R 3 0. The

one can be satisfied due to the noise level

diminution and volumetric source magnification.

As it follows from (4) the factor R growing has

the upper admissible bound Rmax . The one conveys

the condition, when the magnitude of the minimal

estimation error is unallowable, � ( )R � 1. The

growing of the factor R means that the noise level�

� is increasing. Therefore, the criterion Rmax

determines some threshold level of the

measurement noise, greater of which the inverse

problem solution does not exist. In this case the

variation of the noise level � does not change the

character of the estimation error distribution.

Consequently, the factor R determines the

indeterminacy power of the mathematical model

identification. Its existence shows that the

observation uncertainties affect the mathematical

model identifiability.

Thus, only one optimal observation of a specimen

temperature ensures a test object analysis on a

whole and allows to elicit its properties,

temperature distribution at every point and,

evidently, can determine the boundary heat flux.

Simultaneous Thermal Properties and
Boundary Flux Identification

Let us consider the commonly known inverse

problem with a heat flux loading scheme. We

specify the following mathematical model
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In the frame of the informativeness

investigation the following question is raised. Is it

possible to reconstruct as the thermal conductivity

coefficient � and heat flux q simultaneously?

The question response will be sought as the

experimental design problem solution. Namely, the

existence and features of the optimal observation

design � � �C

i

opt

j

opt

i

jx t� �
�{ , }( ) ( ) ,

1

1 2 with one sensor

and two measurement times will be analyzed.

Accordingly, the minimum of the guaranteed error

� �( )

,
min maxC

x t i
i�

should be sought, where � � � �1 � ( ) / and

� 2 � ( ) /q q q denote the relative errors of the

inverse problem solution,�, q are the actual values.

For the design problem studied the observation

matching equation is expressed as follows
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Analysis of the observation matching

equations (6) results in the following outcomes.

First of all, two factors, R and
, determine the

experimental design character and its behavior.

The factor R is the indeterminacy power of the

model (5) identification. There always exists a value

Rmax , beginning from which �� 3 �. Again, if

R 3 0, then � k k3 �0 12, , . The factor 

determines the shape of the error distribution.

Secondly, the estimation error � ( )C as a

function of the variable x has the global and one

local minimums. The position of the local

minimum depends on the factors {R,
} and

covers the closed interval 0 0 9� �x . �, i.e., every

point of this segment including the opposite

specimen boundary, x � 0, can be optimal also. For

the small observation time t1 and small R the local

minimum is situated at the neighborhood of

x � 0 9. �. This position moves to the opposite

boundary x � 0, if the value of observation time t1

is increased.

Being grounded on the use of the majorizing

series, we obtain for the small values 5� k k} ,�1 2 the

following estimate
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where C < 1 is a certain parameter. Also, the

estimate min| |
x,t

� 2 2� R / 
 is revealed. From it

follows that the magnification of the flux duration

t h provides for the absolute decreasing of the flux

estimation error. However, for the fixed � : 0 the

estimation error of the specific heat cannot be

reduced to zero and min | |��
x,t

: 0, if t h 3 �.

As is seen, the kind of function (7) is defined

by the factor R > 0. Other parameter t t h1 / has the

restricted variation because of its limiting in

accordance with (5), where t t h1 � . Analyzing the

asymptotic behavior �1 13 at the point x � �, we

obtain Rmax = 1/12. Also, formula (7) indicates that

the estimation error is the function with the

asymptote at the point

x
C

t

t h

; � �
1

3

2
1 19 �

,

-
..

/

0
11

R

Here only one of these two magnitudes determines

the asymptote location. Their choice is defined

from the condition of the worst estimation error

obtaining. For the optimal measurement time on

the interval x x� * the function �1 has the

minimum at the point x � 0. For x x� * the

estimation error is a steadily decreasing function

over the variable x and in this case � �1 1 0x x� �
�

�
.

So, for every constant thermal properties and

non-zero external impact the global minimum of

the function �� �C is located at the point x opt( ) � �.

For this location the sought optimal time is the

stationary state observation. Other optimal time,

generally speaking, is defined as t topt

h

( ) .�
However, if the heat flux duration t h is not large,

then the estimation error �1 at the point x � � is the

steadily decreasing function, and t topt

h

( ) .� Thus,

for the fixed R<1/12 and 
 � 1 6/ the observation

design � � �C opt

h

optt t t� � 3 �{ , , }( ) ( )
� 1 2 guarantees

the optimal reconstruction of the quantities { , }� q .

It is very remarkable fact that for the optimal

observation time the opposite boundary is the

location of the second minimum. This means that

the isolated specimen side despite the absence of

the external impact possesses enough

informativeness and the inverse problem can be

solved with the sufficient precision.

From a theoretical viewpoint the next

peculiarity is important. There exists a such sensor

location 0 � �x* �, depending on the factors

{R,
} and observation time t1 , for which the

function �1 has the unlimited growth. For the

optimal observation time the sensor location near

the point x a � � / 3 gives the worst observation.

In this area the error of the inverse problem

solution go beyond the permissible bound �1 1� .

Hence, between the global and local minimums

there always exist unidentifiable and poor

informativeness areas.

Thus, the main regularities of the inverse

problem solution are revealed analytically with the

help of the experimental design method developed.
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As it seems, one can identify not only the

thermal conductivity, but simultaneously the

boundary heat flux. There are two optimal sensor

locations. The best measurement is the temperature

observation at the boundary with heat flux. The

isolated specimen boundary can be alternative

local optimal area of measurements. The heat flux

duration determines the optimal moment of the

temperature measurement, if its value is not large.

Otherwise, the optimal observation time appears

less the duration that the heating is applied.

CONCLUSIONS

The principal questions of the simultaneous

estimation of the model coefficients and boundary

conditions were considered. The main theoretical

outcome is that the measurements into the single

observation point convey the vast information on

the object properties and the ones can be sought

uniquely and with sufficient precision.

This means that the interpretation of thermal

experiments allows one to identify simultaneously

as the specimen properties and the heat-exchange

parameters, the thermal properties and boundary

conditions. As a result, the properties of complex

heat objects can be studied without additional

numerous temperature measurements.

The comprehensive analyses of two types of

inverse problems were accomplished. The effect of

the experiment conditions on the experimental

design problem solution was traced. It was shown

that two types of factors define the behavior of the

estimation errors. The optimal observation schemes

were detected for any constant thermal properties

and external impact. The complete picture of the

estimation error distribution was revealed.

The results obtained expand the frame of the

inverse problem formulation. Grounded on the

approach developed the actual thermal objects can

be analyzed.
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ABSTRACT

This paper addresses estimation of porous me-

dia property functions, absolute and relative

permeabilities, from experiments on core sam-

ples. Typically, one has assumed homogeneous

and isotropic property functions. However, re-

cent studies have shown that such an assump-

tion frequently is erroneous, and may indeed

lead to large errors in the estimated proper-

ties. The property functions are inaccessible

to direct measurements, and have to be esti-

mated through an inverse problem. This paper

describes an algorithm capable of successfully

determining the property functions taking the

heterogeneous nature of the porous medium

into account. In this paper, this methodology

is extended in two ways - the estimation al-

gorithm is made more robust and saturation

data has been included, and, for the �rst time,

experimental data is used for veri�cation pur-

poses.

NOMENCLATURE

a = Parameter vector

B = Spline basis function

b = Parameter vector

c = Parameter vector

F = Model output

J = Objective function
~J = Predicted attainable obj. function

k = Absolute permeability [Darcy=10�12m2]

kr = Relative permeability

p = Pressure

Pc = Capillary pressure

S = Saturation

x = Spatial coordinate vector

Y = Measured data

y = Spline knot vector

Greek symbols

� = Viscosity

� = Porosity

� = Standard deviation

~� = Approximate standard deviation

INTRODUCTION

The mathematical simulation of the ow of u-

ids through permeable media is of vital impor-

tance to the management of underground re-

sources, such as aqui�ers and petroleum reser-

voirs. In order to perform simulations of �eld-

scale processes, the absolute and relative per-

meabilities of the porous media must be speci-

�ed. Such data are typically obtained through

experiments conducted on small samples ex-

tracted from the reservoir considered. These

analysis are referred to as Special Core Analy-

sis (SCAL) in the industry.

One of the main problems within SCAL is

that the permeability and the relative perme-

ability functions are not directly measurable
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quantities, but quantities that need to be in-

ferred from the mathematical model of ow

through porous media, and some data asso-

ciated with an experiment conducted on the

sample - i.e. through solution of an inverse

problem.

Recent studies show that the modeling er-

ror resulting from the failure to adequately de-

scribe the spatial variations in the permeabil-

ity distribution can lead to signi�cant errors

in the estimation of the relative permeability

functions [1]. To mitigate these errors, it is de-

sirable to determine the actual absolute perme-

ability distribution for inclusion into the math-

ematical model of the laboratory experiment

[1]. Mejia et al., [2] included variations in abso-

lute permeability when estimating the relative

permeability and capillary pressure functions.

Independent determination of the permeability

distribution may be made (see Seto et al., [3]

where nuclear magnetic resonance is utilized),

however; the necessary equipment is typically

not available within SCAL. Valestrand et al.,

[1] presented, for the �rst time, a method for

simultaneous determination of the permeabil-

ity distribution and the relative permeabilities

from SCAL data measured during a two-phase

displacement experiment.

In this paper the methodology in Valestrand

et al., [1] is extended in two ways: (1) We re-

�ne the simultaneous estimation procedure by

using an algorithm for absolute permeability

estimation which provides more exibility in

selection of basis functions, and is more compu-

tationally eÆcient. We also utilize saturation

data in the estimation procedure. Such data

has shown to be very advantageous for relative

permeability estimation [2,4]. (2) We attempt

to verify the estimation procedure using exper-

imental data from SCAL type experiments.

THEORY AND PROCEDURE

This section describes the mathematical model

(forward model), the inverse model and its so-

lution.

Forward Model

Flow in porous media is determined by the dis-

tribution of pores, pore sizes and pore throats,

the uid-rock interaction, the uid-uid in-

teraction, and properties of the uids. On

the macroscopic scale [5], the rock properties

are described by the permeability k(x), and

the porosity �(x), which vary spatially in the

core. The uid properties are described by the

viscosities �, and densities �, both known to

vary with temperature. The rock-uid inter-

actions are described by the capillary pressure

Pc, and the empirical functions kri, which take

care of the reduced ow when immiscible u-

ids ow together. Pc and kri are usually given

as functions of the wetting phase saturation,

the fraction of pore space occupied by the wet-

ting phase. The mathematical model of ow

through porous media, assuming isotropic me-

dia fully saturated with two immersible uids,

e.g., oil and water (i=o,w), and constant vis-

cosities and densities of the uids, is

�(x)
@Si

@t
= r � (k(x)kri(Sw)

�i
rpi) (1)

po � pw = Pc(Sw) (2)

So + Sw = 1 (3)

where Si is the saturation of phase i and pi is

the phase pressure. Eqs.(1)-(3) are solved nu-

merically with speci�ed initial and boundary

conditions [5]. A fully implicit black-oil simu-

lator is used in this work.

To simulate dynamic data such as uid pro-

duction, in-situ pressure, pressure drop, and in-

situ saturation, the reservoir parameters k(x),

�(x), Pc(Sw), and kri(Sw) must be speci�ed.

These parameters are generally not known, and

are inaccessible to direct measurements. More-

over, they are known to di�er from one porous

medium to another. In this paper we want to

demonstrate an inverse methodology for esti-

mating k(x) and kri(Sw) assuming �(x) and

Pc(Sw) to be known.

The Inverse Problem

Note that while discrete data are measured, the

absolute and relative permeabilities are actu-

ally functions, so that their determination is an

ill-posed problem. Regularization is e�ectively

accomplished by �nite-dimensional representa-

tions of the unknown functions [6]. The relative

permeabilities are represented with third-order

B-spline functions, which are known to be ca-

pable of representing any smooth function ar-
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bitrarily accurately [7]:

kri(Sw) =

MiX
j=1

ai
j
Bm

j
(Sw;y

i); i = o; w (4)

where o and w denote oil and water respec-

tively. The functions are speci�ed by the order

m, the spline coeÆcients aj , and the extended

partition y. The vector of the unknown param-

eters, a, composed of the coeÆcients within the

spline representation of the relative permeabil-

ity functions, is given by

a = [ao1; : : : ; a
o

Mo
; aw1 ; : : : ; a

w

Mw
] (5)

.

The absolute permeability is a rock property

which is a function of position. In this paper

the absolute permeability is represented by a

hierarchical multi-scale basis function [8]

kN (x) = cT
N
 
N
(x) (6)

where cN 2 <N is the parameter vector and

 
N
is anN -vector of real-valued piecewise con-

stant basis functions spanning the space within

which k is to be estimated.

An objective function is formulated as a

weighted sum of squared di�erences between

the measured data, Y, and the corresponding

simulated values, F. Examples of such data in

SCAL are: Fluid production, in-situ pressure,

pressure drop, and in-situ saturation. In the

estimation process, one seeks to minimize the

objective function,

J(b) = [Y �F(b)]TW [Y �F(b)] (7)

the idea being that the simulated data should

reconcile those actually measured. Here W is

the inverse of the covariance matrix of the mea-

surement errors. In the simultaneous estima-

tion algorithm, b is represented by either rela-

tive permeability coeÆcients (a) or permeabil-

ity coeÆcients (cN ).

Both the relative permeability and the abso-

lute permeability are estimated through a re-

gression based approach, in which the number

of parameters is successively increased until the

measured data are adequately represented by

their corresponding calculated values [6]. The

value of b that minimizes Eq.(7) is obtained

through an implementation of the Levenberg-

Marquardt optimization algorithm, which in-

corporates linear inequality constraints to en-

force monotonous relative permeability func-

tions and nonnegativity for the permeability

[9].

Simultaneous Estimation

The estimation of absolute and relative perme-

ability is combined by a successive estimation

of a and cN . First the relative permeability

is estimated by representing the entire sam-

ple by a single absolute permeability value. (A

single value can easily be measured in a one-

phase ow experiment, thus, the value is gen-

erally known in core analysis.) The absolute

permeability is then estimated keeping the rel-

ative permeabilities �xed at their last estimate.

The successive estimation of absolute and rela-

tive permeability is repeated until convergence.

Thus, successively more accurate estimates are

determined. Note that both the absolute and

the relative permeabilities are estimated by the

same estimation algorithm (solution of Eq.(7)).

The estimation of relative permeability has

been reported several times before, see e.g.

[4,6,10], and will not be discussed in more de-

tail here. Next, the multiscale estimation of

the absolute permeability will be described.

Multi-scale Estimation

In the multiscale estimation the number of pa-

rameters to be estimated is increased succes-

sively. In general, the total number of param-

eters available equals the number of grid cells

used in solving the model equations, but esti-

mating all these parameters is prohibitive as

the data usually does not contain suÆcient in-

formation to do so. Also, estimating more pa-

rameters requires more computation time, and

increasing the number of parameters generally

increases the parameter uncertainty.

An alternative is to evaluate all the possi-

ble combinations of parameters when increas-

ing the number of available parameters suc-

cessively. Performing all of these estimations

will take inordinately long time as the num-

ber of combinations increases rapidly with the

number of parameters. Also, each estimation

requires a lot of computational work as the

forward problem is typically calculated several
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times during each estimation. Naturally, it

would be preferable to predict the number of

parameters and which parameters to use with-

out performing all the estimations. Such a

method has been developed in [11].

The methodology described in [11], utilizes

the predicted objective function value, ~J(PQ),

and its associated uncertainty ~�( ~J(PQ)).

These functions are given by

~J(PQ) = �eT (W �G)�e; (8)

G =
h
WAQ

�
AT
Q
WAQ

�
�1

AT
Q
W
i
; (9)

~�( ~J(PQ)) =

q
4 ~J(PQ)� 2 (M �Q) (10)

where PQ is the parameterization containing

Q parameters. The sensitivity matrix for the

parameterization PQ is denoted AQ, �e is the

current residual vector (�e = Y �F (b)), and
M is the number of observations. Eqs.(8)-

(10) are functions based on linearization of the

model F (b), and are therefore available by an-

alytical calculations.

Which and how many basis functions to in-

clude in the estimation is performed in the fol-

lowing way. First a single value of the domain

of de�nition is estimated, Q = L = 1. Then,

from this point in the parameter space, reduc-

tion potentials are calculated. For each �xed

number of parameters, one particular combina-

tion of parameters will produce the lowest ~J ;

this parameterization is called the local win-

ner. ~J and ~� of the local winners are used to

decide how many parameters to include. We

evaluate more parameters, L = L + 1, until
~JL+1 + 2~�L+1 � ~JL. Then an estimation with

Q = L is performed. From this new point in

the parameter space, more parameters are eval-

uated, see Fig.1 for an example of choosing pa-

rameters. For more details, see [11]. Note that

2~� is used as uncertainty measure in this pa-

per. Next, we discuss the criteria to be ful�lled

to accept an estimate.

Solution and Termination Criteria

In general, a solution of the inverse problem

should not be accepted as an estimate unless

it produces a match of the experimental data.

To discard solutions where the experimental

-
J

J(PL)~JL+1

2~�L+1

~JL+2

2~�L+2

~JL+3

2~�L+3

Figure 1: Example of ranking of predictions from re-

�nement analysis. The original number of parameters

is L. In this case Q=L+2, since ~JL+3 +2~�L+3 � ~JL+2

and ~JL+2 + 2~�L+2 < ~JL+1.

data are not reconciled, solution criteria to val-

idate estimates of absolute and relative perme-

abilities from laboratory data have been estab-

lished, see e.g. [4,6,12].

The objective function, J , given in Eq.(7),

should be close toM�Q, whereM is the num-

ber of measurements, and Q is the number of

estimated parameters [6,13]. In addition the

number of runs, (number of times the residu-

als change signs as one move through the data

set) R, should be close toM=2 [12]. In addition

to these acceptance criteria, we calculate the

impact of measurement noise on the estimated

functions by utilizing a linearized covariance

analysis [4,12].

From the acceptance criteria given above,

the criteria for termination of the simultane-

ous estimation follows. The sequence of esti-

mations is terminated when the value of the

objective function and the calculated number

of runs can be explained by random measure-

ment errors, i.e., the sequence is terminated

when

J(PQ) < (M �Q) + 2
p
2(M �Q) (11)

R(PQ) < (M=2) +
p
M (12)

(see, e.g., [6]). The square root terms in

Eq.(11) and Eq.(12) are just 2 standard de-

viations of M �Q and M=2, respectively. For

the absolute permeability, termination is also

achieved whenever the criterion for introduc-

tion of new parameters advises against intro-

ducing more parameters.

For both the absolute and the relative per-

meabilities, the successive estimation sequence

is terminated when the calculated objective

function for an estimation is within two stan-

dard deviations of the objective function for
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the previous estimation. The successive esti-

mation is also terminated if the estimated per-

meability is within two decimal places of the

previous estimate, and the same parameteriza-

tion was used.

Estimation Algorithm

The simultaneous estimation algorithm can be

summarized as follows:

Initialization:

(1) As the �rst estimate of the absolute per-

meability, use one single value for the entire

sample. Estimate the relative permeability

while keeping the absolute permeability �xed.

Estimate the absolute permeability:

(2) Estimate a constant value of the perme-

ability. Set L=1.

(3) If the sequence is terminated, see Eqs.(11)-

(12), go to step 6.

(4) Re�nement analysis: Let L=L+1 until
~JL+1 + 2~�L+1 � ~JL then estimate the perme-

ability with L parameters.

(5) If the sequence is terminated, see Eqs.(11)-

(12), or if the absolute permeability value

estimated is close to the previous estimate of

the successive approach, or if the objective

function is close to the one from the previous

calculated in the successive approach, perform

step 6 and stop. If the criterion advises against

introducing more parameters, go to step 6. If

not go to step 4.

Estimating the relative permeability:

(6) Estimate the relative permeability. If the

solution criteria are satis�ed, or if the new

objective function value is within 2 standard

deviations of the last relative permeability

estimation objective function, stop, else return

to step 2.

TEST OF THE METHOD

The estimation procedure described above is

performed on one synthetic example to evalu-

ate the performance of the estimation proce-

dure. The true absolute permeability used is

shown in Fig.2. The core is represented by 32

equally sized grid blocks in the horizontal di-

rection. The absolute permeability is constant
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Figure 2: Absolute permeability.The true functions

and the �nal estimate.

within the following groups of grid blocks: 1-

10, 11-12, 13-14, 15-16, 17-18, 19-20, 21-22, 23-

32. (1-10 corresponds to the value 50mD, 11-12

corresponds to the value 60mD and so on, in

10mD steps.)
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Figure 3: Relative permeability. The true curves, the

�rst estimate and the �nal estimate.

The true relative permeability curves are

shown in Fig.3. These relative permeability

functions are used in all the grid blocks. The

true capillary pressure is also equal for all the

grid blocks. In practice the capillary pressure

will vary in a heterogeneous core. We have

here idealized the situation, to concentrate on

the e�ect of permeability heterogeneity alone.

The core and uid properties listed in Ta-

ble 1 are together with the true absolute and
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Table 1: Fixed medium and uid properties.
Reservoir length 12 cm

Cross section area 10 cm2

Water viscosity 0.85�10�3 Pa�s
Oil viscosity 0.66�10�3 Pa�s
Water injection rates 0.9, 0.5 ml/min

Oil injection rates 0.1, 0.5, 1 ml/min

relative permeability functions implemented in

the core ow simulator. Synthetic experimen-

tal data are produced using no-ow boundary

conditions, �xed pressure at the outlet, and

constant injection rates. A primary drainage

experiment is simulated where the water sat-

uration in the core is reduced in steps due to

the oil injection rate. Gaussian noise with zero

mean is then added to the data to mimic mea-

surement error. In this work the synthetic data

consist of: Water saturation, water production,

di�erential pressure, and well pressure in grid

block 1, 8, and 24. These data can be seen in

Fig.4.
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Figure 4: The synthetic experimental data, and the

match produced by the �nal estimates.

The simultaneous estimation is performed

according to the estimation algorithm given

above. For this example the relative permeabil-

ity was estimated seven times, and the absolute

permeability was estimated six times. The esti-

mation terminated while the calculated objec-

tive function of the sixth absolute permeability

estimate was within two standard deviations

of the calculated objective function of the �fth

absolute permeability estimate.

To show how the absolute permeability es-

timation has evolved, both the �rst and the

�nal estimates are shown in Fig.2. The �nal

estimate does not coincide with the true per-

meability partition-wise, but it does provide a

better match of the true distribution than the

�rst estimate. For the �nal estimate, J and

R are within three standard deviations of their

limits. By keeping this estimate �xed, the �nal

relative permeability estimation is made.

To show how the relative permeability esti-

mate has improved throughout the successive

estimation, both the �rst and the �nal esti-

mates are shown in Fig.3. J and R are within 3

standard deviations of their limits for the �nal

estimate. The match of the synthetic exper-

imental data produced by the �nal estimates

can be seen in Fig.4.

USE OF EXPERIMENTAL DATA

An experiment is designed and performed to

test the simultaneous estimation method on ex-

perimental data.

Experimental Setup

When conducting a ooding experiment, it is

important to arrive at experimental conditions

that leads to accurate property identi�cation.

An experimental design procedure has been de-

veloped to do this. Through the experimental

design [4], where the accuracy of the ow func-

tions can be determined for di�erent experi-

ments, we determined the injection rates (see

Table 2) and the corresponding injection times

(see Fig.5). (The details of the experimental

design will not be given here.)

Table 2: Fixed medium and uid properties.

Reservoir length 4.7 cm

Cross section area 2.5 cm2

Water viscosity 1.0�10�3 Pa�s
Oil viscosity 1.125�10�3 Pa�s
Oil injection rates 0.04, 0.3, 1.0, 2.0 ml/min

The core sample was initially fully saturated

with water. The pressure drop across the sam-

ple was monitored by a di�erential pressure
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gauge, and the water production from the core

was found by collecting the water in a cylinder

and measuring the increasing hydraulic pres-

sure of the column.

The two-phase experiment was performed on

a composite sample. The composite was con-

structed by joining two Bentheimer sandstone

samples. Before conducting the samples, a one

phase experiment was performed on both to

determine the absolute permeability of the two

parts in the composite. A single phase ex-

periment was also conducted on the compos-

ite sample. The permeability of the compos-

ite sample is 992mD�157mD, while the per-

meabilities of the two cores in the compos-

ite are 1199mD�119mD and 1348mD�101mD.
The permeability of the composite is less than

the values of the two cores due to the sand layer

placed between the two cores in the composite

to maintain capillary contact. We also deter-

mined the average porosity (gravimetrically),

which was measured to be 24%. Additional

core and uid properties are listed in Table 2.

Simultaneous Estimation From Experi-

mental Data

The pressure drop and water production data

collected from the two-phase experiment are

shown in Fig.5. We attempt to use these data

to verify our estimation method.
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Figure 5: The experimental data and the match pro-

duced by the estimated functions.

The simultaneous estimation starts by es-

timating the relative permeability functions

keeping the absolute permeability �xed at

992mD, the value determined by the single-

phase experiment on the composite. Since we

do not know the capillary pressure, that also

needs to be estimated initially. The initial esti-

mates of the relative permeability and the cap-

illary pressure are shown in Fig.6 and Fig.7,
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Figure 6: Estimated relative permeability.
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Figure 7: Estimated Capillary pressure.

respectively. To arrive at these estimates, the

regression based method has been used [6].

The analysis of how many and which param-

eters to include when estimating the absolute

permeability is performed. We arrive at esti-

mating a single parameter. We then return to

the relative permeability. The new estimate

of the relative permeabilities has a objective

function within two standard deviation of the

objective function of the previous relative per-

meability estimate. Thus, the simultaneous es-

timation is terminated.

Fig.6 shows the �nal relative permeability

estimate, and the constant value of 985mD is

the �nal absolute permeability estimate. The

match of the experimental data produced by

these estimates is shown in Fig.5.
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The methodology works well for the exper-

imental case in the sense that the methodol-

ogy successfully estimated a permeability close

to the measured single value, 992mD�157mD,
and ow properties with narrow con�dence

bands. It would be preferable to include satu-

ration data, and the advantages of the method

could be demonstrated better with a greater

di�erence in the permeability values.

CONCLUSIONS

(1) The method for successive estimation of ab-

solute and relative permeability has been ex-

tended in two ways: We have included a more

exible and faster algorithm for absolute per-

meability estimation, and we have included sat-

uration data in the estimation problem.

(2) An algorithm for selection of parameteri-

zation of the absolute permeability has been

used. The method has earlier proved successful

in estimating absolute permeability (2D) from

pressure data [11]. The method signi�cantly

reduces the risk of over-parameterization in

multiscale representation, and saves the com-

putational work associated with use of an ex-

cessive number of parameters in the estimation.

(3) We have performed an experimental test of

the successive estimation algorithm. We were

able to successfully estimate absolute and rel-

ative permeability from the acquired data.
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ABSTRACT 

This paper deals with the experimental design 
and with the solution of an inverse parameter 
estimation problem, for the identification of the 
three thermal conductivity components of an 
orthotropic solid. The experimental setup 
examined here involves the heating of a specimen 
in the form of a parallelepiped, through part of 
one of its surfaces.  Different experimental 
variables are chosen by using the D-optimum 
criterion, including the number and location of 
sensors and the size of the heating surface. The 
unknown parameters are estimated with the 
Levenberg-Marquardt method of minimization of 
the least-squares norm. 

 
NOMENCLATURE 
a, b, c body dimensions along the x, y and z 

directions, respectively 
FI information matrix 
Fx, Fy, Fz normalized sensitivity coefficients for 

the thermal conductivity components 
along the x, y and z directions, 
respectively 

kx, ky, kz thermal conductivity components 
along the x, y and z directions, 
respectively 

P vector of unknown parameters 
S(P) ordinary least squares norm 
T vector of estimated temperatures 
Y vector of measured temperatures 
 
INTRODUCTION 

Due to the importance of non-isotropic 
materials in nowadays engineering, such as 
composites, a lot of attention has been devoted in 
the recent past for the identification of their 
thermal properties through inverse analysis 
techniques of parameter estimation [1-11]. 

The choice of various optimal experimental 
variables, including the number and locations of 
sensors, as well as the heating and final times, for 
the model used by Sawaf and Özisik [1] for the 
estimation of thermal conductivity components of 
orthotropic solids, was addressed by Mejias et al 
[8]. In these two works[1,8], the solid was 
considered in the form of a cube, with three of its 
surfaces heated by fluxes of equal magnitude, 
while the other three surfaces were assumed as 
insulated. Later, Mejias et al [10,11] have 
examined in the experimental design the choice of 
the boundary conditions for the non-heated 
surfaces of the cube, as well as the choice of the 
magnitudes of the applied heat fluxes and of the 
body dimensions. It was found [10] that the use of 
constant temperature boundary conditions, instead 
of insulated boundary conditions, could result on 
more accurate estimates for the unknown 
parameters. It was also found  [11] that the body 
dimensions and the magnitudes of the applied 
heat fluxes should be chosen in accordance with a 
transformation that maps the orthotropic solid into 
an isotropic solid [12]. In this case, the three 
thermal conductivity components could be 
estimated with identical relative accuracies. 
Despite such an important feature for the 
experimental design, the implementation of the 
experimental setup devised was not simple, 
because it involved the uniform heating of three 
surfaces of the solid and the magnitudes of the 
applied heat fluxes were assumed as known for 
the inverse analysis. 

In order to overcome such difficulties, we 
examine in this paper an alternative experimental 
setup for the estimation of the three thermal 
conductivity components of orthotropic solids. In 
such setup, only one of the surfaces of the solid 
would be partially heated. It would consist of a 
heater placed between two identical specimens of 
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the material with unknown thermal conductivity 
components, thus allowing for better control of 
the magnitude of the applied heat flux, as well as 
of its distribution. We note that a 2D version of 
this setup was examined by Taktak [3]. The D-
optimum criterion [13-16] is used here for the 
experimental design, involving the choice of 
different variables like the number and location of 
sensors and the size of the heating surface. The 
Levenberg-Marquardt Method of minimization of 
the least-squares norm [13,17-19] is applied as the 
estimation procedure by using simulated 
measurements with random errors, as described 
below. 
 
DIRECT PROBLEM 
 The physical problem considered in this work 
consists of a parallelepiped with dimensions a*, 
b* and c*, in the x*, y* and z* directions, 
respectively. The solid is initially at the uniform 

temperature *
0T . For times t* >0, the boundary at 

z*=0 is partially heated in the surface defined by 

0 < x* < *
1a and 0 < y* < *

1b , while the remaining 
surface of this boundary is supposed to be 
insulated. The boundary at z*=c* is kept at a 

constant and uniform temperature *
0T  and the 

other four boundaries are supposed insulated. The 
solid is assumed to be orthotropic, with thermal 

conductivity components *
xk , *

yk and *
zk  in the 

x*, y* and z* directions, respectively, and the 
physical properties are assumed constant. The 
mathematical formulation of such physical 
problem is given in dimensionless form as 
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 The time-dependent heat flux in equation (2) 
is given by: 
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where th is the dimensionless heating time.  
The following dimensionless variables were 

defined in order to write the physical problem in 
dimensionless form: 
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In equations (4.a-o), *
refk , *

refq  and l* are 

characteristic values for thermal conductivity, 
heat flux and length, respectively. The superscript 
“*” appearing above denotes dimensional 
quantities, while ρ and cp are the density and 
specific heat of the body, respectively. 

In the direct problem associated with the 
physical problem described above, the three 
thermal conductivity components kx, ky and kz, as 
well as the solid geometry, initial and boundary 
conditions, are known. The objective of the direct 
problem is to determine the transient temperature 
field T(x,y,z,t) in the body. 
 
INVERSE PROBLEM 

For the inverse problem considered here, the 
thermal conductivity components kx, ky and kz are 
regarded as unknown, while the other quantities 
appearing in the formulation of the direct problem 
described above are assumed to be known with 
high degree of accuracy. 
 For the estimation of the vector of unknown 
parameters PT = [kx , ky , kz], we assume available 
the transient readings of M temperature sensors. 
The temperature measurements may contain 
random errors. Such errors are assumed to be 
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additive, uncorrelated and normally distributed, 
with zero mean and a known constant standard-
deviation σ . Also, for the estimation procedure 
we consider that no previous information 
regarding the parameter values is available. 
Therefore, the solution of the present parameter 
estimation problem can be obtained through the 
minimization of the ordinary least-squares norm, 
which is a minimum variance estimator in this 
case [13]. The ordinary least-squares norm is 
given by 

])([])([)( PTYPTYP −−= TS    (5) 
where 
 

])(,,)(,)([)]([ 2211 PPPPTY II
T TYTYTY

rr
L

rrrr
−−−=−  

 (6.a) 
and each element )]([ Pii TY

rr
−  is a row vector of 

length equal to the number of sensors M, that is,  
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for  i = 1,..,I  (6.b) 

 
 We note that Yim and Tim(P) are the measured 
and estimated temperatures, respectively, for time 
ti, i=1,…,I, and for the sensor m, m=1,…,M.  The 
estimated temperatures are obtained from the 
solution of the direct problem by using the current 
available estimate for the vector of unknown 
parameters PT = [kx , ky , kz]. 
 For the minimization of the least squares norm 
(5), we apply the Levenberg-Marquardt Method 
[13,17-19]. The iterative procedure of such a 
method is given by: 
 

])([)(])[( 11 kTkkkkTkkk PTYJJJPP −Ω++= −+ µ  
(7) 

where µk is a positive scalar named damping 
parameter, ΩΩ

k
 is a diagonal matrix and Jk is the 

sensitivity matrix. 
 The purpose of the matrix term µ

k
ΩΩ

k
 in 

equation (7) is to damp oscillations and 
instabilities due to the ill-conditioned character of 
the problem, by making its components large as 
compared to those of JTJ, if necessary [13]. The 
damping parameter is made large in the beginning 
of the iterations. With such an approach, the 
matrix JTJ is not required to be non-singular in 
the beginning of iterations and the Levenberg-
Marquardt Method tends to the Steepest Descent 
Method, that is, a very small step is taken in the 

negative gradient direction. The parameter µk is 
then gradually reduced as the iteration procedure 
advances to the solution of the parameter 
estimation problem and then the Levenberg-
Marquardt Method tends to the Gauss Method 
[13]. However, if the errors inherent to the 
measured data are amplified, generating 
instabilities on the solution as a result of the ill-
conditioned character of the problem, the 
damping parameter is automatically increased. 
Such an automatic control of the damping 
parameter makes the Levenberg-Marquardt 
method a quite robust and stable estimation 
procedure, so that it does not require the use of 
the Discrepancy Principle in the stopping 
criterion to become stable, like the conjugate 
gradient method [19]. 
 
STATISTICAL ANALYSIS 

By performing a statistical analysis it is 
possible to assess the accuracy of jP̂ ,  

j = 1, 2 and 3, which are the values estimated for 
the unknown parameters Pj, j = 1, 2 and 3. By 
taking into account the statistical hypotheses 
described above, the covariance matrix for the 
ordinary least-squares estimator is given by [13]: 
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(8) 
where J is the sensitivity matrix and σ is the 
standard deviation of the measurement errors, 
which is assumed to be constant. We note that 
equation (8) is exact for linear estimation 
problems and is approximately used for nonlinear 
parameter estimation problems. 

The standard deviations for the estimated 
parameters can thus be obtained from the 
diagonal elements of V as 

 

jjjjj VPP =≡ )ˆ,ˆcov(σ  for j = 1, 2 and 3   (9) 

 
where Vjj is the jth element in the diagonal of V.  

Confidence intervals at the 99% confidence 
level for the estimated parameters can be obtained 
as 

jjjjj PPP σσ 576.2ˆ576.2ˆ +≤≤−    

for j = 1, 2 and 3  (10) 
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The joint confidence region for the estimated 
parameters is given by [13]: 

2
3

1 )ˆ()ˆ( χ≤−− − PPVPP T    (11) 

where 2
3χ  is the value of the chi-square 

distribution with 3 degrees of freedom for a given 
probability. 
 
DESIGN OF OPTIMUM EXPERIMENTS 

Optimum experiments can be designed by 
minimizing the hypervolume of the confidence 
region of the estimated parameters, in order to 
ensure minimum variance for the estimates. The 
minimization of the confidence region given by 
equation (11) can be obtained by maximizing the 
determinant of V-1, in the so-called D-optimum 
design [13-16]. Since the covariance matrix V is 
given by equation (8), we can then design 
optimum experiments by maximizing the 
determinant of the so-called Fisher’s Information 

Matrix, JJT

 
[13-16]. Therefore, optimal 

experimental variables are chosen based on the 
criterion 

JJTmax       (12) 

For cases involving a single sensor, each 
element Fr,s , r,s = 1, 2 and 3, of the matrix 

JJF T≡  is given by: 
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where I is the number of measurements. 
 If we take into account constraints, such as a 
large but fixed number of transient measurements 
of M sensors and also the maximum temperature 
in the region, Tmax, we can choose to maximize 
the determinant of a normalized form of F, here 
denoted as FI [13], the elements of which are 
given by: 
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 for r,s = 1, 2 and 3   (14) 
 

where tf is the duration of the experiment. 
 
RESULTS AND DISCUSSIONS 

For the results presented below we assume the 
solid with unknown thermal conductivity 
components in the form of a cube, so that the 

characteristic length used to obtain the 
dimensionless problem is taken as l*=a*=b*=c*. 
Also, the characteristic heat flux is taken as 

**
0 refqq = , so that q0=1 in equation (3).  

We note that for nonlinear estimation 
problems, such as the one under picture in this 
work, the analyses of the sensitivity coefficients 
and of the determinant of FI are not global, 
because these quantities are functions of the 
unknown parameters. Therefore, a priori 
estimated values for the parameters are required 
for the design of optimum experiments. For the 
test-cases examined in this paper, we used the 
following dimensionless values for the thermal 
conductivity components in order to design the 
experiment: kx=1, ky=15 and kz=15. Such values 
were chosen based on the work of Dowding et al 
[5] for the estimation of the thermal conductivity 
components of two-dimensional carbon-carbon 
composites. The dimensionless thermal 

conductivity kx=1 implies that **
xref kk = . For the 

design of optimum experiments, involving the 
maximization of the determinant of (JTJ), we took 
into account the constraints of a large and fixed 
number of measurements for each sensor, as well 
as the maximum temperature in the region, so that 
the matrix FI with elements given by equation 
(14) was used in the analysis.  

Before proceeding to the analysis of the 
transient variation of the determinant of the 
information matrix, let us examine the transient 
variation of the normalized sensitivity coefficients 
for different sensor positions. The sensor 
positions examined in this work are presented in 
Table 1. They include sensors located at the 
center of the lateral thermally insulated surfaces 
at y=1 (sensor 1) and x=1 (sensor 2), as well as 
sensors located on the surface in contact with the 
heater at z=0 (sensors 3, 4 and 5).  

 
Table 1. Sensor Locations 

Sensor Sensor Location 
1 (0.5, 1, 0.5) 
2 (1, 0.5, 0.5) 
3 (0.25, 0.25, 0) 
4 (0.5, 0.5, 0) 
5 (0.75, 0.75, 0) 

 
The normalized sensitivity coefficients were 

obtained by multiplying the original sensitivity 
coefficients by the parameters that they are 
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referred to. The normalized sensitivity 
coefficients with respect to the parameters kx , ky  
and kz are defined respectively as: 

z
zz

y
yy

x
xx k

T
kF

k
T

kF
k
T

kF
∂
∂

=
∂
∂

=
∂
∂

=   ,     ,   (15) 

 Figures 1.a-e present the normalized 
sensitivity coefficients for sensors 1 to 5, 
respectively, by assuming the size of the heating 
surface as a1=b1=0.75 (see equation (2)). The 
heating time was supposed to be th=1(see 
equation (3)). Figures 1.a-e show a strong 
tendency towards linear dependence of the 
sensitivity coefficients for all sensor positions. 
Therefore, it is not possible to estimate the three 
unknown parameters with the readings of a single 
sensor. On the other hand, it may be possible to 
estimate the parameters with the readings of more 
than one sensor, because the constants of 
proportionality between the sensitivity 
coefficients are not the same, at the different 
sensor positions. Note in figures 1.a-e that the 
sensitivity coefficients tend to zero after the 
heating is stopped at t=1. However, before 
becoming zero, the sensitivity coefficient with 
respect to kz undergoes a small increase for sensor 
2, as depicted in figure 1.b. It can be noticed in 
figures 1.a-e that, generally, the sensitivity 
coefficient with respect to kz has the largest 
magnitude among the sensitivity coefficients, for 
any sensor position. The magnitude of Fz is larger 
for the sensors 3, 4 and 5, located at z=0. 
However, note in figures 1.c-e that the magnitude 
of Fz decreases when the sensor is located 
towards the edge of the heating surface. The 
sensitivity coefficient Fz is negative for sensors 3, 
4 and 5, because an increase in the thermal 
conductivity component kz tends to decrease the 
temperature over the heating surface. Figures 1.c-
e also show that the sensitivity coefficients with 
respect to kx and ky are negative for sensors 3 and 
4, but positive for sensor 5. Such is the case 
because an increase in the thermal conductivity 
components in the x and y directions tends to 
decrease the temperature of sensors 3 and 4 
located over the heating surface, but tends to 
increase the temperature of sensor 5 located at the 
edge of the heating surface. The largest 
magnitude of Fx takes place for sensor 2, located 
at the surface x=1. Similarly, the largest 
magnitude of Fy  takes place for sensor 1, located 
at the surface y=1, although the magnitude of Fy 
for sensor 3 is practically the same as for sensor 
1. 
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Figure 1.a – Normalized sensitivity coefficients for 

sensor 1 
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Figure 1.b – Normalized sensitivity coefficients 

for sensor 2 
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Figure 1.c – Normalized sensitivity coefficients 

for sensor 3 

Figures 2.a-d present the transient variation of 
the determinant of the information matrix for 
different heating times, by assuming available the 
measurements of four different sensor 
configurations, which are presented in table 2. 
Configuration 1 consists of the sensors located at 
the insulated surfaces, sensor 1 at y=1 and sensor 
2 at x=1, which have the largest magnitudes for Fy 
and Fx, respectively. Configurations 2-4 were 
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composed by sensors 1, 2 and of one of the 
sensors at the boundary z=0, i.e., sensor 3 for 
configuration 2, sensor 4 for configuration 3 and 
sensor 5 for configuration 4. Sensors 3, 4 and 5 
have the largest magnitudes for Fz. The results 
shown in figures 2.a-d were obtained for 
a1=b1=0.75. 

0.0 0.5 1.0 1.5 2.0
Tempo

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

C
oe

fi
ci

en
te

 d
e 

Se
ns

ib
ili

da
de

a1= b1= 0.75

F x  
F y  
F z  

Time

Se
ns

iti
vi

ty
 C

oe
ff

ic
ie

nt
s

0.0 0.5 1.0 1.5 2.0
Tempo

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

C
oe

fi
ci

en
te

 d
e 

Se
ns

ib
ili

da
de

a1= b1= 0.75

F x  
F y  
F z  

Time

Se
ns

iti
vi

ty
 C

oe
ff

ic
ie

nt
s

 
Figure 1.d – Normalized sensitivity coefficients 

for sensor 4 
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Figure 1.e – Normalized sensitivity coefficients 

for sensor 5 
 

Table 2 – Configurations for the sensors 
Configuration Sensors 

1 1 and 2 
2 1, 2 and 3 
3 1, 2 and 4 
4 1, 2 and 5 

 
Figure 2.a shows that the determinant of the 

information matrix undergoes a sudden increase 
at the moment that the heating is stopped, for 
configuration 1. This is a result of the change of 
the shape of the sensitivity coefficient with 
respect kz for sensor 2 when the heating is 
stopped, which undergoes a small increase before 
tending to zero (see figure 1.b). For configuration 
1, the optimum heating and final times are 0.2 and 

0.24, respectively, when the determinant of the 
information matrix is maximum.  

A comparison of figures 2.a-d shows that the 
magnitude of the determinant of the information 
matrix increases when a sensor at z=0 is used in 
the analysis, in addition to sensors 1 and 2, with 
the exception for configuration 4 (see figure 2.d). 
The configuration with the maximum determinant 
of the information matrix is configuration 2, 
because sensor 3 has the largest magnitude for the 
sensitivity coefficient with respect to kz (see 
figures 1.c-e). As the sensitivity coefficient with 
respect to kz decreases, when the sensor at z=0 is 
moved towards the edge of heating surface, the 
maximum determinant of the information matrix 
decreases and, for configuration 4, the effects of 
the use of the measurements of a sensor at z=0 are 
negligible. We note in figures 2.b,c that, for 
configurations 2 and 3, the determinant of the 
information matrix decreases at the moment that 
the heating is stopped. Such is the case because 
the sensitivity coefficients tend to zero very fast 
when the heating is stopped, with the exception of 
Fz for sensor 2, as depicted in figures 1.a-e. 
Therefore, for these configurations the effect of 
the sudden decrease of the sensitivity coefficients 
when the heating is stopped is more significant 
than the change in the shape of Fz for sensor 2. As 
a result, the heating time shall be chosen identical 
to the final time for configurations 2 and 3. Note 
also in figures 2.b,c that the determinant of the 
information matrix does not increase significantly 
for t > 1.  

Configuration 2 is the best among those 
examined, because of the maximum value 
obtained for the determinant of the information 
matrix. Hence, more accurate estimates are 
expected with configuration 2 than with the other 
configurations. For the results presented below 
we have used the measurements of sensors 
arranged in accordance with configuration 2 and 
assumed t = th = 1. 
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Figure 2.a – Determinant of the information 

matrix for the sensor configuration 1. 
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Figure 2.b – Determinant of the information 

matrix for the sensor configuration 2. 
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Figure 2.c – Determinant of the information 

matrix for the sensor configuration 3. 
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Figure 2.d – Determinant of the information 

matrix for the sensor configuration 4. 

 
 Let us now examine the effects of the size of 
the heating surface on the maximum determinant 
of the information matrix. Figure 3 shows the 
maximum values of such determinant, obtained 
with configuration 2 for t = th = 1 and for different 
sizes of the heating surface. Figure 3 shows that 
the optimum size of the heating surface is 
a1=b1=0.75. For smaller sizes of such surface, the 
sensitivity coefficients decrease in magnitude and 
become more linearly-dependent. For larger sizes 
of the heating surface, the physical problem tends 
towards a one-dimensional problem, irrespective 
of the thermal conductivity components in the x 
and y directions. We note that the best sensor 
configuration was not changed for the different 
sizes of the heating surface. 
 An alternative arrangement of the thermal 
conductivity components along the three principal 

axes would be kx=15, ky=15 and kz=1, instead of 
kx=1, ky=15 and kz=15 as examined above. 
However, the maximum determinant of the 
information matrix was smaller for this alternative 
arrangement because of smaller magnitudes of the 
sensitivity coefficients. The effects of the body 
dimensions and of the magnitude of the applied 
heat flux were also examined, but they are not 
discussed here for the sake of brevity. 
 

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Dimensoes da Placa Aquecedora

0.0E+0

5.0E-7

1.0E-6

1.5E-6

2.0E-6

D
et

er
m

in
an

te
 d

e 
F

 I

a1 = b1

D
et

er
m

in
an

t o
f  

F
I

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Dimensoes da Placa Aquecedora

0.0E+0

5.0E-7

1.0E-6

1.5E-6

2.0E-6

D
et

er
m

in
an

te
 d

e 
F

 I

a1 = b1

D
et

er
m

in
an

t o
f  

F
I

 
Figure 3 – Effects of the size of the heating 

surface on the determinant of the information 
matrix for tf = th =1 and sensor configuration 2. 

 We now examine the estimation of the three 
thermal conductivity components of orthotropic 
solids, by using 100 transient simulated 
measurements per sensor, of three sensors 
arranged in accordance with configuration 2. The 
measurements were taken during 0 < t < 1. The 
initial guesses used for the Levenberg-Marquardt 
method were kx=ky=kz=0.5. The parameters kx=1, 
ky=15 and kz=15 were exactly recovered when 
errorless measurements were used in the inverse 
analysis. The parameters estimated with 
measurements containing random errors with 
standard-deviation σ=0.01Ymax (where Ymax is the 
maximum measured temperature) and their 
corresponding 99% confidence interval, were: 
 

03.099.0ˆ ±=xk  

54.089.14ˆ ±=yk  

05.002.15ˆ ±=zk  
 

 Therefore, quite accurate estimates were 
obtained for the unknown thermal conductivity 
components with the present approach. However, 
note that the parameters were estimated with 
different relative accuracies. Relatively, the most 
accurate estimate was obtained for kz, which has 
the largest value of the sensitivity coefficients, as 
illustrated in figures 1.a-e. 
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CONCLUSIONS 
 In this work we discuss the estimation of the 
three thermal conductivity components of an 
orthotropic solid, by using one single heated 
surface. The D-optimum criterion was used for 
the design of the experiment. The optimum size 
of the heating surface, as well as the heating and 
final times, were obtained for the best sensor 
configuration. The inverse problem of parameter 
estimation was solved by using the Levenberg-
Marquardt method of minimization of the least-
squares norm.  
 Accurate results were obtained by using in the 
inverse analysis simulated transient measurements 
containing random errors. However, the 
parameters could not be estimated with the same 
relative accuracy, as for the case involving the 
experimental setup with three heated surfaces.  
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ABSTRACT 
This numerical study deals with the 
identification of several thermal properties of 
orthotropic solids by using an optimal 
experiment design. The system under 
investigation is a cylindrical vertical sample, 
which is submitted to an irradiation flux on the 
upper face on a central circular area. The 
temperature response, during and after the 
irradiation, is measured at the opposite face. In 
this paper, the system is particularly developed 
to the identification of the Fourier number 
including the axial diffusivity, the ratio of axial 
and radial conductivities, a Biot number and a 
heat flux term from one temperature evolution 
versus time. The temperature sensor position is 
adjusted simultaneously with the identification 
of the above four parameters. 
 
NOMENCLATURE 
Bi Biot number 
c. Heat capacity [J/(kg⋅K)] 
e. Sample thickness [m] 
h. Heat transfer coefficient [W/(K⋅m2)] 
J Ordinary least square norm 
P Vector of unknown parameters 
q. Heat flux density [W/m2] 
Q Heat flux [W] 
φ Normalized form of the flux shape (r,t) 
R+ Radial coordinates [m] 
rm. Temperature sensor position [m] 
rp. Heat flux radius [m] 
rs. Sample radius [m] 
T' Temperature [K] 
T0 Heat pulse duration [s] 
T0’ Initial temperature [K] 
X Sensitivity matrix 

X  Reduced sensitivity matrix 

k,iX  Reduced sensitivity coefficients 
n Number of measurement points 
Y Vector of estimated temperatures 
Ym Vector of measured temperatures 
 z+ Axial coordinates [m] 
 
Greek letters 
α Thermal diffusivity [m2/s] 
λ Thermal conductivity [W/(m⋅K)] 
ρ Density [kg/m3] 
 
INTRODUCTION 
The knowledge of thermo-physical properties of 
materials is important for thermal design and 
numerical simulation. In the past decades many 
methods have been presented to determine these 
properties [1].  
The flash method is one of the most used 
methods. It consists to apply a brief heat pulse 
on the front face of a small cylindrical sample. 
The resulting temperature rise on the opposite 
face is recorded versus time. Thus, the thermal 
diffusivity is computed using the measured 
temperature evolution and an identification 
method based on an analytical model [2].  
In the origin, this method was established to 
characterize isotropic solids, then, it has been 
extended to orthotropic ones. Namely, Lachi 
and Degiovanni [3] proposed an identification 
method based on an analytical model and the 
recorded temperature at two positions on the 
opposite face, to determine the axial and radial 
thermal diffusivities of a semi -infinite solid. 
The major difficulty of this method lies in the 
inaccurate knowledge of the sensor positions 
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[4]. Therefore, it has been shown that the use of 
many temperature sensors or an infrared system 
on the opposite face can reduce the errors due to 
the measurement positions [4, 5, 6, 7].  
The advantage of using an instantaneous pulse 
in the flash method lies in the high sensitivity of 
the temperature to the different parameters. 
However the high temperature rise at the 
exposed face of the sample limits their use in 
the characterization of poorly conductive 
materials and large samples. Only a limited 
amount of solutions have been used to 
overcome these problems [8, 9]. Therefore, we 
propose to reduce the intensity of the energy 
source simultaneously with increasing the 
exposure time (pulse extension) just enough to 
decrease the high temperature gradient in the 
sample, keeping the temperature enough 
sensitive to the different parameters. 
The first aim of this numerical study is to define 
the optimal values of heat flux radius and 
temperature sensor position using condition 
numbers and sensitivity analysis. 
The found optimal values are used for 
identifying simultaneously the Fourier number 
including the axial diffusivity, the ratio of axial 
and radial conductivities, a Biot number and a 
heat flux term from one temperature evolution 
versus time. At the same time, the temperature 
sensor position is adjusted in order to reduce the 
uncertainty in the sensor position. 
 
SYSTEM DESCRIPTION 
The system under investigation is a cylindrical 
sample, supposed to be homogeneous, opaque 
and having constant thermal properties and 
density (figure 1). This sample is submitted to 
an irradiation flux on the upper face on a central 
circular area. The radius rp of the considered 
circular area is smaller than the sample radius rs. 
The sample exchanges heat throw lateral and 
bases areas (hr, he, h0).  

Taking into account the symmetry about the 
principal axis z, the temperature evolution at 
position (z, r) of the sample can be obtained by 
solving the two-dimensional heat conduction 
equation in cylindrical coordinates [10]. 
Considering the following variables: 
 
r = r+/e ; z = z+/e ; τ = t/t0 ; T=(T ' –T0’)/Tm (1) 
 
Where T0 is the initial temperature and Tm is the 
heat flux term (the maximal temperature in the 
adiabatic case) : 

Tm=q⋅t0 /ρ⋅c⋅e;  (2) 
The heat equation is then written, in its 
dimensionless form, as: 
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and the initial condition is taken as : 
 

T = 0  for τ = 0  (3.f) 
 
Where F0z is the axial Fourier number defined 
as : 
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Krz is the ratio of axial and radial conductivities: 
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the Biot numbers, corresponding to the lateral 
area and the bases areas at z=0 and at z=e, are 
respectively defined as :  
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all the heat transfer coefficients are taken equal: 
 hr = h0 = he    (7) 

Then, we introduce the axial Biot Number Biz, 
wich corresponds to the bases areas at z=0 and 
at z=e : 

Biz = Bie= Bi0   (8) 
The radial Biot number can be written as: 

r p rs 

r m
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Heat flux density qφ 

h0
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Temperature sensor

Figure 1 radial heat flow method
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Bir = 
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s

K
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 Biz    (9) 

The heat flux on the base area at z=0  is 
assumed to be a pulse of finite duration τ and 
limited in a surface of a radius rp, the shape of 
which is described in normalized form : 
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The system of the presented equations is solved 
numerically by the finite volume method [11].  
 
OPTIMIZATION METHOD 
 
Ordinary least squares norm 
The problem consists of minimizing the 
ordinary least square norm defined as : 
 

J = [Y(P) - Ym]T [Y(P) - Ym] (11) 
 
J is optimal if : 

∇J(P) = 0  (12) 
 
That means :  

2XT [Y(P) - Ym]=0  (13) 

Where X=
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In non linear problems, the sensitivity 

coefficients 
j

i

p
Y

∂
∂

 depends on the unknown 

parameters pj .  
 
Conjugate gradient method 
Many techniques have been presented, in the 
literature[12], to minimize the least squares 
norm. Among these, the Levenberg- Marquard 
and the conjugate gradient methods are very 
efficient non linear estimation techniques 
[13,14]. 
In this work, we use the conjugate gradient 
method[15], in which a suitable step size is 

taken along a direction of descent in order to 
minimize the objective function. 
The unknown parameter vector is given at each 
iteration as follows : 
 

p(k+1) = p(k) + γk d(k) ; (15) 
 with k is the iteration subscript. 
The search step size is defined as : 
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The direction of descent is given by : 
 

d(k+1)=g(k+1) -β(k)d(k)  (17) 
 

where g(k) is the gradient of J at the kth iteration 
(g(k)=∇ J(p(k))). 
β(k) is a conjugation coefficient and is obtained 
from the following expression : 
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Where H is the symmetric Hessien defined as : 
 

H(P)= 2⋅XTX + 2⋅[ PX T ∂∂ ]⋅[Y - Ym]   (16) 
 
which coefficients (index jp ,jq) are written as : 
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According to the version of the algorithm of 
conjugate gradient, β(k) can be written in 
different manners. While considering all 
gradients g(0),…, g(k) are orthogonal, one gets the 
Fletcher – Reeves version, where  : 
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While considering only the gradients g(0),..,g(k-1) 
are orthogonal, one has the version proposed by 
Polak and Ribiere, where : 
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The software that we have used [15] seems to 
give better results with non quadratic functions. 
The stopping criterion used for this algorithm is 
the following :  
 
|J(p(k))- J(p(k-1))| 

≤ ½⋅ ftol (|J(p(k))|+|J(p(k-1))|+ε)  (22) 
 
with ε =10-10 and  ftol=10-8 are chosen for all 
the identifications. 
 
OPTIMAL EXPERIMENT DESIGN 
 
Sensitivity analysis 
The sensitivity analysis is classically used for 
the optimal experimental design. It consists of 
analyzing the evolution of the different reduced 
sensitivity coefficients versus an explicative 
variable (time). 

k,iX  = pk
k
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p
Y

∂
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  (23) 

These reduced sensitivity coefficients are 
calculated using a central finite difference 
approximation: 
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Where δpk is taken 10-3⋅pk for the parameters 
(Tm, Biz, F0z, Krz) and it is equal to the ratio of 
mesh step to mesh size for the parameter rm/rs. 

δ(rm/rs) = 1/(maxr-1) (25) 
Where maxr=101 is the radial mesh size. 
For these studies, the reduced sensitivity matrix 
X  is computed for a known parameter vector. 
 
Optimality criteria 
The most common criteria for the optimal 
experiment design are based on the information 
matrix XTX which summarizes the information 
content of an experiment or the precision of the 
parameter estimates. It is the approximation of 
the Hessien matrix H defined by equation (19) 
near the optimal solution.  
First it is necessary to search for a great 
determinant of XTX as a guaranty for great 
sensitivity coefficients and no correlated 
parameters. This criterion is named D-
optimality. Its physical motivation is that it 
minimizes the volume of the ellipsoid which 
represents the maximum confidence region.[18] 
This allows us to identify the parameters. 
Second, it is necessary to search for a little 
condition number expressed here as the ratio of 

the largest eigenvalue to the smallest one, in 
order to obtain a matrix as well conditioned as 
possible. This is the modified E-optimality 
criterion. It optimizes the shape of the objective 
function. This means that the sensitivity 
coefficients of each parameter should have the 
same order of magnitude while varying in 
different manners (no linear dependence) 
[16,17]. In consequence, the sensitivity of the 
identification to the measurement errors is low. 
In order to validate the results, we use the E-
optimality criterion which maximizes the 
minimum eigenvalue. The physical motivation 
is to maximize the minimum diameter of the 
ellipsoid. It is used if one parameter has a very 
large variance compared to the others.[18] 
 
RESULTS AND DISCUSSIONS 
 
Choice of an optimal position 
We analyses the three optimality criteria in 
order to chose the optimal heat flux radius and 
the sensor position. Then we identify the 
dependence of this criteria on the thermo-
physical properties (F0z and Krz) and the sample 
configuration (rs/e). 
The influence of the flux radius and the sensor 
position on the determinant, the minimum 
eigenvalue and the condition number are 
respectively plotted on the figures 2a,b,c. 
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Figure 2a Influence of rp/rs and  rm/rs on the 

determinant (exponent value) with  rs/e =1/2 and 
Foz=0.1 Krz=0.1 Tm=0.25 Biz=0.1 t0=1s 

 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rm/rs
rp

/r
s

10-15

5-10

0-5

 
Figure 2b Influence of rp/rs and  rm/rs on the 

minimum eigenvalue with  rs/e=1/2 and Foz=0.1 
Krz=0.1 Tm=0.25 Biz=0.1 t0=1s 
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Figure 2c Influence of rp/rs and  rm/rs on the 

condition number (exponent value) with  
rs/e=1/2 and Foz=0.1 Krz=0.1 Tm=0.25 Biz=0.1 

t0=1s 
 
We remark that there is a significant region 
where the determinant (109-1012) and the 
minimum eigenvalue (5-15) are great and the 
condition number (1-102) is low (intersection of 
white areas). In this region the identification is 
possible and is less sensitive to measurement 
errors. We chose rp/rs=0.2 and rm/rs=0.3 as 
optimal values, then, we perform a sensitivity 
analysis of the temperature to all parameters. 
We see (figure 3) that the parameters are not 
correlated because the correspondent sensitivity 
coefficients vary in different manner and they 
do not reach their maximums at the same time.  
We see also that the parameters of interest have 
approximately the same order of magnitude 
(~0.2). The identification is then optimal.  
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Figure 3 Reduced sensitivity coefficients of 

rm/rs , Tm , Biz, F0z and Krz  
with rp/rs=0.2 ; rm/rs=0.3 rs/e =1/2 and Foz=0.1 

Krz=0.1 Tm=0.25 Biz=0.1 t0=1s 
 

From the dark region of the figures 2a,b,c, we 
take an other position rp/rs=0.5 and rm/rs=0.7 as 
an example of bad optimality. we perform a 
sensitivity analysis of the temperature to all 
parameters.  
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Figure 4 Reduced sensitivity coefficients of 

rm/rs , Tm , Biz, F0z and Krz  
with rp/rs=0.5 ; rm/rs=0.7 rs/e =1/2 and Foz=0.1 

Krz=0.1 Tm=0.25 Biz=0.1 t0=1s 
 

We see (figure 4) that the parameters are near to 
be correlated because the maximums of the 
correspondent sensitivity coefficients are closer 
to each other and do not have the same order of 
magnitude (0.02 to 0.2). The identification will 
be consequently very sensitive to measurement 
noise. 
In this way, the results of quantitative analysis 
of the optimality criteria has been, then, 
confirmed by a qualitative and visual sensitivity 
analysis. 
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Dependence on Krz and F0z  
We analyze the dependence of the optimality 
criteria on the Fourier number and the ratio of 
radial to axial thermal conductivities. The 
determinant, the minimum eigenvalue and the 
condition number are respectively plotted on the 
figures 5a,b,c. 
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Figure 5a Influence of Krz and  F0z on the 
determinant (exponent value) with  rs/e =1/2 and 

rp/rs=0.2 rm/rs=0.3 Tm=0.25 Biz=0.1 t0=1s 
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Figure 5b Influence of Krz and  F0z on the 

minimum eigenvalue (exponent value) with  
r/e=1/2 et rp/rs=0.2 rm/rs=0.3 Tm=0.25 Biz=0.1 

t0=1s 
 
We remark that the determinant and the 
minimum eigenvalue are maximum when F0z or 
Krz decreases. However the condition number 
has a different aspect. It is minimum for a great 
F0z and a low Krz. 

Consequently, Krz should not be greater than 0.1 
and Fz should be within 0.05-0.1. 
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Figure 5c Influence of Krz and  F0z on the 
condition number (exponent value) with  

r/e=1/2 et rp/rs=0.2 rm/rs=0.3 Tm=0.25 Biz=0.1 
t0=1s 

 
Dependence on rs/e 
We analyze the dependence of the optimality 
criteria on the geometrical sample configuration 
represented by rs/e. The determinant, the 
minimum eigenvalue and the condition number 
are respectively plotted on figure 7. 
We see that the determinant and the minimum 
eigenvalue are maximized and the condition 
number is minimized, when rs/e increases. 
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Figure 6 Influence of rs/e on the different 

optimality criteria with Foz=0.1 Krz=0.1 rp/rs=0.2 
rm/rs=0.3 Tm=0.25 Biz=0.1 t0=1s 

 
Identification 
We perform an identification of all parameters. 
The simulated measured temperature Ymeasured is 
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obtained by adding a noise term ωσ  to the 
computed exact temperature Texact as : 
 

Ymeasured = Texact +ωσ  (25) 
 
The noise is gaussian distributed and σ  is the 
standard deviation of measurement errors. 
Assuming 99% confidence for the measured 
data, ω  lies in the range –2.576 ≤ ω ≤ 2.576 
and it is calculated by a random generator 
[19,20] (figure 7). 
The results of the identification, using different 
standard deviations of noise, are shown on the 
tables 1 and 2. We perform an identification 
with the chosen optimal radius rp/rs=0.2, 
rm/rs=0.3. Initial values are taken at 50% from 
the expected values. The parameters are 
identified with an error less than 8% even with 
measurement noise. 
We perform an other identification with the non 
optimal radius rp/rs=0.5, rm/rs=0.7. When 
measurement are altered, another try with an 
increased time step using only 30 measurement 
points seems to give better results (figure 8). 
When initial values are taken close (+10%) to 
the expected values, the parameters are 
identified with a good accuracy (error less then 
7%). However, when the initial values are taken 
far from the expected values (+50%), the 
identification error become more significant and 
can reach 80%. We note that the initial value of 
the sensor position is not taken far from the 
expected value because it is known and need 
only be adjusted.  
So, we have demonstrated that the values of 
rp/rs=0.2, rm/rs=0.3 chosen by the optimal 
experiment design are effectively optimal for 
the identification. The other values rp/rs=0.5, 
rm/rs=0.7, rejected by the optimal experiment 
design, are not optimal for the identification, 
which is very dependant to initial values and 
very sensitive to measurement noise. 
 

Table 1 Results of the identification  
(rp/rs=0.2  rm/rs=0.3 rs/e =1/2 and Foz=0.1 

Krz=0.1 Tm=0.25 Biz=0.1 t0=1s) 
 Initial  

values 
σ=0 K 
30 pts 

σ=0.001K 
30 pts 

σ=0.01K 
300 pts 

Expected 
Values 

rm/rs 0.297 0.302 0.301 0.314 0.3 
Tm 0.375 0.250 0.249 0.270 0.25 
Biz 0.15 0.100 0.099 0.106 0.1 
Foz 0.15 0.099 0.100 0.100 0.1 
Krz 0.15 0.100 0.100 0.108 0.1 
Iterations Nb 80 31 42  

Table 2 Results of the identification 
rp/rs=0.5 ; rm/rs=0.7 rs/e =1/2 and Foz=0.1 

Krz=0.1 Tm=0.25 Biz=0.1 t0=1s 
 Initial  

values 
σ=0 K 
300 pts 

σ=0.001K 
300 pts 

σ=0.01K 
300 pts 

Expected 
Values 

rm/rs 0.693 0.700 0.704 0.704 0.7 
Tm 0.275 0.249 0.255 0.251 0.25 
Biz 0.090 0.099 0.107 0.103 0.1 
Foz 0.110 0.100 0.097 0.098 0.1 
Krz 0.110 0.099 0.104 0.107 0.1 
Iterations Nb 59 9 5  
rm/rs 0.693 0.722 0.725 0.726 0.7 
Tm 0.375 0.273 0.274 0.282 0.25 
Biz 0.15 0.141 0.138 0.147 0.1 
Foz 0.15 0.089 0.091 0.088 0.1 
Krz 0.15 0.178 0.179 0.171 0.1 
Iterations Nb 39 22 11  
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figure 7: measurement points (30 pts) shown on 

the simulated temperature curve 
 
CONCLUSION 
This numerical study has been performed to 
estimate simultaneously the Fourier number 
including the axial diffusivity, the ratio of axial 
and radial conductivities, a Biot number and a 
heat flux term from one temperature evolution 
versus time. At the same time, the temperature 
sensor position is adjusted in order to reduce the 
uncertainty in the sensor position. 
In order to consider the optimal system 
configuration, we have used different optimality 
criteria related to the sensitivity matrix. They 
are the determinant, the minimum eigenvalue 
and the condition number of an approximation 
of the Hessien matrix build on the sensitivity 
matrix. The corresponding analysis has been 
confirmed by a qualitative and visual sensitivity 
analysis. 
So, an identification using the optimal design of 
the experiment has been performed. The results 
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are accurate and show that the axial and radial 
thermal diffusivities can be simultaneously 
determined using a temperature evolution 
measured at one optimal position. 
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ABSTRACT
Some magnetic properties, namely the

magnetic Frölich Kenelly coefficients and its
temperature sensitivity coefficients are identified
through temperature measurements. We use an
inverse analysis approach, based on induction
heating processes. A gradient type method is used
to minimize an assumed convex objective
function – this functional being based on
experimental temperature data. Two distinct
approaches are presented depending on the nature
of the magnetic properties to be identified: a finite
difference method and an adjoint method.

INTRODUCTION
The measurement of the main magnetic

properties of a material are often difficult to
perform. Moreover, modeling of coupled
electromagnetic – heat transfer problems requires
a precise knowledge of the evolution of these
properties with respect to temperature. A new
procedure for measuring these values is presented
here. It is based on an inverse analysis coupled
with a direct finite element modeling of the
experimental set-up. One of the main innovations
of this procedure is that the measured quantities
are only based on temperatures in order to
identify electromagnetic parameters. A cost
function integrates differences between some
experimentally measured temperature (due to
induced eddy currents) and the ones computed at
the same time and location by a general coupled
electromagnetic – heat transfer – mechanical
finite element code developed in our laboratory.
This direct model solves the non-linear transient
direct equations. Since characteristic times
between heat transfer and electromagnetic models
can differ of a factor reaching 10**6 or more, a
weak coupling strategy has been adapted. The

cost function is then minimized using an iterative
gradient type method.

Two approaches are presented for the
sensitivity analysis calculation: a global finite
difference approach, and an adjoint approach
based on optimal control theory. For this latter,
reverse electromagnetic and thermal adjoint
equations are then integrated. An originality of
the adjoint approach comes from the adaptation of
the reverse adjoint equations to include the
features of the algorithm for solving the direct
weakly coupled problem. The reverse adjoint
equations have been modified with no
approximation. The whole procedure has been
successfully tested and results on the magnetic
permeability properties identification will be
presented.

THE MAGNETIC PROPERTIES
All electromagnetic systems are modeled

using the Maxwell equation. Both finite element
and the boundary element approaches are
commonly used. Two physical parameters are
involved in the Maxwell equations, they are the
electrical conductivity σ  and the magnetic
permeability µ . This latter parameter is, most of
the time, function of the internal magnetic field
strength. Moreover, in most electromagnetic
devices, the induced currents heat materials, and
it is well known that the magnetic permeability
highly depends on temperature. One therefore
gets ( )TH ,µµ = . For most steels – which are

ferromagnetic materials – the magnetic
permeability is directly derived – at a given
temperature – from the well-known magnetization
curve ( )HB  through relation (1):
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( ) ( )TH
H
B

TH ,,
∂
∂

=µ . (1)

A typical magnetization curve may be divided
in three main parts. In the first part, at low fields,
the curve starts with a weak finite slope, and rises
so that it is concave upwards. The second part has
the greatest slope, which then decreases from
saturation onwards.

As far as we are concerned, we shall focus on
the last two parts, when involved fields are very
high – for instance when dealing with high power
electromagnetic devices. Then, at high fields, the
saturation curves, for several temperature, are as
shown in Figure 1.

Figure 1: Saturation curves at several
temperature

It is well assumed that the well-known
Frölich-Kenelly formulation is a good
approximation for modeling the magnetization
curves up to the critical Curie temperature cT .

The relative magnetic permeability may then be
expressed as:
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The magnetic parameters to be identified are
then both Frölich coefficients α  and β  and the

temperature sensitivity coefficient γ .
When dealing with powerful electromagnetic

processes modeling, it is very common to

linearize the magnetic field dependency. Among
several different approaches, the linearization
method based on energetic considerations seems
to be the most powerful one (see [1]). Then, the
relative magnetic permeability involves only two
coefficients to be identified linα  and γ :

( )





















−+=
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αµµ
c

lin T
T

T 10 , (4)

THE OPTIMIZATION PROBLEM
As has been said previously, the main

objective is to identify magnetic parameters
(either α , β  and γ  when dealing with the H

nonlinear formulation (2) or linα  and γ  when

dealing with the H linear formulation (4)) through
some temperature measurements. An inverse
analysis approach has been used. The
experimental set-up consists in heating, by
electromagnetic way, the material to be
characterized. In order to evaluate magnetic
properties within a wide temperature range, an
induction heating set-up has been used, input
power within external coils being easily
changeable. Temperature are experimentally
measured on the heated workpiece surface thanks
to pre-welded thermocouples.

We have developed in our laboratory a
complete 2D electro-thermo-mechanical model
which is able to simulate the experimental
induction heating set-up used for identification.
This model has been validated thanks to
comparisons with experimental data (see [2]). The
model writes in its very condensed matricial form
as 0=R .

The inverse analysis approach consists in
minimizing errors between calculated and
experimental data. In order to minimize these
errors, these are integrated within an objective
function to be minimized. This adimensionnalized
objective function, with no regularization term,
writes:

( ) ∑∑
==
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==
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i i
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ii
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i i
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TT
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1

2

exp

exp

1
2exp

2ε , (5)

where exp
iT  and cal

iT  are respectively

experimental and calculated (simulated)
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temperature at certain locations and times. For the
sake of clarity, the objective function given in (5)
will be rewritten as:

( ) ( )( ) ( )( )tTJtTJTJ fin 21 += , (6)

Let us denote by P  the physical parameters

( { }γβα ,,=P  in case of use of (2) and

{ }γα ,linP =  in case of use of (4)), and write

classically ( ) ( )TJPj = . The optimization

problem is formulated as:

( ) ( )PjPjPPFind
R

ad
0

min:
=

=∈ . (7)

THE DIRECT ELECTRO-THERMAL
COMPUTATION

The full mathematical model developed in our
laboratory couples the three following physical
phenomena: electromagnetism, heat transfer and a
mechanical computation (see [2]). Here, only the
two first physical phenomena will be of concern.

The Electromagnetic Model
The global system of equations modeling

wave propagation is based on the four Maxwell
equation.

0. =∇ B
rr

, (8)

0. =∇ D
r

, (9)

t
B

E
∂
∂

−=×∇
r

rr
, (10)

t
D

JH
∂
∂

+=×∇
r

rrr
, (11)

where H  is the magnetic field, B  the

magnetic induction, E  the electric field, D  the

electric flux density, J  the electric current
density associated with free charges and ×
denotes the vector product. Most electro-thermal
processes work at frequencies lower than 1 GHz.
It is then much convenient to use the Magneto-
quasi-static approximation. This approximation
consists in neglecting propagation phenomena –

neglecting the term tD ∂∂  in (11). This

system of equations is coupled with relations
associated to material properties, material being
assumed to be isotropic:

HHTB
rrr

),(µ= , (12)

ETJ
rr

)(σ= , (13)

where σ the electrical conductivity, the
magnetic permeability µ  depending on
temperature and on the magnetic field strength
through (2) or (4).

As it was our intention to simulate
electromagnetic processes with any shape of
exciting input current (sinusoidal or squared
signal, pulse,…), we have decided to integrate
numerically in time the electromagnetic equation.
Choosing, as the state variable, the electrical field
E  on axi-symmetrical configurations, one gets
the following weak electromagnetic formulation:

( ) ( ) ( )
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tVlEbEa EEE ψψψψ&
(14)

where the functional space V  is defined as

( ){ }0
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The Heat Transfer Model
The eddy currents created within the

workpiece heat the material due to Joule effects.
Temperature evolutions ( )tu  are governed by the

classical heat transfer problem:

( ) fgraduadiv
t
u

=−
∂
∂

(18)

where a  is the temperature dependent
material diffusivity and the loading term is

CEf ρσ 2= . Different boundary conditions
can be involved in electro-thermal processes. We
present here the case of a prescribed temperature
on Γ . The functional space V  is here defined as

( ){ }Γ=Ω∈= on0,1
0 vHvV . The

associated weak formulation is:

( ) 00
0,,)(),(),(

uu
tVlubua TTT

=
>∈∀=+ ψψψψ&  (19)

where

( ) ,),( ∫
Ω

= ψψ tuuaT && (20)

( )( ) ( ) ψψ ∇∇= ∫
Ω

.),( tutuaubT (21)

( ) ( )ψσψψ ∫∫
ΩΩ

== tEtfl 2)( (22)

Time integration – coupling strategy
Both electromagnetic and thermal problems

((14) and (19)) being transient, both problems
must be numerically integrated in time. For both
problems, we have used a second order implicit
integration scheme as detailed in [2].

A weak coupling strategy has been chosen.
This means that the electromagnetic problem is
solved at a given temperature field. In the same
way, the heat transfer problem is solved at a given
electrical field – calculated by the electromagnetic
problem –.

A good choice for the electromagnetic time
step integration is not straight forward. However,
a time step value of around 32/T  – where T
stand for the electromagnetic period – seems to be

a good compromise between computation time
costs and results precision.

Moreover, it can be proved that, at a given
temperature field, all electromagnetic fields taken
on a full period of time stabilize. As a
consequence, it is not necessary, at a given
temperature field, to go on computing the
electromagnetic problem as soon as the
electromagnetic fields have stabilized.

Next, a good choice for the heat transfer time
integration is neither straight forward. Here again,
the time integration step is determined throughout
a compromise between computation time costs
and results precision. The optimal choice for the
time step is given by time discretization error
estimates as presented – for automatic time step
control – by [4].

The diffusivity +ℜ→ℜ= :pCka ρ
being bounded such that:

( ) ( ) ℜ∈∀≤≤≤ rCraCrac ',0 (23)

and choosing a tolerance δ  between the exact
solution u  and the approached solution T  so
that the error is bounded by:

( ) ( ) δ≤−
≤

tTtu
ntt

max (24)

with 2.. = ,.then the algorithm an optimal

time integration step is as follows:

1. Choose nt∆
2. nt∆  being given, calculate the

corresponding solution nT

3. if 
C

UU
C nn

δ
γ
δ

≤−≤ −1  then nt∆  is

accepted else nt∆  is increased or

decreased, go back to 2.

Algo. 1: choice for a good thermal time step
integration

This algorithm, based on error estimates, leads
to consider a so-called ultra-weak coupling
strategy rather than a weak one. The ultra-weak
coupling is performed as follows:
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1. Electromagnetic fields are computed at a
given temperature map using time steps

32/Tt =∆  until convergence over two
successive periods. The source term
involved in the heat transfer equation is
averaged.

2. The heat transfer problem is solved with
an integration time step determined by the
previously presented algorithm (Algo. 1).
In practical, the heat transfer time step
may reach a second. Go to first step 1.

Algo. 2: choice for a good thermal time step
integration

OPTIMIZATION PROBLEM RESOLUTION
We now focus on the optimization problem

(7). The direct electro-thermal model being highly
nonlinear, we have used gradient type methods to
solve (7). At each iteration l  the solver searches

the descent direction lPδ and a direction step lα
such that the objective function is lowered:

( ) ( )llllll PjPjPPP <+= ++ 11 :.δα (25)

Two different approaches are considered
whether one wants to identify the three
coefficients α , β  and γ  or only coefficients

linα  and γ . Indeed, it is possible to develop an

analytical sensitivity calculation when dealing
with both coefficients linα  and γ , but this seems

very difficult when dealing with all coefficients.
Therefore, a finite difference approach has been
developed in this latter case, and an adjoint
method in the first case.

µ(H,T) = µ(α,β,γ) : A Gauss-Newton / Finite
difference approach

A general Gauss-Newton method has been
used to calculate, at each iteration l  the descent

direction lPδ . This method is based on the
minimization of the Taylor developed objective
function gradient, neglecting all second (and
higher) order derivatives:

( ) ( ) ( ) lllll PP
dP

jd
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dP
dj

PP
dP
dj δδ .

2

2

+≅+ (26)

Combining (5) and (26), the descent direction
is calculated, for all parameters

γβα === 321 ,,: PPPPk , by:
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where sensitivity components are calculated
using the finite difference method which consists
in calculating, using the direct model, the values

of each ( )PT c
i  and ( )PPT c

i δ+  where Pδ
represents a small perturbation of parameter kP .

µ(T)= µ(α lin,γ) : A conjugate gradient /
Adjoint approach

For this, we could also consider a Gauss-
Newton approach coupled with a finite difference
sensitivity analysis but, for powerfulness reasons,
we shall rather consider, here, a sensitivity
analysis based on the optimal control approach.
We first consider discretized systems

( ) 0, =EPR E and ( ) 0, =TERT  respectively

related to electromagnetic and thermal problems
posed in their weak form in (14) and (19). To
solve the optimization problem (7), we have
decided to use a conjugate gradient method
coupled with a parabolic interpolation for the
linear research algorithm. A sensitivity analysis
must then be performed. We thus build the
lagrangian defined as:

( ) ( )

[ ] [ ]ff tt

TT

tt

EE

TE

RR

TJTEPL

,, 00
,,

,,,,

×Ω×Ω
+

+=

λλ

λλ
(28)

where scalar products involved in (28) are
defined as:

[ ] ∫ ∫
Ω

×Ω Ω=
f

f

t

t
tt dtuvdvu

0
0 ,, (29)

We are now interested in finding the
lagrangian saddle point. This point, where
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derivations of the lagrangian with respect to
physical parameters γα == 21 ,: PPP link
equal zero, also corresponds to the minimum of
the objective function.

Adjoint equations
The adjoint equations associated to (28) are

given in (30) and (31)
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Both adjoint equations (30) and (31) are well
posed in the backward time integration. Thus,
they are to be solved from the terminal time ft

down to the initial time 0t .

The objective function being involved only in
the heat transfer adjoint problem, one has first to
solve the thermal adjoint equation expressed in
(32), and use the thermal adjoint variable to solve
the electromagnetic adjoint problem expressed in
(34).

( ) ( )ff
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TTTTT

t
T
J
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tVlba

∂
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>∈∀=+−
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0,,)(),(),(

λ

ψψψλψλ λ&
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where the second hand side of the thermal
adjoint problem (32) is expressed as:

( ) ( )∫
Ω ∂

∂
= dst

T

J
l T ψψλ 2 (33)

The electromagnetic adjoint problem is
written as:

( ) ( ) ( )
( ) 0

0,,,

=

>∈∀=+−

f
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EEEEE

t
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λ
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where the second hand side (34) is expressed
as:

( ) ( ) ( )∫
Ω

= dsttEl TE ψλσψλ 2 (35)

Objective function gradient
Both adjoint equations being verified within

the whole crossed space – time domains
[ ]ftt ,0×Ω , the objective function gradient is

determined by:

[ ]ftt

E

k

E

k P
R

dP
dJ

,0

,
×Ω

∂
∂

= λ (36)

Determination of vectors k
E PR ∂∂ , for each

kP  is done in an analytical way, these parameters

being continuous physical parameters as shown in
(16).

Inverse coupling strategy
The inverse coupling strategy has been

designed to include the main features of the
algorithm used in the direct electro-thermal
mathematical model.

Indeed, both adjoint problems, which are to be
solved in the backward time, involve the same
capacity and rigidity matrices as in the direct
model. Only loadings and initial conditions differ.

Moreover, the thermal adjoint problem does
not depend on any electromagnetic quantity. This
has lead us to integrate in time the thermal adjoint
problem using exactly the opposite of the time
step used within the direct thermal problem.

Next, as for the direct model, electromagnetic
adjoint fields – taken on a period of time –
stabilize for given thermal adjoint and
temperature fields. This means that it is not
necessary to compute the electromagnetic adjoint

problem on the whole time range [ ]0, tt f  as is

shown in Figure 2.
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Figure 2: Calculated electromagnetic adjoint
variable on the workpiece surface. It shows that 8
periods of time are necessary for converge over
two successive periods. Afterwards, the
electromagnetic adjoint field is extrapolated.

IDENTIFICATION RESULTS
The experimental set-up

The experimental set-up consists in heating,
by induction way, a round magnetic billet of
dimensions 0.03 meter diameter and 0.08 meter
long. A seven turns coil surrounds the billet. Five
thermocouples are embedded on the billet surface
at equal distance from one to another. The
corresponding mesh is shown in Figure 3.

Figure 3: The set-up corresponding finite element
mesh

The exciting current within the seven turns
coil is a sine wave of frequency 50 hertz and of
amplitude 109 amperes per meter squared.

Temperature evolutions are measured by the
five thermocouples embedded on the surface at
the frequency of one measure every half second,
the whole experimental test lasting twenty
seconds in total, and the maximal temperature
increase reaching 800°C.

The global approach
As a first approach, all measured temperature

points are involved in the objective function (5) to
be minimized, and also in the sensitivity analysis.
Obtained results were disappointing, since no test
converged to a very low objective function. The

problem seemed to be ill-posed. Taking a larger
number of observables or using regularization
methods did not improve the convergence.

The uncoupling approach
Therefore, a new uncoupled approached has

been tested. This approach consists in uncoupling
the identification of magnetic parameters with the
identification of the temperature sensitivity
component. Indeed, at low temperature,
sensitivities of temperature with respect to the
temperature exponent coefficient γ  is very low.

Thus, temperature evolutions at beginning of
heating are mostly due to magnetic parameters.

The procedure we set is the following. We
first evaluate the magnetic parameters linα  or

( )βα +  taking into account only the first
temperature data within the objective function (5).
As a second stage the objective function is
minimized with respect to the temperature
coefficient γ  – assuming fixed magnetic
parameters. This whole procedure is repeated
several times until the objective function gets
very low.

Hereafter are presented the main results on
both cases, that is when dealing with the full
magnetic permeability dependency -–when three
coefficient are to be identified – and on the single
magnetic permeability dependency – when two
coefficient are to be identified.

µ(T,H)=µ(α,β,γ) identification
The uncoupling identification approached

with a Gauss-Newton minimization algorithm and
a finite difference approach for the sensitivity
components calculation gave the following results
as shown in Figure 4 and Figure 5.

Figure 4: evolution of the calculated physical
parameters (Frölich coefficients α and β) and
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temperature sensitivity γ with respect to
identification iterations

Figure 5: The full identified magnetization curve
B(H,T). B  is expressed in Teslas, H in Amperes
per meter and temperature in °Celcius.

µ(T)=µ(α lin,γ) identification
Figure 6 below represents evolutions of the

physical parameters with respect to identification
iterations. The identification test shown hereafter
has started with initial guessed values of

1000=iniα  and 10=iniγ .

Figure 6: Physical parameters evolution with
respect to identification iterations

Figure 7: Evolution of the magnetic permeability
as a function of temperature (°C) for several
identification iterations

CONCLUSION
A new strategy for identification of some

magnetic properties through temperature
measurements has been presented. This method
enables initial measurements in a quite simple and
inexpensive way. The main mathematical
innovation of this approach resides in the fact that
the sensitivity analysis is performed on coupled
distinct problems where typical time integration
steps are much different for both. Identification
results, which have been presented for both
magnetic formulations – linear and nonlinear
magnetic field strength dependencies – are in very
good accordance with some classical magnetic
properties measurements (made at DTU – Danish
Technical University). This proves the good
applicability of magnetic properties identification
by an inverse method coupled with an
electromagnetic – heat transfer finite element
modeling.
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ABSTRACT 

In many practical situations it is impossible to 
measure directly such properties of analyzed 
materials (for example, composite) as thermal and 
radiation characteristics. The only way that can 
often be used to overcome these difficulties is 
indirect measurements. This type of 
measurements is usually formulated as the 
solution of inverse heat transfer problems. Such 
problems are ill-posed in mathematical sense and 
their main feature shows itself in the solution 
instabilities. That is why special regularizing 
methods are needed to solve them. The 
experimental methods of identification of the 
mathematical models of heat transfer based on 
solving of the inverse problems are one of the 
modern effective solving manners. The objective 
of this paper is to estimate thermal and radiation 
properties of advanced materials using the 
approach based on inverse methods.   

 
INTRODUCTION 

In order to determine the thermal 
characteristics of modern structural, thermal-
protective and thermal-insulating materials as a 
function of temperature, the inverse heat transfer 
problem should be solved. These problems have 
been recognized as highly effective in the analysis 
of heat transfer processes in manufacturing of 
high temperature composite materials, in many 
applications including in car industry, aerospace 
industry, metallurgy, thermal control systems and 
others. New methodology under development 
combines accurate measurements of thermal 
quantities, which can be experimentally 
observable in real conditions and accurate data 
processing, based on the solutions of inverse heat 
transfer problems.  

In the present paper, the development of 
methods for estimating thermal and radiation 

properties is carried out for thermally stable high 
temperature composite materials. For such 
materials the goal is to estimate the characteristics 
as temperature functions by using results of 
measuring boundary conditions and temperature 
histories inside the body under consideration. The 
conditions of uniqueness usually define the 
minimum volume of measurements needed in one 
experiment. For example: to simultaneously 
determine the dependencies of thermal 
conductivity and volumetric heat capacity on 
temperature it is necessary to measure the non-
zero heat flux entering into a specimen at least at 
one boundary and make transient temperature 
measurements at least than in two internal points. 
The boundary conditions of the first kind or any 
condition of heat insulation on both boundaries 
can be preset, but in particular case a specimen 
should be multi-layered and contain one layer of 
the material with known thermophysical 
characteristics and the number of temperature 
measurement points in the material layer under 
study should also be not less than two. 

The most promising direction in further 
development of research methods for non-
destructive composite materials using the 
procedure of inverse problems is the simultaneous 
determination of a combination of material’s 
thermal and radiation characteristics (thermal 
conductivity k(T), heat capacity C  and total 
hemispherical emissivity , where T(x,τ) is 
the temperature) [1]. Such problems are of great 
practical importance in the study of properties of 
composite materials used as non-destructive 
surface coating in objects of space technology, 
power engineering etc.   

)
( )T

The mathematical model of heat transfer in 
specimen for the case of isothropic material is 
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where  }1,0{1 =β  and }1,0{1 =α  are parameters, 
which provide using boundary condition of the 
first ( ,01 =β  11 =α ) and the second ( ,11 =β  

0=1α ) kinds. Heat  fluxes  and have their 
positive directions along OX axis. 

1q 2q

In equations (1)-(4) the quantities ( )TC , 
and  are unknown. The experimental 

equipment and the method described below could 
be applied for estimating of material's three 
characteristics; the availability of a few specimens 
of the material allows us to provide uniqueness of 
the solution. This paper is concerned with 
modification of the approach, presented at [1] 
(further it will be called approach A). The main 
difference from the approach A is another way in 
interpretation of input data of the experiment, 
namely, the heat flux from the metallic heater was 
considered at [1] as Stefan-Boltsman irradiation 
with known (measured by thermocouple) 
temperature of the heater 

(T ( )T

)

) εk

(τhT  and a-priory 
known (theoretically) emissivity of heater 

(T )hε . If emissivity of the heater material  is 
known a-priori, and its temperature is measured, 
the heat flux from the heater can be derived  as 

 
q2(τ) =    (4a) )τ()( 4σε hhh TT    

 
At this paper the emissivity of the heater is 

considered as additional (fourth) estimating 
functions. Therefore the accuracy of the inverse 
problems, considered bellow, will not depend to 
the a-priory information about the radiation 
properties of the heater’s material. 

The results of temperature measurements 
inside the specimen are assigned as necessary 
additional information to solve an inverse 
problem 

 

( ) ( ) M1,=m    fxT mm ,,exp ττ =   (5) 
 
In the inverse problem (1)-(5) it is necessary 

first of all to indicate as a temperature range 
[ ]maxmin ,TT  of the unknown functions, which is 
general for all experiments, and for which the 
inverse problem analysis has a unique solution. 
For Tmin the minimum value of initial temperature 
is used. Of much greater importance is a correct 
sampling of value Tmax. Proceeding from the 
necessity to provide uniqueness of solution, it 
seems possible to sample, for Tmax, a minimum 
among maximum temperature values gained on 
the thermocouple positioned on the heated surface 
at every testing specimen. The same should be 
done for the heater temperature range 
[ ]max,min, , hh TT  . 

The execution of the single experiment is not 
enough to provide the conditions of uniqueness of 
the inverse problem solving by simultaneous 
estimating of thermal conduction, heat capacity 
and emissivity of the testing material. To solve 
this problem the data of several N (in partial 
three) similar experiments with equal material 
specimen and different heating regimes were 
processed simultaneously. 
 
INVERSE PROBLEM ALGORITHM 

At this section the algorithm of inverse 
problem is presented for the case, when q2(τ) is a-
priori known to provide independence of 
algorithm from experimental merits.  Suppose 
then that the unknown characteristics are given in 
their parametric form. With this purpose 
introduce in the interval , three 
uniform difference grids with the number of 
nodes N

[ ]maxmin ,TT

i, i=1,2,3. 
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is called B-spline of the (j-1) degree relatively 
with nodes . When solving 
practical problems, B-splines are used with so-
called "natural" boundary conditions 

j

0
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where u is desired function. 
Then, in case of cubic B-splines ((j-1=3), the 

unknown function is presented as 
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This property makes the computational algorithm 
simpler. 

In solving any particular inverse problem the 
choice of the number of parameters of 
approximation for unknown characteristics should 
be justified. Approximating the unknown 
functions on grids (6) using the cubic B-splines 
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where , k=1,NkC 1,    , k=1,N2, , , k=1,N3 - 
parameters. 

As a result of approximation, the inverse 
problem is reduced to the search of a vector of 
unknown parameters 

{ } { }kNN pkCCp ==
31

,...,,,..., 11 ε ,k=1,Np 
with dimensions Np = N1+N2+N3. Writing down a 
least-square error of the design and experimental 
temperature values in points of thermal sensors 
positioning 
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where ( )τ,xT n is determined from a solution of 
the boundary-value problem (1)-(4) for n-th 
experiument using the approximations of (7). It is 
assumed here that the conditions of uniqueness of 
the inverse problem solving are satisfied. Bellow 
to simplify the niotation equations  index  n will 
be excluded. 

In processing the results of real experiments 
and tests there are always errors, depending on a 
number of reasons. First of all, the errors in the 
experimentally measured data are both random 
and systematic by nature. Random errors in input 
data are stipulated by a spread of thermal and 
electrical characteristics in thermal sensors and 
other measuring devices, by inaccuracy of their 
calibration, etc.; as a rule, these errors show a 
large enough value. Systematic errors in the input 
data f are usually connected with inaccuracy in 
determining the co-ordinates of thermal sensors, 
with temperature pattern distortion in the 
specimen by thermal sensors, with displacement 
of the very specimen during filming or X-ray 
survey etc. That is why the term  fm is always 
known with some error.  

The second group of errors - the errors of 
finite-difference approximation of differential 
operator in the initial problem and round-off 
errors in the computer. Besides, there are errors 
because of uncertainties in the a-priori assigned 
characteristics of a mathematical model Eqs.(1)-
(4), which are determined either through 
calculations or from a solution of  the 
corresponding  inverse problems. 

Due to mathematical ill-posedness of the 
problem in defining the heat transfer 
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characteristics, the availability of errors in the 
input information leads to a solution, which can 
have nothing in common with an unknown one. 
To overcome this circumstance it was suggested 
to make use of the regularized properties of 
gradient methods of optimization, which permit to 
begin quickly an iterative process from a distant 
estimate of characteristics to  be determined and it 
slow down abruptly while approaching the 
functional minimum. As the number of iterations 
increases, the solution of the inverse problem can 
start oscillating, gradually loosing its smooth 
nature. A necessity occurs to stop the iterative 
process, falling short of solution oscillations. An 
important task here is to sample a stop criterion 
for the iterative process. By principle of 
generalized discrepancy such criterion can be a 
constraint on the value of minimized functional 
J . ( )p

A successive regularized method realised 
here, according to general definition of 
Tikhonov's regularizing operators, gives rise to a 
regularizing set of operators, in which a parameter 
of regularization is the number of the last iteration 
[3]. For linear ill-posed problems the iterative 
regularization method has received a rigorous 
mathematical proofs and practical verification 
through data of mathematical modelling. 
Applicable to non-linear problems, there are at 
present no complete theoretical results on the 
substation of stability of iterative algorithms. 
However, the results of computational 
experiments already made in solving the inverse 
heat transfer problems of different types prove 
high  efficiency of the iterative regularization 
method and possibility to analyze a wide range of 
nonlinear problems. 

So, proceeding from the principle of iterative 
regularization [1,2], the unknown vector can be 
determined through minimization of functional 
(8) by gradient methods of the first order prior to 
a fulfillment of the condition 
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- measurement variance. 

To construct an iterative algorithm of the 
inverse problem solving a conjugate gradient 
method was used. The successive approximation 
process is constructed as follows: 

1) a-priori, an initial approximation of the 
unknown parameter vector 0p  are set 

2) a value of the unknown vector at the next 
iteration are calculated 
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where )(s
pJ ′  - value of the functional gradient at 

current iteration.  
The greatest difficulties in realizing the 

gradient methods are connected with calculation 
of the minimized functional gradient.  In the 
approach being developed the methods of 
calculus of variations are used. Here an analytic 
expression for the minimized functional gradient 
can be obtained 
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where ( )τψ ,x  is solution of a boundary-value 
problem adjoint to a linearized form of the initial 
problem (1)-(4). 
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EXPERIMENTAL VERIFICATION 

As an example, the results of data processing 
on experimental study of material specimens are 
used, which involves the thermo-vacuum facility 
developed in MAI at the Department of Space 
System Engineering. The test facility consists of a 
horizontally cylindrical set vacuum chamber with 
a water-cooling system.  

A heating element consists of a molybdenum 
foil with dimensions 80x70x0.05 mm (Fig. 1). 
The tested specimen is located on a thermo-
insulating base made of thermal insulation 
material so that its heating surface is parallel to 
heater’s plane and at certain distance from it (3-5 
mm). A ceramic plate is put over the heater, 
which reduces the heat withdrawal from it in the 
direction opposite to the test specimen improving 
its heating uniformity. Control of the specimen 
heating regime is performed by temperature on 
the exposed surface in accordance with a preset 
regime. Control over the heating regime was 
maintained in the experiment using the results of 
three trial starts with specimens from test 
materials, the structure of which being similar to 
the structure used in tests. In making the trial 
starts a criterion of choosing a suitable heating 
regime is the coincidence of specimen external 
surface temperature measured with the preset 
temperature. 

With the proposed scheme of test 
performance, the data gained in one experiment 
are not sufficient for simultaneous recovery of 

two thermal characteristics (thermal conduction 
and heat capacity), because data by values of the 
heat flux applied to a specimen are also needed. If 
emissivity of the heater material ( ) is known a-
priori, and its temperature is measured via control 
temperature, the heat flux from the heater can be 
calculated according (4a). In presented paper a 
case is considered, when )(T  is not known a-
priori and should be estimated, this approach will 
be called as approach B (to compare with 
presented in INTRODUCTION and in [1] 
approach A). Therefore some parts of inverse 
problems algorithm should be modify. 

hε

hε

 
Figure 1.  Experimental module: 1 – heater, 
2 - test specimen, 3 - insulating basement, 

4 - insulating cover, 5 - control thermocouple. 
 
Lets introduce in the interval [ ]maxmin , hThT

 

 
uniform difference grids with the number of 
nodes N4 
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and approximate the unknown function )T on 
grids (6a) using the cubic B-splines 
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It should be noted here, that adjoint problem (14)-
(19) remains without any transformations.  

An example to how apply the approach 
suggested is presented bellow. Given are the 
results of data processing of specimen 
experimental investigations with modern 
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composite materials. The investigations were 
carried out on a set of pairs of specially 
manufactured specimens (the first in the pair for 
simultaneous estimating material’s heat capacity 
per and thermal conductivity and the second for 
determining boundary conditions).  

The models of test material are the square 
plates of 50x50x15 mm (Fig. 2) with four 
thermocouples installed in the specimen. A test 
material 1 is deposited on support 2 of 1mm 
thickness made of metallic alloy. 
Thermoelectrode wires of thermocouples were 
brought out via the fabric-based laminate and 
placed in glass braids. Length of the 
thermocouple isothermal zone was 7-8 mm. An 
installation of thermosensors in specimens was 
chosen from a solution of the problem of optimal 
experiment design. The co-ordinates of 
thermocouple positioning in the first set of 
specimens, for estimating the material’s thermal 
characteristics, had the following values: Xo = 0 
mm (for a boundary condition of the first kind 
sensor readings on the internal surface were 
used), x1 = 7.5 mm, x2 = 11.8 mm, x3 = X1 = 15 
mm (positioned on the exposed surface). The 
second set of specimens, for defining the 
emissivity, has the thermocouples at points Xo = 0 
mm, x1 = 12.65 mm, x2 = 13.65 mm, x3 = x1  = 15 
mm. 

 
 
 
 
 
 

 
Figure 2.  Test specimen:  1 - test materials, 
2 - metallic basement, 3-6   - thermocouples. 
 
The number of approximation parameters N1, 

N2, N3 and N4 for every characteristic was 
assumed to be 5.  During specimen heating a 
theoretically preset time dependence of surface 
temperature (Fig. 3) was provided. The 
measurement errors were estimated as 5 %. A 
comparison of experimentally measured and 
calculated (with the help of thermal 
characteristics obtained from a solution of the 
inverse problem) temperature values in points of 
thermocouple positioning is shown on Fig. 3 
(only for one specimen). The results are in 
agreement, which shows the robustness of the 
inverse problem algorithm. 

The results proper of the inverse problem 
solving - the composite material thermal 
characteristics and emissivity are given on Fig. 
4,5 (the results for two sets by three experiments 
in vacuum and air conditions). The accuracy of 
these results of the inverse heat conduction 
problem was ere verified using different (quite 
distinct from each other) initial approximations 
for an iterative process. The results show 
reasonable agreement. 

 
 

Figure 3.  Temperature values 
in points of thermocouple positioning: 

1 - calculated,  2 – experimental 
 

CONCLUSIONS 
The paper seeks to describe the algorithm 

developed to process the data of unsteady-state 
thermal experiments. The algorithm is suggested 
for determining these unknown on the surface of a 
slab as a solution of the nonlinear inverse heat 
conduction problem in an extreme formulation. 

1

6  X02
3 5  x3  x2  x1 The following main factors have an influence 

on the accuracy of the inverse heat conduction 
problem (in sequence of significance): the errors 
in coordinates of thermosensor positions; the 
errors in values of different characteristics; the 
errors in estimating the residual level. It was 
shown that in the cases considered the accuracy of 
the inverse problems solution is compatible with 
the errors of the simulated "experimental 
measurements". 

4

Next step in the development of the proposed 
approach is to consider an estimating interface 
conductance between periodically contacting 
surface of specimen and heater foil using the 
approach similar [13]. 
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a 
 

 
b 
 

 
c 
 

Figure 4.  Results of testing: a - heat capacity,  
b - conductivity, c – emissivity.  

1- approach A (vacuum), 2 – approach B 
(vacuum), 3- approach A (air), 4 – approach B 

(air). 
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ABSTRACT 

This paper presents the results of 
computational and experimental studies of 
particular thermal processes in composite 
materials. The considered approach is based on 
the mathematical theory of ill-posed problems of 
mathematical physics. In the majority of cases 
this methodology is used for optimisation, but in a 
number of practical situations it is the sole 
technique available, as, for example, in measuring 
the transient heat fluxes and heat transfer 
coefficients. Owing to the structural version and 
homogeneous surface heating in specimens a one-
dimensional heat transfer process is realized. A 
complex of thermal properties of the composite 
material (thermal conductivity (Tλ  and heat 
capacity coefficient ( )TC ) is estimated.  The 
initial data for such problems are formed 
grounded on the results of measurements and 
include the boundary conditions and temperature-
time values in several internal points of 
specimens. The type of boundary conditions and 
the number of points of temperature measurement 
should meet the conditions of uniqueness of the 
inverse problem solution under analysis. 

 
INTRODUCTION 

In space rocketry many problems deal with the 
structures operating in the conditions of intensive, 
often extreme thermal effects. The general 
tendency in the development of technology is 
connected with the increasing of the number of 
thermo-loaded engineering systems with the 
simultaneous increasing of their reliability and 
safe life. For space vehicles and reusable 
transportation systems the support of thermal 

conditions is one of the most important aspects of 
design and in determining the main design 
solutions. Of great importance is the thermal 
condition support for different engines  (gas-
turbine, liquid/solid propellant rocket engines, 
etc.), power plants, heat-exchange apparatus etc. 
The distinctive features of modern thermo-loaded 
structures in space engineering are the non-
stationarity, non-linearity, multi-dimensionality 
and conjugate nature of heat-and-mass transfer 
processes. These distinctions confine a possibility 
of using many traditional design-and-theory and 
experiment methods. So, in developing the flight 
vehicles of different mission and type, 
traditionally there were both the development of 
new approaches and the improvement of already 
available research techniques. Similar problems 
exist in other branches of industry.  

The optimal design of heat-loaded objects is 
actually an important problem in the presence of 
weight and cost restrictions on the structures 
developed for any mission, for example, the 
aircraft and rocket-space systems, internal 
combustion engines, nuclear power plants, 
metallurgical and chemical equipment etc. The 
problem of reducing the specific consumption of 
materials in machines and vehicles, their power 
consumption, harmful action on the environment 
is extremely urgent in civil ingineering. Here, it is 
impossible to create the thermal protection 
systems, meeting modern requirements, without 
carrying out the extensive theoretical and 
experimental studies of properties of the materials 
used also to design new materials with given 
properties. The priority and general orientation in 
the development of theoretical and experimental 
foundations of research, support and optimization 
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of thermal conditions of the materials and 
structures of all prototypes of modern technology 
should be given to the development and broad 
application of methods of mathematical and 
physical simulation of the thermal state of the 
objects under study and, especially, to the 
experimental-and-theoretical methods of 
diagnostics and identification based on the 
solution of inverse heat-and-mass transfer 
problems. The investigations of recent years 
showed that the utilization of such an approach is 
the most perspective and fruitful. It allows to take 
into consideration the actually existing effects of 
non-stationarity and non-linearity of heat-and-
mass transfer processes, it displays high 
information efficiency and gives a possibility to 
conduct investigations close, to the maximum, to 
a full-scale or directly during the use of objects.  

One of the most important directions of 
studies where the application of methods of 
inverse problems is not only expected but also 
extremely obligatory is the identification of heat 
transfer process in partially decomposed 
composite materials. An essential effect in 
exerted on the heat transfer in such material by 
the course of thermal destruction of the binder 
(matrix) and related processes. Chemical 
reactions of the destruction process are 
accompanied by thermal effects with the resulting 
formation in the material of the distributed heat 
sources and heat outflows, the power of which is 
determined by the very process of decomposition. 
The released gaseous products begin moving by a 
system of gas pockets formed in the direction of 
the least pressure loss (heated surface) thus 
cooling the more heated layers of the material. As 
this takes place, the chemical processes could run 
both in gaseous phase and at interaction with a 
solid residual of the partially decomposed binder 
or with a filler also accompanied by thermal 
effects. A change in chemical composition and 
formation of pores in the binder, shrinkage or 
swelling of the material results in the change of 
its thermal properties. 

Depending on the type and mission of the 
material, the action of one or the other of the 
pointed factors on heat transfer in the material 
could be different. By this is meant that the 
availability in literature of a large number of 
mathematical models of heat transfer in different 
materials explains the situation. The mathematical 
models now available can be divided into four 
groups: 

1) Models of a heat conduction in a solid with 
the effective thermal properties depending on 
temperature, temperature and time, temperature 
and its variable, as well as with the so called 
functional characteristics; 

2) Models with a front of the destruction 
process and division of the material into virgin 
and completely charred zones with own thermal 
properties; 

3) Models with regard to the kinetics of 
destruction and related processes; 

4) Models with regard to thermomechanical 
effects.  

Without going into details of advantages and 
disadvantages of these models, we will note that 
most of them are not provided in the metrological 
aspect, that is, with the data on their parameters 
and methods of determination of these 
parameters. The more sophisticated is the model: 
the more is the number of parameters, the greater 
are the difficulties of their determination. 

The availability of such great number of 
models complicates the supporting of industries 
with reference information and design methods. 
That is why it is necessary to develop a base 
group of models and methods for determination 
of their parameters. Such group should consist of 
a number of complicated models, each successive 
one including a new range of essential, for heat 
transfer, processes with the continuous, by some 
parameters or system, experimental data for their 
determination. This provides the use, for each 
material, of the simplest model reflecting the most 
essential processes thus reducing the volume of 
experimental data. 

As the initial model, it is expedient to adopt a 
model of one dimensional heat conductiomn in  
the slab (the coordinate of the left boundary is 

and the coordinate of the right boundary is 
) with the temperature-dependent thermal 

properties, therefore the mathematical model of 
heat transfer is like 
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where  }1,0{1 =β , }1,0{2 =β ,  }1,0{1 =α  and 
}1,0{=2α  are parameters, which provide using 

boundary condition of the first ( ,01 =β  11 =α  or 
,0=2β  12 =α ) and the second ( ,11 =β 01 =α  

or ,12 =β , 02 =α ) kinds. Heat  fluxes  and 
have their positive directions along OX axis. 

1q

2q
This model is sufficiently exact for a wide 

class of non-decomposed materials and could be 
applied as an approximate model for materials, 
the decomposition depth and destruction effect of 
which on the heat transfer are relatively not large 
[5]. Permissibility of the use of this model for 
each particular material and conditions of its 
application should be proven experimentally. 

The modern approaches to the development of 
composite materials assume broad application of 
mathematical and physical simulation methods. 
But the mathematical simulation is impossible if 
there is no true information available on the 
characteristics (properties) of objects thus 
analyzed. In defining the thermal properties of 
modern structural, thermal-protective and 
thermal-insulating materials - as temperature-
dependent - the most effective methods are based 
on the solution of the coefficient inverse heat 
conduction problems (CIHCP) [1-7]. Methods of 
Inverse Heat Transfer Problems (IHTP) were 
developed to increase the amount of information 
from thermal experiments and tests, to improve 
the accuracy and reliability of experimental data 
processing and interpretation, and also for 
investigating and control of Heat Transfer in the 
manufacturing processes. In the majority of cases 
in practice the direct measurement of materials’ 
thermal properties, especially of complex 
composition, is impossible. There is only one 
way, which permits to overcome these 
complexities - the indirect measurement. 
Mathematically, such an approach is usually 
formulated as a solution of the inverse problem: 
through direct measurements of system’s state 
(temperature, component concentration, etc.) the 
properties of the system analyzed are defined, for 
example, the materials’ thermal characteristics. 
Violation of the cause-and-effect relations in the 
statement of these problems results in their 
correctness in mathematical sense (i.e., the 
absence of existence and/or uniqueness and/or 

stability of the solution). Hence to solve such 
problems special methods, usually called the 
regularized methods [4-6], were developed. 

In developing new thermal-protective 
materials quite a great number of comparative 
heat tests are carried out, the purpose of which is 
clear from the analysis of thermal-protective 
properties of materials in different heating 
conditions corresponding to service conditions. 
The experimental specimens for such tests are 
manufactured in the form of a flat plate of the 
material analyzed. To control the assigned heating 
condition the temperature of the external heated 
surface is measured and to estimate the thermal 
properties of the material in study the temperature 
in two internal points of specimens and on the 
internal surface is measured (the temperature of 
the external surface is also used). In addition, the 
heat flux density is assumed to be known for the 
warm-up side of a specimen. Realization of this 
condition is possible through experimental means. 
The internal surface temperature is used as a 
boundary condition. In practice it is difficult to 
realize the uniform initial temperature distribution 
in specimens, hence the initial temperature 
distribution is approximated through the reading 
data at zero time. Thermal conductivity (T )λ  and 
heat capacity coefficient C  are the two 
characteristics to be recovered unambiguously 
and simultaneously for the described procedure in 
conducting the experiment and by measuring the 
data obtained in one experiment [8]. 

( )T

 
IDENTIFICATION ALGORITHM 

In the model (1)-(4) the functions  and (TC )
( )Tλ  are unknown. For additional information 

necessary to solve an inverse problem the results 
of temperature measurements inside a specimen 
are assigned 

( ) ( ) M1,=m    fxT mm ,,exp ττ =   (5) 
Suppose then that the unknown characteristics 

are given in their parametric form. With this 
purpose introduce in the interval [ ] two 
uniform difference grids with the number of 
nodes Ni, i=1,2 and the unknown functions are 
approximated on this grids using cubic B-splines 
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where , k=1,N1,   kC kλ  , k=1,N2 - parameters. 
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As a result of approximation, the inverse 
problem is reduced to a search of vector of 
unknown parameters { kpp = }

))

)

, k=1,Np , with the 
dimensions Np = N1+N2. Lets introduce a mean-
square error of the design and experimental 
temperature values in points of thermal sensors 
positioning 

( ) ( )( ) ( ) ((∑ ∫
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m
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where ( mxT  is determined from the solution of 
the boundary-value problem (1)-(4) using the 
approximations of (6). Proceeding from the 
principle of iterative regularization, the unknown 
vector p  can be determined through 
minimization of functional (7) by gradient 
methods of the first order prior to a fulfilment of 
the condition 

τ,

 
( )pJ ≤     (8) 

where   is an integral error 

of temperature measurements fm(τ), m=1,M, and  
σm  - measurement variance. The Conjigate 
Gradient Algorithm is presented in details in [6]. 
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EXPERIMENTAL STUDY  

           1        2                   3  

 
 
Figure 1. Test Stand: 1 - vacuum chamber,  

2 - experimental module, 3 - heater. 
 

By the way of experimental study of the 
material specimens the results of experiments are 

used on the automatic thermo-vacuum stand 
(TVS-1) manufactured in MAI at the Department 
of Space System Engineering. A TVS-1 is meant 
to carry out the experimental investigations on 
specimens of TPS materials in the condition of 
non-stationary radiation heating. 

The test stand (Fig. 1) consists of units and 
systems, described below. A horizontally set 
vacuum chamber 1 of 0.1 m3 volume is a cylinder 
with double walls between which the cooling 
water is circulating. A cylinder is sealed at both 
ends by spherical covers, the rear cover is set 
fixed, the front cover is hinged and provided with 
the quick-opening locks. Both covers are water-
cooled too. A vacuuming system consists of a 
mechanic vacuum pump, a diffusion pump, a 
vacuum seal and valves. A power supply system 
includes a control desk, a thyristor voltage 
regulator, a control unit and a power transformer. 
A control unit is for voltage control fed to a 
heater. The control can be in manual mode or in 
automatic mode from a computer. 

Two specimens made of the same test material 
(Fig. 2) were located symmetrically about the 
heating element on a thermoinsulating base made 
of thermal insulation material so that its heating 
surface is parallel to the heater and at a certain 
distance from it (δ = 4-5 mm). The other surfaces 
of specimens were heat-insulated by a layer of 
heat-insulating material. A heating element from 
a tantalum foil with dimensions 80x70x0.1 mm 
allowed: 1) to increase the specimen heating rate 
till the desired values; 2) to avoid destruction of 
heating elements till the completion of specimen 
tests, this having occurred sometimes in 
attempting to provide a corresponding heating 
rate. Control of the specimen heating condition is 
performed by temperature on the heated surface 
measured by a thermocouple, made from a 
thermocouple wire BP5  - BP20 of 0.1 mm 
diameter in accordance with a prescribed regime. 
A control system of the heating regime includes a 
thermocouple, set up on the specimen surface, a 
control-point setting device, operating jointly with 
a self-balancing electronic potentiometer, an 
analogy regulator device in the set with the 
control units. Control over the heating regime was 
maintained in the experiment by the results of 
three trial starts with specimens from test 
materials, the structure of which is similar to the 
structure used in tests. In making the trial starts a 
criterion in choosing the suitable heating regime 
is the coincidence of the specimen external 
surface temperature measured with a prescribed 
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temperature. Measurement and recording of non-
steady temperatures in the test specimen are made 
by means of an automatic system for 
experimental information gathering and 
processing based on PC. 

This module is implemented to provide a 
sufficiently exact definition of the heat flow fed 
inside the specimens of materials, this in turn, 
permits to provide the conditions of uniqueness of 
the inverse problem solving by simultaneous 
definition of heat conduction and material's heat 
capacity per unit volume. 

 
Figure 2. Experimental module: 1 - heater,  
2 - pressed plates of current tap, 3 - mobile 

current taps, 4 - insulator, 5 - immobile current 
taps, 6 - struts, 7 - plate, 8 - frame, 9 - cooling 

tubes, 10 - guides, 11- springs, 12 - test specimen, 
13 - insulating basement, 14 - control 

thermocouple, 15 - ceramic tube. 
 
In the process of non-steady heating of 

specimens by means of an automatic system, 
recording of temperatures inside the specimen in 
places of thermocouple positioning, heater's 
temperature and also electric power released on it 
were performed: 

I∗UQelectr =      (9) 
where  U - r.m.s. voltage on the heater, I - r.m.s. 
strength of current, transmitted through the 
heating element. The heat flux supplied to a 
specimen due to symmetry is determined as  
q2(τ) = Qelectr/(2A) = U*I/(2A)  (10) 
where A - heater's surface area. 

Below there are the results of data processing 
for experimental study of a high-porous 
composite thermo-insulating material. The 
models of test material are the square slabs of 
dimensions 50x50x5 mm. Thermoelectrode wires 
of thermocouples were brought out via the fabric-
based laminate and placed in glass tubes. The 
length of the thermocouple isothermal zone was 
7-8 mm. The installation of thermosensors in 

specimens was determined based on the solution 
of the optimal experiment design problem [2]. 
 
OPTIMAL EXPERIMENT DESIGN 

In the given case, the search problem of 
optimal plan or optimal layout of temperature 
measurements can be formulated as the following 
extreme problem: 
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where Mmin = 2 is the minimum number of 
measurement points necessary for uniqueness of 
the solution of the analyzed inverse problem [8]; 
( ) ( )[ ]ξξ Fdet=Ψ  is  the experiment performance 

quality characterizing the accuracy of the inverse 
problem solution. Here F(ε) is Fischer’s 
information matrix, which is defined by 
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where  is 

the sensitivity function;  is the 
functions of measurement efficiency enabling us 
to consider the errors of experimental data. For 
equally accurate measurements , 

where  is the measurement deviation. Matrix 
F(ξ) characterizes the total sensitivity of the 

system in the measurement points  , 
to small variations of the whole set of parameters 

. It is required to find such an 

experiment design for which the criterion 
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( )ξΨ  attains the maximum value. Here the 
domain of admissible values of thermosensors 
positions is determined by the Eq. (12). The 
solution of the given problem is constructed on 
the realization of iterative procedure in which at 
every iteration we solve the search problem for an 
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optimal vector of coordinates of the fixed number 
of thermosensors M: 

( )
_____
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=
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and sequentially we increase by a unit the number 
of thermosensors. The iterative process ends on 
condition that the following relation is fulfilled:  

 
( ) ( )( ) ( ) ρ≤+ΨΨ−+Ψ *** ,1/,,1 xlxlxl  (15) 

where l – the iteration number; ρ>0 – the given 
value. 

The elements of matrix F(ε) and the unknown 
layout of temperature measurements ε*  depend on 
the unknown parameters . This is 
due to the fact that the temperature field T(x,τ),  
X0≤  x ≤ X1,  τmin≤ τ ≤τmax, which is determined 
from the solution of the boundary-value problem 
(1) – (4) is nonlinearly dependent of the vector of 
unknown parameters. In these cases we can 
construct only the approximate locally optimal 
plans satisfying the solution of problem (11) 
using the a-priori information about the values of 
vector 

Pk Nkp ,...,1, =

. In this connection when solving the 
problem of planning it is of reason to estimate the 
effect of uncertainties in the values of 
thermophysical characteristics used in problem 
solving on the results of planning. 

p

The practice of carrying the experiment 
studies shows that it is not always the case when 
in the experiment we manage to accurately 
provide the given mode of heating of the 
specimen. The actual coordinates of the points of 
thermosensors installation can deviate from the 
optimal points because of errors admitted at 
installation. Besides, on the coordinates of 
installation we can impose the constraints 
conditioned by structural and technological 
requirements to the sensors and specimens, in 
which we make measurements. That is why along 
with the selection of optimal measuring circuits it 
is necessary to make an analysis of the effect of 
uncertainties in the specimens heating modes and 
deviations from optimal coordinates of 
thermosensors installation on the sensitivity of the 
heat system under study. Such analysis allows to 
define some domains where we can install the 
thermosensors and estimate the losses in the 
accuracy of solution of the inverse problem. For 
this purpose it is convenient to consider 

({ MF ,Ψ )}x  as a function of the thermosensors 

positions. The analysis of the experiment design 
sensitivity to possible deviations of the 
measurement values should be considered as a 
part of the considered problem.  

The problem of experiment design was solved 
by the following values of the initial data: the 
specimen thickness b=5 mm; the process duration 

maxτ = 25 seconds; the initial temperature in the 
specimen Т0 (x) = 293 K; the boundary condition 
on the specimen internal surface is q1 (τ)=0; the 
boundary condition on the specimen heated 
surface q2 (τ) was assumed corresponding to that 
on Fig. 5 and later on was considered as the rated 
conditions of heating; the a-priori information 
about the thermal properties of the materials are  
shown on Fig. 6; the number of parameters in the 
spline-approximation of unknown functions N1 = 
4  for  λ(T)  and  N2 = 4 for  С(T); the dispersion 
of equally accurate measurements is ;  1=2−σ

With the purpose to estimate the effect of 
uncertainty in the specimens heating mode on the 
measuring circuit the problem of experiment 
design was also solved for another mode of 
heating ( ) ( )( )ττ 22 8.0 qq =− . The effect on the 
experiment design of uncertainty in thermal 
conductivity λ(T) was estimated by the results of 
solving the design problem with the assignment 
of values ( ) ( )( )TT λλ 8.0=−  and  ( ) =T+λ

( )( )Tλ2.1= . 
The coordinates of thermosensors optimal 

location and the corresponding maximum values 
( )( )maxxΨ obtained as a result of calculations are 

shown in Table 1. Fig. 3 and 4 illustrate 
dependencies of the criterion value 

( ) ( ) ( )( )max

__
/ xxx ΨΨ=Ψ on the location of 

thermosensors for М = 2 и М = 3, 
correspondingly. It should be noted here that the 
coordinates and numbers of measurement points 
are counted off the insulated surface of the slab.  

The presented results show that at the 
analyzed conditions of heating for experiment 
design with M = 2  и  M = 3 one thermosensor 
should be installed on the heated surface and the 
rest – in the depth of the specimen. Actually, the 
optimal coordinates of thermosensors location  

and  coincide. This allows to assume that for 
simultaneous determination of λ(T) and С(T ) we 
can use the experiment design with М = 2. 
However, the comparison of values 

*
1x

*
2x

( ))maxx(Ψ for 
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М = 3 и М = 2 shows that in the second case 
( )( xΨ )max  is less almost by four orders of 

magnitude, that demonstrating a more lower 
sensitivity of the heat system at М = 2 as 
compared with М = 3. The decrease of values of 
the heat flux density by 20% results in some 
lesser value of ( )( xΨ

*
2x

)max  and in the displacement 

of sensor  location  onto the specimen heated 

surface. The coordinate of point  is not 
changed. 

*
1x

;

;

*
1x

1x≤

1x =

*
2x

 
Figure 3. Dependences of the criterion value 
Ψ on the location of thermosensors for M = 2: ( )x

*
2x

*
1x

○ -  ( ) ,50, *
221
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xxmmx =≤Ψ

∆ -  ( ) 50,, 2
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__
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The increase of values λ(T) by 20% results in the 
displacement of coordinate of the measurement 
point  onto the heated surface and in some 

displacement of point  inside the specimen. At 
the increase of values λ(T) by 20% the optimal 
coordinates of measurement points  and  
coincide, while the of 

*
2x

( ))maxxΨ(  are by two 
orders of magnitude greater. In both cases with 
variations of λ(T) the optimal coordinate of 
measurement point  is not changed. As a result 
of the analysis carried out for simultaneous 
estimating of λ(T) and С(T ) the design of 
temperature measurements with the coordinates 
Xo = 0 mm (for a boundary condition of the first 
kind the readings of the sensor on the internal 
surface were used), = 2.4 mm, = 3.0 mm, 

= 5.0 mm (positioned on the exposed surface) 
were  recommended. 

*
3x

*
1x

*
3x

 
Figure 4.  Dependences of the criterion value 
( )xΨ on the location of thermosensors for M = 3: 
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Table 1. The criterion of experiment design  

( )( )maxxΨ  and optimal thermosensors location 
Mode of 
Heating 

Values of 
)(Tλ  

* x1x *
2

*
3,

mm
, 

mm 
x , 

mm 
( )( )maxxΨ

( )τ2q  ( )Tλ  2,8 3,0 5,0 0,43*10-5 

( )( )τ28.0 q ( )Tλ  2,8 5,0 5,0 0,23*10-6 

( )τ2q  ( )( )Tλ2.1 2,4 5,0 5,0 0,63*10-6 

( )τ2q  ( )( )Tλ8.0 3,0 3,0 5,0 0,16*10-3 

( )τ2q  ( )Tλ  3,0 5,0 - 0,99*10-9 
 

 
RESULT OF EXPERIMENTAL DATA 
PROCESSING 

During the specimen heating on the test 
facility a theoretically prescribed time dependence 
of heat flux (Fig. 5) was provided. The number of 
approximation parameters N1 and N2 for desired 
functions were equal 4. The comparison of 
experimentally measured and calculated (using 
thermal characteristics obtained from a solution of 
the inverse problem) temperature values in points 
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of thermocouple positioning are shown on Fig. 5 
(only for one specimen). A quite well coincidence 
of them take place here. 

 
 

Figure 5. Temperature values in points of 
thermocouple locations:   

1- calculated,  2 – experimental, and heat flux 
from the heater  - 3. 

 
a 

 
b 

Figure 6. Results of testing:    
a - heat capacity, b - conductivity. 

 
The results of the inverse problem solving - 

the composite material thermophysical 
characteristics are given on Fig. 6 (results of four 
experiments- curves 1,…,4). These results were 
verified by using different (quite distinct from 
each other) initial values for an iterative process. 
The results obtained depend rather weakly on the 
initial approximations. 

 
CONCLUSIONS  

For partially decomposed materials the model 
of heat conduction with temperature-dependent 
thermal characteristics is approximate, and 
characteristics are effective, since the heat transfer 

in such material is provided not only by heat 
conduction but also by different transformation  
processes depended on conditions of heating. A 
deviation of of calculated and experimental 
temperature values in the experiments did not 
exceed 8 K, that confirms the possibility of using, 
for the given material, a model of heat conduction 
with the effective thermal characteristics. But the 
presented method can be used used only for 
determining the effective thermal characteristics 
of composite materials for partial heating 
conditions. 
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PHDVXUHPHQWV�� 7KH� TXDOLW\� RI� WKH� REWDLQHG

HVWLPDWHV� LV� LPSURYHG� RZLQJ� WR� WKH� DSSOLFDWLRQ

RI�WKH�VHTXHQWLDO�IXQFWLRQ�VSHFLILFDWLRQ�DOJRULWKP�

7KH� UHTXLUHG� IRU� WKH� DOJRULWKP� VHQVLWLYLW\

FRHIILFLHQWV��ZKLFK�UHODWH�WKH�DPRXQW�RI�GLVVLSDWHG

SRZHU�WR�WKH�WHPSHUDWXUH�ULVH�DW�VHQVRU�ORFDWLRQV�

DUH� FRPSXWHG� IURP� WKH� FLUFXLW� WKHUPDO� PRGHO�

)LQDOO\�� WKH�HVWLPDWLRQ� UHVXOWV�DUH� FRPSDUHG�ZLWK

LQIUDUHG�PHDVXUHPHQWV�
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DXJPHQWHG�VLJQLILFDQWO\�GLVVLSDWHG�SRZHU�GHQVLW\�

)RU�WKLV�UHDVRQ��FRROLQJ�SUREOHPV�RFFXU�QRZ�HYHQ

LQ� DSSDUHQWO\� ORZ� SRZHU� FLUFXLWV�� 7KHUHIRUH�

QRZDGD\V��PDQ\�PRGHUQ�DSSOLFDWLRQV�UHTXLUH�RQ�

OLQH� PRQLWRULQJ� RI� WKHLU� WHPSHUDWXUH�� 2EYLRXVO\�

WKH� EHVW� VROXWLRQ� ZRXOG� EH� WR� SODFH� WHPSHUDWXUH

VHQVRUV� GLUHFWO\� LQ� WKH� ORFDWLRQV� ZKHUH� KHDW

LV� JHQHUDWHG�� 8QIRUWXQDWHO\�� WKLV� LV� XVXDOO\

LPSRVVLEOH� WR� UHDOLVH� LQ� HOHFWURQLF� FLUFXLWV� GXH

WR� VRPH� WHFKQRORJLFDO� OLPLWDWLRQV�� 7KHQ�� FLUFXLW

WHPSHUDWXUH� FDQ� EH� FRPSXWHG� VROYLQJ� DQ� LQYHUVH

KHDW� FRQGXFWLRQ� SUREOHP� �,+&3��� 6LQFH�� LQ�PRVW

FDVHV��KHDW�LV�JHQHUDWHG�FORVH�WR�VWUXFWXUH�VXUIDFH�

WKH� SUREOHP� RI� GHWHUPLQLQJ� GLVVLSDWHG� SRZHU

GHQVLW\� PLJKW� EH� UHGXFHG� WR� WKH� HVWLPDWLRQ

RI�XQNQRZQ�VXUIDFH�KHDW�IOX[�

7KH� WKHUPDO� UHVSRQVH� LQ� D� VWUXFWXUH� LV� ERWK

GHOD\HG�DQG�GDPSHG��KHQFH� LQYHUVH�SUREOHPV�DUH

H[WUHPHO\� VHQVLWLYH� WR� PHDVXUHPHQW� HUURUV� DQG

VSHFLDO� WHFKQLTXHV� PXVW� EH� DSSOLHG� WR� REWDLQ

UREXVW�HVWLPDWHV�RI�XQNQRZQ�TXDQWLWLHV��7KHUH�DUH

PDQ\� SRVVLEOH� ZD\V� WR� GHDO� ZLWK� VXFK� LOO�

FRQGLWLRQHG� ,+&3V��EXW�QRQH�RI� WKHP� LV�XQLYHUDO

DQG� HDFK� PHWKRG� PXVW� EH� VXLWHG� WR� D� SDUWLFXODU

DSSOLFDWLRQ�� 7KH�PHWKRG� XVHG� LQ� WKLV� SXEOLFDWLRQ

LV�WKH�VHTXHQWLDO�IRUP�RI�WKH�IXQFWLRQ�VSHFLILFDWLRQ

PHWKRG�

7KH� WKHRUHWLFDO� SDUW� RI� WKLV� SDSHU� FRQVLVWV
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RI� VROYLQJ� WKH� KHDW� HTXDWLRQ� LQ� QRQ�KRPRJHQRXV

VROLGV�DQG�WKH�SULQFLSOHV�RI�WKH�VHTXHQWLDO�IXQFWLRQ

VSHFLILFDWLRQ� DOJRULWKP�� 7KHQ�� WKH� SUHVHQWHG

PDWKHPDWLFDO� DSSDUDWXV� LV� DSSOLHG� LQ� WKH

H[SHULPHQWDO� SDUW� IRU� WKH� VROXWLRQ� RI� WKH� FLUFXLW

WKHUPDO� PRGHO� DQG� WKH� WHPSHUDWXUH� HVWLPDWLRQ

RI� WKH� KHDW� VRXUFHV� �SRZHU� WUDQVLVWRUV�� IURP� WKH

WHPSHUDWXUH� PHDVXUHPHQWV� RI� WKH� GLRGHV� SODFHG

DW�FHUWDLQ�GLVWDQFH�IURP�WKH�KHDW�VRXUFHV�
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7KHUH� H[LVW� WZR� SRVVLEOH� LQWHUSUHWDWLRQV

RI�*UHHQ¶V� IXQFWLRQV��)LUVW�� WKH\� FDQ�EH� UHJDUGHG

DV� D� WUDQVLHQW� WHPSHUDWXUH� UHVSRQVH� DW� D� SRLQW� U
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WHPSHUDWXUH� UHVSRQVH� LQ� WLPH�� LW� LV� UHTXLUHG
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LQ� WLPH� W� GXH� WR� WKH� LQLWLDO� WHPSHUDWXUH� ULVH
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LQIRUPDWLRQ�RQ�WKH�*)V�DQG�PHWKRGV�IRU�GHULYLQJ
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:KHQ� WKH� WHPSHUDWXUH� ULVH� GRHV� QRW� UHVXOW

IURP�WKH�LQLWLDO�WHPSHUDWXUH�GLVWULEXWLRQ�DQG�WKHUH

LV�QR�LQWHUQDO�HQHUJ\�JHQHUDWLRQ��ZKLFK�LV�WKH�FDVH

FRQVLGHUHG� KHUH�� WKH� RQO\� RQH� QRQ�KRPRJHQRXV

ERXQGDU\�FRQGLWLRQ�LV�WKH�KHDW� IOX[�GLIIXVLQJ�LQWR

WKH� VWUXFWXUH� WKURXJK� LWV� WRS� VXUIDFH�� 7KHQ�� WKH

IRUPXOD�WR�FRPSXWH�WHPSHUDWXUH�ULVH�LQ�WKH�FLUFXLW

FDQ�EH�H[SUHVVHG�LQ�WHUPV�RI�*UHHQ¶V�IXQFWLRQ�DV�
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)81&7,21�63(&,),&$7,21�$/*25,7+0
)RU�OLQHDU�SUREOHPV��LI�WKH�KHDW�IOX[HV�IRU�HDFK

VXUIDFH� DUH� FRQVWDQW�� WKH� GLUHFW� KHDW� FRQGXFWLRQ

SUREOHP� GLVFXVVHG� LQ� WKH� SUHYLRXV� VHFWLRQ� FDQ

EH� UH�ZULWWHQ� LQ� WKH� PDWUL[� IRUP� DV� VKRZQ

LQ� (TXDWLRQ���� 7KHQ�� WKH� VWUXFWXUH� WHPSHUDWXUH

YHFWRU�7� LV� GHWHUPLQHG� PXOWLSO\LQJ� WKH� YHFWRU
RI�VXUIDFH�KHDW�IOX[HV�T�DQG�WKH�PDWUL[�RI�WKHUPDO
LQIOXHQFH� FRHIILFLHQWV�$�� � 7KH� HOHPHQWV� RI� WKH
PDWUL[� DUH� FRPSXWHG� HYDOXDWLQJ� WKH� DSSURSULDWH

LQWHJUDOV�DFFRUGLQJ�WR�(TXDWLRQ���

7� �$��T ���

7KH� SDUWLFXODU� LQYHUVH� SUREOHP� LQ� WKLV� FDVH

ZRXOG� FRQVLVW� LQ� GHWHUPLQLQJ� WKH� XQNQRZQ� KHDW

IOX[HV�IURP�WHPSHUDWXUH�PHDVXUHPHQWV�LQ�VHOHFWHG

ORFDWLRQV�� )URP�PDWKHPDWLFDO� SRLQW� RI� YLHZ�� WKH

VROXWLRQ� RI� WKH� LQYHUVH� SUREOHP� UHTXLUHV

SHUIRUPLQJ�WKH�LQYHUVLRQ�RI�WKH�WKHUPDO�LQIOXHQFH
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FRHIILFLHQW� PDWUL[� $�� � +RZHYHU�� GXH� WR� WKH� IDFW

WKDW�WKH�WUDQVLHQW�WKHUPDO�UHVSRQVH�LQ�WKH�VWUXFWXUH

LV� GDPSHG� DQG� GHOD\HG�� WKH� PDWUL[� LV� XVXDOO\

SRRUO\� FRQGLWLRQHG� WKXV�� IRU� QXPHULFDO� UHDVRQV�

LW� LV� YLUWXDOO\� LPSRVVLEOH� WR� LQYHUW� LW�� 2QH� RI� WKH

PHWKRGV�RI�LPSURYLQJ�SUREOHP�FRQGLWLRQLQJ�LV�WKH

IXQFWLRQ�VSHFLILFDWLRQ�PHWKRG�

7KH� IXQFWLRQ� VSHFLILFDWLRQ� PHWKRG� LV� EDVHG

RQ� WKH� DVVXPSWLRQ� WKDW� WKH� YDULDWLRQ� ZLWK� WLPH

RI� WKH� XQNQRZQ� TXDQWLW\� WR� EH� HVWLPDWHG� FDQ� EH

GHVFULEHG� LQ� WKH� IXQFWLRQDO� IRUP�� 7KH� PRVW

REYLRXV�DQG�WKH�PRVW�FRPPRQO\�XVHG�DVVXPSWLRQ

LV�WKDW�WKH�IXQFWLRQ�LV�FRQVWDQW��ZKLFK�LPSOLHV�KHUH

WKDW�D�IHZ�VXEVHTXHQW�KHDW�IOX[�VDPSOHV�DUH�HTXDO�

7KH�PHWKRG�FDQ�EH�IXUWKHU�H[SDQGHG�DOORZLQJ�WKH

LQWURGXFWLRQ� RI� DGGLWLRQDO� WHPSHUDWXUH� VHQVRUV�

L�H�� PRUH� WKDQ� WKH� QXPEHU� RI� KHDW� VRXUFHV�� 7KH

PHWKRG� FDQ� EH� DOVR� DGDSWHG� IRU� VLPXOWDQHRXV

PXOWLSOH� KHDW� IOX[� HVWLPDWLRQ�� ,Q� WKH� VHTXHQWLDO

HVWLPDWLRQ� WKH� YDOXHV� RI� KHDW� IOX[HV� LQ� WLPH� DUH

IRXQG� VXFFHVVLYHO\� ZLWK� HDFK� QHZ� DUULYLQJ� GDWD�

7KH� VXUIDFH� KHDW� IOX[HV� LQ� DOO� LWHUDWLRQV� DUH

FRPSXWHG� NQRZLQJ� FXUUHQW� VHQVRU� WHPSHUDWXUH

YDOXHV�DQG�U���³IXWXUH´�WHPSHUDWXUH�YDOXHV��ZKHUH
U� LV� WKH� QXPEHU� RI� KHDW� IOX[HV� DVVXPHG� WR� EH
HTXDO��7KHQ�� IRU�S� KHDW� IOX[HV� DQG�-� WHPSHUDWXUH
VHQVRUV��WKH�XQNQRZQ�KHDW� IOX[�YHFWRU� LQ� WKH�N�WK
LWHUDWLRQ� FDQ� EH� IRXQG� XVLQJ� WKH� IROORZLQJ

HTXDWLRQ�>�@�>��@�
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7(03(5$785(�(67,0$7,21
7KH�IXQFWLRQ�VSHFLILFDWLRQ�DOJRULWKP�SUHVHQWHG

LQ� WKH� SUHYLRXV� VHFWLRQ� ZDV� DSSOLHG� IRU� WKH

HVWLPDWLRQ�RI�SRZHU�GLVVLSDWHG�LQ�D�K\EULG�SRZHU

PRGXOH�� 7KH� PRGXOH� LV� D� WKUHH�SKDVH� $&� PRWRU

GULYHU� PDQXIDFWXUHG� LQ� WKH� ,QVXODWHG� 0HWDO

6XEVWUDWH� K\EULG� WHFKQRORJ\�� 7KH� FLUFXLW�� VKRZQ

LQ� )LJXUH���� FRQVLVWV� RI� ,*%7� SRZHU� WUDQVLVWRUV

7��7��� UHFWLI\LQJ� GLRGHV� '��'�� DQG� SURWHFWLRQ

GLRGHV�'7��'7���$OO�WKH�VLOLFRQ�GHYLFHV�WRJHWKHU

ZLWK� PRO\EGHQXP� KHDW� VSUHDGHUV� DUH� PRXQWHG

RQ� D� ODUJH� ���PP�[����PP�[�����PP� DOXPLQLXP

SODWH�� 7KH� GHYLFHV� FRQVLGHUHG� LQ� WKH� HVWLPDWLRQ

SURFHGXUH�DUH�HQFLUFOHG�LQ�)LJXUH���
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)LJXUH����,*%7�PRGXOH�OD\RXW

)RU� WKH� PHDVXUHPHQWV� WKH� FLUFXLW� ZDV� SODFHG

KRUL]RQWDOO\� RQ� D� ODUJH� EORFN� RI� DOXPLQLXP��7KH

FLUFXLW� WUDQVLHQW� WHPSHUDWXUH� PHDVXUHPHQWV� ZHUH

WDNHQ� XVLQJ� WKH� $*(0$� 7KHUPRYLVLRQ����

LQIUDUHG� FDPHUD�� %HIRUH� WKH� PHDVXUHPHQWV�

LQ� RUGHU� WR� DVVXUH� XQLIRUP� VXUIDFH� HPLVVLYLW\�

WKH� FLUFXLW� ZDV� VSUD\HG� ZLWK� EODFN� PDWW� SDLQW�

7KH�DPELHQW�WHPSHUDWXUH�ZDV�HTXDO�WR�����&�

)LJXUH����,QIUDUHG�SLFWXUH

,QLWLDOO\�� WKH� SRZHU� RI� ����:� ZDV� GLVVLSDWHG

RQO\� LQ� WKH� WUDQVLVWRU�7��� 7KHQ�� DIWHU� ���V� WKH

WUDQVLVWRU�7��ZDV� DOVR� VZLWFKHG�RQ��)LQDOO\�� DIWHU

����V� WKH� WUDQVLVWRU�7��ZDV� VZLWFKHG� RII� DQG� WKH

SRZHU�ZDV�GLVVLSDWHG�RQO\�LQ�WKH�WUDQVLVWRU�7���$Q

H[HPSODU\� LQIUDUHG� SLFWXUH� LV� VKRZQ� LQ� )LJXUH���

7KH�SDUWLFXODU�WHPSHUDWXUH�FXUYHV�REWDLQHG�IRU�WKH

KRW� VSRWV� �WUDQVLVWRUV� 7�� DQG� 7��� DQG� WKH

WHPSHUDWXUH� VHQVRU� ORFDWLRQV� �GLRGHV� '7��� '7�

DQG�'7���DUH�SULQWHG�LQ�)LJXUH���
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)LJXUH���0HDVXUHG�WHPSHUDWXUH�FXUYHV

2ULJLQDOO\�� D� IXOO� ILYH�OD\HU� WKUHH�GLPHQVLRQDO

WKHUPDO�PRGHO�RI�WKH�FLUFXLW�ZDV�FRQVLGHUHG��7KH

PRGHO� ZDV� VROYHG� XVLQJ� WKH� QXPHULFDO� )LQLWH

'LIIHUHQFH�0HWKRG�� 7KH� SUHOLPLQDU\� VLPXODWLRQV

VKRZHG�WKDW�WKH�WHPSHUDWXUH�GURS�LQ�WKH�WRS�OD\HUV

�VLOLFRQ� GLHV�� PRO\EGHQXP� KHDW� VSUHDGHUV� DQG

FRSSHU� IUDPH�� LV� QRW� VLJQLILFDQW�� WKXV� WKH� PRGHO

ZDV�HYHQWXDOO\�UHGXFHG�WR�RQO\�WZR�OD\HUV��WKH�WRS

OD\HU� UHSUHVHQWLQJ� WKH� RWKHU� OD\HUV� DQG� WKH

DOXPLQLXP�EDVH�SODWH�

7KLV� VLPSOLILHG� WKHUPDO� PRGHO� RI� WKH� FLUFXLW

ZDV� HPSOR\HG� IRU� WKH� QXPHULFDO� VLPXODWLRQV�

7KH� PRGHO�� VKRZQ� LQ� )LJXUH���� SHUPLWV� WKH

DSSOLFDWLRQ�RI�ERWK�WKH�*)�KHDW�HTXDWLRQ�VROXWLRQ

PHWKRG� DQG� WKH� IXQFWLRQ� VSHFLILFDWLRQ� DOJRULWKP�

'XULQJ� WKH� VLPXODWLRQV�� WKH� ERWWRP� OD\HU� ZDV

DVVXPHG� WR� EH� PDGH� RI� SXUH� DOXPLQLXP�� 7KH

WKHUPDO�SURSHUWLHV�RI� WKH� WRS� OD\HU� DQG� WKH� YDOXH

RI� WKH� KHDW� H[FKDQJH� FRHIILFLHQW� ZHUH� VHW

H[SHULPHQWDOO\�PLQLPLVLQJ�WKH�UHODWLYH�HUURU�ZLWK

UHVSHFW�WR�WKH�LQIUDUHG�PHDVXUHPHQWV��7KH�WKHUPDO

FRQGXFWLYLW\� DQG� WKH� KHDW� H[FKDQJH� FRHIILFLHQW

ZHUH�GHWHUPLQHG�IURP�WKH�VWHDG\�VWDWH�DV\PSWRWLF

WHPSHUDWXUH�YDOXHV��7KH�WKHUPDO�GLIIXVLYLW\�YDOXH�

EHLQJ� WKH�UDWLR�RI� WKH� WKHUPDO�FRQGXFWLYLW\� WR� WKH

WKHUPDO� FDSDFLW\�� ZDV� IRXQG� IURP� WKH� WUDQVLHQW

WHPSHUDWXUH� FXUYH� VR� DV� WR� JHW� WKH� FRUUHFW

WHPSHUDWXUH�ULVH�UDWH�

7KH� ILQDOO\� DFFHSWHG� YDOXHV� RI� WKH� WKHUPDO

SDUDPHWHUV� IRU� WKH� WRS� OD\HU� PLJKW� VHHP

WR� EH� XQGHUHVWLPDWHG�� KRZHYHU� LW� VKRXOG� EH� NHSW

LQ� PLQG� WKDW� WKLV� OD\HU� UHSUHVHQWV� LQ� WKH� PRGHO

PDQ\�RWKHU�OD\HUV��WKXV�WKH�YDOXHV�KDYH�QR�GLUHFW

SK\VLFDO� LQWHUSUHWDWLRQ��0RUHRYHU�� WKH� EDVH� SODWH

PLJKW�QRW�EH�QHFHVVDULO\�PDGH�RI�SXUH�DOXPLQLXP

DQG� FRQVHTXHQWO\� WKH� UHDO� YDOXHV� RI� WKH

SDUDPHWHUV� IRU� WKLV� OD\HU� PLJKW� EH� VLJQLILFDQWO\

GLIIHUHQW�� 0RUH� GHWDLOHG� LQIRUPDWLRQ� DERXW� WKH

FLUFXLW� LWVHOI� DQG� LWV� WKHUPDO�PRGHO� FDQ� EH� IRXQG

LQ�>��@�>��@�
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)LJXUH���&LUFXLW�WKHUPDO�PRGHO

1H[W�� JLYHQ� WKH� FLUFXLW� WKHUPDO� PRGHO�� WKH

UHTXLUHG� WKHUPDO� LQIOXHQFH� FRHIILFLHQWV� ZHUH

FRPSXWHG�DQG�SODFHG�LQ�WKH�DSSURSULDWH� ORFDWLRQV

LQ� WKH� PDWULFHV� SUHVHQWHG� LQ� (TXDWLRQ����� 7KHQ�

WKH�GLRGH�WHPSHUDWXUH�YDOXHV�ZHUH�VXSSOLHG�WR�WKH

IXQFWLRQ� VSHFLILFDWLRQ� DOJRULWKP�� 7KH� VHTXHQWLDO

HVWLPDWLRQ� RI� WUDQVLVWRU� WHPSHUDWXUH� YDOXHV� ZDV

FRQGXFWHG� DV� D� VLQJOH� KHDW� IOX[� HVWLPDWLRQ� ZKHQ

RQO\� RQH� WUDQVLVWRU� ZDV� GLVVLSDWLQJ� SRZHU� DQG

DV� D� PXOWLSOH� KHDW� IOX[� HVWLPDWLRQ� ZKHQ� ERWK

WUDQVLVWRUV� ZHUH� DFWLYH�� 7KXV�� IRU� WKH� DOJRULWKP�

WKH� LQIRUPDWLRQ�RQ� WKH� WUDQVLVWRU� VZLWFKLQJ� WLPHV

ZDV�QHFHVVDU\��7KH�HVWLPDWLRQ�UHVXOWV�REWDLQHG�IRU

��DQG���IXWXUH�YDOXHV�DUH�SUHVHQWHG�LQ�)LJXUHV�����
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)LJXUH����7UDQVLVWRU�7��WHPSHUDWXUH�HVWLPDWLRQ
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)LJXUH����7UDQVLVWRU�7��WHPSHUDWXUH�HVWLPDWLRQ
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$V�FDQ�EH�VHHQ�IURP� WKH�FKDUWV�� WKH�HVWLPDWHV

IROORZ�TXLWH�FORVHO\�WKH�UHDO�WUDQVLVWRU�WHPSHUDWXUH

YDOXHV�� 7KH� WHPSHUDWXUH� GLIIHUHQFHV� EHWZHHQ� WKH

HVWLPDWHV� DQG� WKH� PHDVXUHPHQWV� GR� QRW� H[FHHG

��.���7KH�REWDLQHG�UHVXOWV�DUH�YLVLEO\�ZRUVH�LQ�WKH

FDVH� ZKHQ� ERWK� KHDW� IOX[HV� DUH� HVWLPDWHG�

7KHQ�� WKH�KHDW� IOX[� DVVRFLDWHG�ZLWK� WKH� WUDQVLVWRU

7�� LV� RYHUHVWLPDWHG� DQG� WKH� RWKHU� KHDW� IOX[

LV�XQGHUHVWLPDWHG�

7KH� LQFUHDVH� RI� WKH� QXPEHU� RI� IXWXUH� YDOXHV

WDNHQ� LQWR� DFFRXQW� UHPRYHV� IOXFWXDWLRQV� LQ� WKH

HVWLPDWHV�� EXW� RQ� WKH� RWKHU� KDQG�� LQ� WKH� FDVH

RI� RVFLOODWLRQV� SUHVHQW� LQ� WKH� UHDO� KHDW� IOX[�

LW�FDXVHV�WKH�HVWLPDWHV�WR�EH�HUURQHRXV�IRU� ORQJHU

WLPH��VHH�WKH�SHDNV�DIWHU�����V���7KH�LQFRUSRUDWLRQ

RI� IXWXUH� YDOXHV� LPSURYHV� DOVR� WKH� SUREOHP

FRQGLWLRQLQJ� VLQFH� WKH� FRQGLWLRQ� QXPEHU� YDOXH

GURSV�IURP�����WR�����

&21&/86,216
7KH� UHVXOWV� RI� WKH� UHVHDUFK� SUHVHQWHG� LQ� WKLV

SDSHU�DUH�YHU\�SURPLVLQJ��$OWKRXJK�WKH�SURSRVHG

FLUFXLW� WKHUPDO� PRGHO� LV� H[WUHPHO\� VLPSOH�� WKH

REWDLQHG� HVWLPDWLRQ� DFFXUDF\� RI� ����� LV� IDLUO\

DFFHSWDEOH� IRU� WKHUPDO� VLPXODWLRQV� LQ� HOHFWURQLF

DSSOLFDWLRQV�

7KH�GLRGH� WHPSHUDWXUH�YDOXHV� LQWURGXFHG� LQWR

WKH�DOJRULWKP�ZHUH�TXLWH�LQDFFXUDWH��WKH�DFFXUDF\

RI� LQIUDUHG� PHDVXUHPHQWV� LV� �.��� WKXV� LW� VKRXOG

EH� H[SHFWHG� WKDW� LQ� WKH� FDVH� RI� UHDO� GLRGH

PHDVXUHPHQWV� WKH� HVWLPDWLRQ� DFFXUDF\� ZRXOG

LPSURYH�� 2EYLRXVO\�� LI� PRUH� RI� WKH� LQIRUPDWLRQ

FRQWDLQHG�LQ�WKH�LQIUDUHG�LPDJH�LV�XVHG��WKH�UHVXOWV

ZLOO� EH�PXFK� EHWWHU�� EXW� WKH�PDLQ� REMHFWLYH� KHUH

ZDV� WR� YHULI\� WKH� SRVVLELOLW\� RI� WHPSHUDWXUH

HVWLPDWLRQ� NQRZLQJ� WHPSHUDWXUH� YDOXHV� RQO\

LQ�WKH�OLPLWHG�QXPEHU�RI�UHPRWH�ORFDWLRQV�

$QRWKHU� LVVXH�� ZKLFK� VKRXOG� EH� FRPPHQWHG

RQ�� LV� WKH� TXHVWLRQ� RI� WKH� XQLIRUPLW\� RI� WKH� KHDW

WUDQVIHU� FRHIILFLHQW� YDOXH�� 2EYLRXVO\�� LWV� ORFDO

YDOXHV�DUH�GLIIHUHQW�EXW� WKH�VROXWLRQ�PHWKRG�GRHV

QRW� DOORZ� WKH� FRHIILFLHQW� YDOXH� WR� YDU\� DFURVV

D�ERXQGDU\�VXUIDFH��VR�VRPH�DYHUDJH�YDOXH�RI�WKH

FRHIILFLHQW�VKRXOG�EH�DVVXPHG�LQ�WKH�VLPXODWLRQV�

+RZHYHU�� WKH� FKDQJH� RI� WKH� FRHIILFLHQW� YDOXH

LQ� WLPH� FRXOG� EH� WDNHQ� LQWR� DFFRXQW� E\� XSGDWLQJ

LWV� YDOXH� ZLWK� HDFK� WLPH� VWHS�� 7KLV� VKRXOG

VLJQLILFDQWO\� LPSURYH� WKH� HVWLPDWLRQ� DFFXUDF\�

HVSHFLDOO\� ZKHQ� WKH� FRHIILFLHQW� YDOXH� FKDQJHV

UDSLGO\�� )RU� H[DPSOH�� LQ� WKH� EHJLQQLQJ� RI� WKH

KHDWLQJ�SURFHVV��WKH�YDOXH�RI�WKH�FRHIILFLHQW�LV�OHVV

WKDQ�WKH�KDOI�RI�WKH�RQH�LQ�WKH�VWHDG\�VWDWH��WKXV�LQ

UHDOLW\�WKH�FLUFXLW�KHDWV�XS�IDVWHU�WKDQ�LW� LV� VKRZQ

LQ�WKH�VLPXODWLRQV�

7KH�VLPXODWLRQV�KDYH�SURYHG�WKDW�WKH�IXQFWLRQ

VSHFLILFDWLRQ� DOJRULWKP� FRXOG� EH� DQ� HIILFLHQW

LQVWUXPHQW� IRU� UHDO�WLPH� HOHFWURQLF� FLUFXLW

WHPSHUDWXUH� HVWLPDWLRQ�� 0RUHRYHU�� WKH� IDFW� WKDW

WKH� DOJRULWKP� FRXOG� EH� V\QWKHVLVHG� DV� D� GLJLWDO

ILOWHU� DQG� IXOO\� LQWHJUDWHG� ZLWK� WKH� PRQLWRUHG

FLUFXLW� LQFUHDVHV� LWV� DWWUDFWLYHQHVV� IRU� HOHFWURQLF

DSSOLFDWLRQV�

$&.12:/('*(0(176
7KLV� ZRUN� LV� SDUWO\� VXSSRUWHG� E\� WKH� JUDQW

RI�3ROLVK�6WDWH�&RPPLWWHH�IRU�6FLHQWLILF�5HVHDUFK

1R���7��%�������� DQG� SDUWO\� E\� WKH� ,QWHUQDO

8QLYHUVLW\�*UDQW�.�����������']�6W�

5()(5(1&(6
��� <��%D\D]LWRJOX��0�1��2]LVLN��(OHPHQWV�RI�KHDW

WUDQVIHU��0F*UDZ�+LOO������

��� 0�1�� 2]LVLN�� +HDW� &RQGXFWLRQ�� -RKQ� :LOH\
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ABSTRACT
Intention of this presentation is to combine

and sum up our research on inverse heat transfer
approach to mobile climate control systems
simulation of thermal processes and predicting
heat transfer, to compact heat exchangers inverse
material design, preliminary design optimization
(shape & dimensions) and capacity calculation. A
common approach to the solution of different
types of problems such as optimization problem
and identification of thermal and geometrical
parameters requires common method that allows
to utilize the Inverse Heat Transfer Problem
(IHTP) tactic to solve all above-mentioned
objectives.  The latter is possible due to a direct
connection between oprimization and parameter
identification problems.  An identification
approach to the solution of both problems makes
possible by means of the well-known method of
Adaptive Iterative Filter (AIF).  This method was
adapted here for the solving numerous inverse
problems that appeared in the area of mobile
Heating, Ventilating, and Air-Conditioning
(HVAC) systems.

NOMENCLATURE
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temperature
time
thermal conductivity of the heat
exchanger material
specific heat at constant pressure
heat  flux  between  outer  evaporator
surface and air
total heat transfer
stochastic state vector
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estimated vector of unknown
parameters
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unbiased, with minimum dispersion,
estimate obtained for the vector of the
parameters which are defined at the j-th
iteration of the k+1-st time step on the
basis of the vector of

measurements 1

~
+kY

r

vector of measurements

estimated vector of “measurements”
obtained at the j-th iteration of k- th
time step
covariance matrix of estimate errors
covariance matrix of measurement
errors
weight matrix
uncorrelated white noise
measurement, sensitivity matrix
 standard deviation of measurement
errors or mean square error of
measurements
operator of relations between estimated
and measured parameters

Subscripts and Superscripts
i, j
k
→
∧

iteration numbers
number of time steps
vector sign
estimation sign

Symbols
IHTP
AIF
HVAC
 TC
SH, SC

Inverse Heat Transfer Problem
Adaptive Iterative Filter
Heating, Ventivating, Air-Conditioning
Thermocouple
Superheat, Subcooling

INTRODUCTION
The estimation of heat transfer as a whole,

identification of specific heat transfer parameters,
and optimization of the geometry of device under
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investigation, all by means of inverse heat transfer
methods, makes it possible to get precise results
of heat transfer boundary conditions because one
identifies them on the basis of temperature
measurements, statistically taking into account the
measurement errors.  The identification is based
on the solution of external, internal, or combined
IHTP, where some uniqueness conditions,
initially unknown, are identified or the
mathematical model of the phenomenon under
study is refined by the limited and rather
approximate data on the temperature field.

MOBILE HVAC SYSTEM
Mobile HVAC system has three fluid streams:

air, coolant, and refrigerant.  Each of these
streams defines heat transfer between its
corresponding heat exchanger and fluid.  The
automotive climate control system includes three
main heat exchangers.  They are the evaporator,
condenser, and heater.  An Air Conditioning
thermal system consists of the evaporator and
condenser with two heat transfer fluid streams,
refrigerant and air.  A heating thermal system
consists of the heater with two heat transfer
streams, as well, coolant and air.  Each of these
two thermal systems affects the human body
comfort level in the summer or wintertime,
correspondingly.  Heat transfer process in the
thermal system is defined as exchange of heat
between the heat receiver (“heat sink”), which is
refrigerant in AC thermal system and air in Heat
thermal system, and heat supplier (“heat source”),
which is air in AC system and coolant in Heat
system.

An evaporator acts as a device to lower the
temperature of ambient or recirculated air that
passes through it.  Physics of the process is
explained in the following manner: the low
temperature and low pressure liquid refrigerant
enters the liquid line of  an evaporator, where it is
boiled (evaporated) by the air coming through.
The evaporator must provide stable refrigerant
flow under every possible operating condition,
and should have sufficient capacity for rapidly
lowering the vehicle cabin temperature.

The necessary conditions for the evaporation
process that follow immediately from the
refrigerant cycle (or reversed Carnot cycle) are
constant pressure and temperature of the
refrigerant on the evaporation line of the pressure-
enthalpy diagram.  The next very important
consideration that greatly affects the evaporators
design is that the refrigerant circuiting must be

designed to make the outer surface temperature as
uniform as possible.

The heating process is less complicated than
evaporation.  The high temperature liquid (usually
coolant from engine cooling system) enter the
heater core, where it is cooled by the air coming
through.  The heater must provide stable coolant
flow under every possible operating condition.
The heater core must be large enough to ensure
that the widnshield is defrosted and cab area is
defogged within the requirements and conditions
defined by the Society of Automotive
Engineering (SAE).  In addition to acceptable
defrost, demist, and defog performance, the heater
must make driver and passengers comfortable in
relatively short period of time after a cold start-up
at temperatures as low as -30°C and even much
lower in some cold areas of the US or world.
The above-mentioned consideration about
uniformity of the surface temperature that greatly
affects the evaporator design has influences on
the selection of heater core that also must be
designed to make the outer surface temperature as
even as possible.

One more point that should be mentioned is
the packaging constraints.  Although, it seems
these constraints are not so important; for the
automotive application the packaging constraints
end up to be the most decisive factors in the
design of the heat exchangers.  Since the
evaporator and heater are a part of HVAC
module, they should be packaged as a part of the
whole unit, where space is very limited, and,
thereby, the selection of the heat exchanger type,
in great part, depends upon this space availability.
The same note has to be made in regard to the
frontal area of the device.  The frontal area should
be separated from the whole apparatus because,
on the one hand, the surface area is a very great
factor in influencing the evaporator and heater
capacity.  That is, the greater this area, the better
the heat exchanger performance.  On the other
hand, the frontal area of the heat exchanger is
limited, again, by the space available for the
device.

Currently all heat transfer calculations and
rough evaluation of heat fluxes (or heat transfer
coefficients) for the purpose of HVAC system
design or performance evaluation are based on
simplified heat (energy) balance equations.  It is
obviously that such rough estimation of the most
important thermal parameters for heat exchangers
performance evaluation, thermal system
simulation, and subsequent climate control
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module design is completely unacceptable.  As a
result of such inaccuracies, the HVAC heat
exchanger’s geometrical parameters, material
selection or required capacity calculation, which
are performed on the basis of those heat transfer
calculations, would be obtained roughly as well.

With all of the preceding, it is no doubt that
the solution of the IHTP for the identification of
boundary conditions and device material’s
thermophysical characteristics is the most
appropriate approach to get precise estimates of
desired thermal parameters.

RECCURENT METHOD FOR
PARAMETERS IDENTIFICATION

It results from Bellman principle of optimality
and theory of dynamic programming, that, in the
problems with discrete time, the process of
determining the control strategy (controlling
sequence) may be reduced to the recurrent
computation of separate members of this
sequence },....,,{}{ 21 kk UUUU

rrrr
= .  Adopting

Bellman principle of optimality, the quality
functional that takes into consideration both the
model fit and control vector behavior and allows
at each time step to search for conditionally-
optimum control, can be written in the following
form:
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The required optimum control strategy
{ }ik zz r=  searches the best estimation in the

sense of the estimate mean square error minimum.
The minimization of the functional (1) for the

identification of the vector Z
k

r supposes that the

search of the estimates of the desired parameters
is carried out with the aid of the AIF.  This
method has been chosen as a mathematical and
numerical instrument for identification of
thermophysical and technological parameters,
solving IHTP and optimum control problems, and
thermal system simulation.  The fundamental
numerical algorithm of AIF that allows direct
calculation of the vector of parameters being
defined on the basis of vector measurements can
be written as follow:
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Here, )(
1

ˆ j
kH +  is the non-stationary artificial matrix

of measurements (sensitivity matrix), which is
calculated, and respectively changed, “corrected”
(is refined) at each current iteration j.  This matrix
incorporates all internal coupling of the thermal
system and takes into account the estimates
obtained.  The )(

1
ˆ j

kH +  matrix terms represent the
partial derivatives of the measured parameters
with respect to the estimated (identified)
parameters.  The calculation of the artificial
measurement matrix by the numerical method
requires the solution of the equations of the
process under study several times at each
iteration, that is solving many direct heat transfer
problems at each iteration.

The mathematical model of the thermal
system formalized in the form of a matrix-vector
equation, relating the system state
vector )(

1
j

kX +

r
(in fact, estimate of this vector at

j-th iteration) to the estimates of vectors of state
and control, and vector of perturbation all at the
previous j-1-st iteration, describes the Markov
process that could be represented by a non-linear
stochastic equation, namely,
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For the solution of the equation (6), the

estimates )1(
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 in the right-hand side of this equation.

The results of solving equation (6) represent the

estimate of the state vector, starting from 1X̂
r

.

The iteration number “i” (equation (4)) is
used as the regularizing (tolerant) factor or the
stop-criterion of the iteration process at each time
step.   This number “i” is selected from the
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condition in terms of the agreement between the
mean square errors (σ) of the measurements and
the value of the general discrepancy, both over k
moments of time, namely,
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This condition seems to be optimal, and it
leads to regularization of the solution, and,
therefore, it does not allow estimates to get into
the tube of an eventual stability loss.

Because of ill-posedness, the solution
obtained by means of algorithm (2) - (5) & (7)
represents an optimization with restriction.  The
optimization is herein taken as the extremalization
of a quality functional, such as the functional

I
k

ˆ
)3(
from expression (1), by estimate (2).

Since the behavior of the thermal system can
be most totally described in terms of probabilistic
characteristic of its parameters, and because the
information obtained from experiment always
bears a random character, the initial model of heat
transfer process under study should be written as
non-linear stochastic equation

         [ ] VZhY kkk
rrrr +=~ ,                       (8)

where
k

V
r

 is the stochastic (white Gaussian

sequence) errors of measurements that include: 1.
direct errors of measurements, 2. any other errors
or accuracy of determination of constraints α

r
k

imposed on the state or control parameters, 3.
accuracy of discreteness of the mathematical
model of process under study, etc.

After set up a problem, the equation (8) can be
obtained from equation (6).  On this basis, in the
real thermal system, the case in point should be
the stochastic approach to the solving of the
identification, simulation, optimization, or control
problems.

APPLICATIONS
General Statements

Each heat exchanger under study (Fig. 1) was
installed on an adapter plate which was mounted
on the test bench (calorimeter).  Each device was
equipped with a number of thermocouples (TC’s)
uniformly mounted on its outer surface to
measure surface metal temperature (Fig. 1).

The test conditions were taken from actual
vehicle HVAC system operation.  For each  flow

rate, a set point has been allowed a long waiting
period (from 0.5 to 1 hour) to make sure of
stabilization of all refrigerant or coolant
parameters.  After the stabilization time, 10
measurements of device surface temperatures for
each test set point have been taken.
Simultaneously, the ambient temperature and
inner surface temperature have been measured
and recorded.
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Fig.1 Schematic of Heat Exchanger Core with Air
Flow, Axes of Coordinates, and Mounted TC’s

Our experiments confirmed the uniformity of
the heat exchanger discharge temperature
(difference between highest and lowest
temperatures measured by uniformly mounted
TC’s have not exceeded 0.75°C).  In regard to the
test conditions in the test bench, the air coming
into the inner surface of the evaporator or heater
attached to the calorimeter also had an even
velocity and temperature distribution profile.
Therefore, due to very stable conditions during
the measurement, the local heat transfer
coefficient or heat flux to or from the outlet side
of the device under study can be represented as a
constant value at constant air flow.  Thus, we can
solve the one-dimensional inverse heat transfer
problem, that can be portrayed by the rod of the
length equal to the coil’s thickness L, with
measurement data using an average of outer
surface measured temperatures (all 16 TC’s in
Fig. 1.), where boundary conditions of 2nd or 3rd

kind were defined, and with the 1st kind of
boundary conditions on the inner surface of the
rod (after all process’ conditions were stabilized,
inner surface temperature was equal to air inlet
temperature that was measured).

One more very important consideration must
be noted at this point.  The proposed inverse heat
exchanger material design or inverse
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optimization approach on the preliminary stage of
the HVAC system development should be as
simple as possible and should require minimum
time at the minimal cost.  That is why the
opportunity to solve the one-dimension problem
is a good chance to simplify the suggested
approach.

One more very important condition that must
be satisfied during the testing process when
measurements are taken is that the
airside/tubeside heat transfer balance should be
within 3%.  During real HVAC system
operations, the airside heat transfer is balanced on
the tubeside of the coil with an equal amount of
heat being either absorbed or given up by the
fluid flowing through the tubes.  So, the
measuring procedure should begin only after
stable air/refrigerant sides heat transfer balance
has been achieved.

Evaporator Material Design
As it was mentioned under the “Mobile

HVAC System” section, the frontal area of the
heat exchanger is limited by the space available
for the device.  Thus the frontal area can not be
varied much to satisfy the requirements for heat
transfer. That is why the only way for HVAC
system to significantly change the heat transfer
between the evaporator and the air coming
through it, is to produce the item from another
material, thereby changing the heat transfer
between the device and the surroundings.  The
material used in evaporator construction is of
utmost importance because it greatly affects the
thermal conductivity to the evaporation heat
transfer process, and, thus the evaporator
capacity.  Estimation of heat transfer for
evaporator produced from alternative prospective
material requires the evaporator’s thermal system
mathematical simulation.  The latter is impossible
without very accurate information about boundary
conditions between the existing evaporator and
air.

Fin plate, four pass evaporator applied to
minivan rear unit was equipped with twelve
surface-mounted TC’s (Fig. 1).  The evaporator’s
dimensions were: Width: M = 0.188 m, Depth: L
= 0.075 m, Height: N = 0.2 m.  The test measured
and calculated conditions are presented in Table 1
where the measured temperatures (last column)
represent the average of twelve thermocouples
and ten data points taken at each air flow rate.

The one-dimensional rod in hand (0.075 m in
length) was divided into 10 sections with a pitch

Table 1. Measured and Calculated Parameters
Air

Flow,
Kg/hr

Refrigerant
Calculated

Parameters,°C

Evaporator
Surfaces

Measured
Temp.,°C

SH SC Inlet Outlet
599 10.5 9.6 30.4 15.67
498 9.4 9.9 30.4 14.48
398 8.3 10.4 30.5 7.94
297 8.3 10.9 30.7 5.29
246 7.8 9.2 30.3 4.5

of 7.5*10-3 m, and the first kind of boundary
conditions at the 11th node.  The outer surface
temperature T os

~  is measured at the first node.
The initial approximation of the desired heat

flux and covariance matrix required for the
solution of IHTP were taken
as 24)0( /,107ˆ mWq ⋅= and P=15000 ÷ 30000,
respectively.  The ambient temperature was
28°C±.1°C.  Initially, the problem was solved
with thermal conductivity k = 221, W/(m⋅K).

In relation to the identification of only
parameter q, constant for each air flow tested, the
main AIF equation (2) and expression for the
calculation of  “measurement” matrix (5) take the
forms:
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In such a manner the scalars T os
~ , H, P, R, & I

are used for the identification of the heat flux q,
that is scalar as well.  Measured temperature

T os
~ , that is changing with air flow rate, is

defined as a normal Gaussian sequence with math

expectation [ ] TTTE ososos where,~ =  is the
exact value of this temperature.

The identified heat flux as a function of coil
outer surface temperature and air mass flow rate
is shown in Fig 2 & 3 (curves with thermal
conductivity k=221).  The obtained results of the
heat flux agree with the real heat transfer process
in the automotive HVAC module.

Numerical simulation of the evaporation
process with the evaporators produced from
different materials leads to the introduction of the
nomograms (Fig. 2 & 3), which serve as an
interconnection  between  the  evaporator material
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 (thermal conductivity), air-device heat transfer,
and the evaporator outer surface temperature (or
air flow rate).  The given in Fig. 2 & 3 curves
have been obtained for all possible ranges of outer
surface temperatures that correspond with the
ranges of air flow (Table 1).
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These nomograms (Fig. 2 & 3) enable us to
make the preliminary inverse selection and
inverse design of evaporator material.  Indeed, if
it is given the minimal possible heat flux for the
the specified size of the evaporator, it is easy to
find the evaporator’s material, which provides the
required heat transfer.  For example, if the
minimal required heat flux is 60,000, W/m2 (Fig.
2), then material for the evaporator should be
chosen with thermal conductivity no less than
300, W/(m*K) for all possible range of surface
temperature.  Another example, for the given
ranges of air flow from 300, Kg/hr to 600, Kg/hr
and required heat fluxes from 70,000, W/m2 to
130,000, W/m2 (Fig. 3) the evaporator’s alloy
should have thermal conductivity no less than
350, W/(m*K).

Additional  area  where  could  be  applied  the

obtained nomograms consists in prediction of the
true temperature of the evaporator’s surface and
air from the unit for the given (or calculated) heat
flux.   This application is very important for
development of new material evaporator and
preliminary evaluation of performance of current
coil design both by heat transfer process
mathematical simulation.

Evaporator Design Optimization
Inverse Dimensions Selection.  The

approach to the solution of the problem of design
optimization of the HVAC system’s evaporator
has been proposed.  The four pass, drawn cup-
type vehicle front unit evaporator was equipped
with sixteen thermocouples (Fig. 1).  The
evaporator’s dimensions were: M = 0.21 m, L =
0.08 m, N = 0.2 m.  The one-dimensional rod
under study (0.08 m in length) was divided into 8
sections with a pitch of 10-2 m, and the first kind
of boundary conditions at the ninth node.  The
outer surface temperature )~(T os is measured at
the first node.

The ambient temperature was 26.1°C.  All
initial measured and calculated system parameters
that required for IHTP solution were the same as
in material design example.

The results of measured and calculated
parameters are presented in Table 2 where the
measured temperatures (last column) represent
the average of sixteen thermocouples and ten data
points taken at each air flow rate.

Table 2. Measured and Calculated Parameters
Air
Vol.

Flow,
V,

M3/s

Air
Mass
Flow,

m,
Kg/hr

Refrigerant
Calculated

Parameters,
°C

Evaporator
Surfaces

Measured
Temperatures,

°C
SH SC Inlet Outlet

0.138 600 11.1 8.3 30.2 11.4
0.115 501 6.7 8.3 30.2 10.0
0.092 398 5.6 9.4 30.1 8.8
0.069 296 6.7 10.6 30.1 7.9
0.046 198 6.7 10.0 30.3 6.5

The heat flux as a function of coil outer
surface temperature was identified by means of a
AIF (algorithm (9), (3), (4), (10), and (7)).

The total heat transfer of the heat exchanger
depends upon the air mass flow coming through
the device and its frontal area.  So, as it was
mentioned above, at the same airflow rate the heat
transfer is defined by the surface area of the
evaporator.  Taking into consideration that the
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evaporator frontal area is equal to
S=0.21*0.2=0.042(m2), one can obtain the total
heat transfer G of the evaporator under study as a
function of either air flow rate or coil outer
surface temperature (Fig. 4, curve “Total Heat
Transfer”).
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Utilizing the same approach and statistically
treating the obtained data, we can introduce the
nomogram, which serves as an interconnection
between the dimensions or, to be more specific,
size of the frontal area of the evaporator, air-
device total heat transfer, and the evaporator outer
surface temperature (Fig. 4).  Actually, our
experiments have confirmed that the relationship
between the surface temperature (or air flow rate),
heat transfer, and discharge surface area bear the
linear character because at the observed range of
temperature change of density of air mass flow is
negligible.  That is why different curves in Fig. 4
can be obtained by multiplication with the surface
ratio. The given curves have been obtained for all
possible ranges of outer surface temperatures that
correspond with the ranges of air flow (Table 2).

This nomogram enables us to choose the
preliminary inverse selection (design
optimization) of evaporator dimensions, which
satisfy the total heat transfer value.  For example,
if total heat transfer requirement is 2,500 Watts,
one draws a horizontal line (Fig. 4) to meet these
requirements for all ranges of surface
temperatures.   Evidently, at this case, the frontal
area of the device should not be less than 120% of
the surface (0.042 m2) of tested evaporator (Fig.
4) to satisfy required heat transfer at all
temperature ranges.

Capacity Calculation.  With the help of
enthalpy analysis and on the basis of total heat
transfer results (Fig. 4), the evaporator capacity
can be calculated.  The amount of heat transfer in
Watts that takes place while the air stream passes

through a cooling coil is the product of the air
mass flow rate and the change of the air heat
content (enthalpy).  During a cooling and
dehumidifying process, the air stream undergoes
changes in both sensible and latent heat contents.
Sensible heat is the heat associated with the
change in the air’s dry bulb temperature. Latent
heat is the amount released by the water vapor as
it condenses.  Sensible and latent heats are usually
combined and expressed as total heat, or enthalpy.
A change in enthalpy includes changes in both
sensible and latent heat, but it does not account
for the small amount of heat in the condensed
water that has left the air stream.  However, since
the total heat transfer between the evaporator
outer surface and ambient air is identified by
means of the IHTP solution on the basis of real
surface temperature measurements, the value G
already includes all three heats: sensible, latent,
and condensed water.  This statement is true,
simply because the measured evaporator surface
temperature is the final product of influence on
the device and, specifically, on its frontal area, all
of the above-mentioned heats.  As for the coil’s
capacity calculations, since one identifies it on the
basis of the results of total heat transfer, this
capacity will include all kinds of heat that affects
the performance of the cooling device.  Based on
evaporator total heat transfer G calculated in the
previous section (Fig. 4) that can be rebuilt as a
function of the air volume V(τ) through the
evaporator, the coil capacity can be estimated by

the equation: .1,)
)(

(
0
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t
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 The

calculated evaporator capacity as a function of
airflow rate presented in Fig. 5 (middle curve).
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Using the same approach and arguments that
have been used to construct graphs in Fig. 4, the
nomogram for different evaporator dimensions
can be created (Fig. 5).  This nomogram serves as
an interconnection between the size of the frontal
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area of the evaporator, coil capacity, and airflow
rate through the device.  Using this nomogram,
one is able to choose the preliminary inverse
selection (design) of evaporator dimensions,
which will satisfy the capacity requirements.  For
example, for a given maximum required capacity
value, we can draw a horizontal line so as to meet
these requirements either for all ranges of airflow,
or to satisfy the maximum required capacity at the
highest airflow.   Evidently, for instance, if the
required maximum evaporator capacity is 5.8 kW
at airflow rate of 0.138m3/s=600kg/hr=296
ft3/min, the frontal area of the device should be
selected not to exceed 80% of the surface (0.042
m2) of tested evaporator to satisfy the required
evaporator performance.

Heater Boundary Conditions Identification
Automotive Heating thermal system mostly

operates in cold weather HVAC modes.  Heat
fluxes or heat transfer coefficients between an
automotive heater core and fluids are supposed to
be identified on the basis of  IHTP solution.  The
airside of the heater core is much more
“controlling” than the coolant side because of the
much lower air side heat transfer coefficient (at
least 1.5 times).  This airside heat transfer
coefficient greatly affects the transfer of heat
from the coolant to the air and therefore its
accurate measurement or identification is of
extreme importance.

The typical two pass aluminum fins and
copper/aluminum tubes heater core (Fig. 1) was
equipped with seven TC’s (instead of 16 as in Fig.
1 for the evaporators testing) that were uniformly
fixed on its exterior surface (Fig. 1).  Two more
thermocouples were located at depth of 2 mm and
8 mm from the middle of the desired heater
surface.  These TC’s were used thereafter for the
identified results verification.

The heat transfer and capacity of the apparatus
are governed by the rates of coolant flow and air
flow.  Another parameter that greatly affects the
heater performance is the inlet air temperature.
Due to these facts, the special test procedure was
designed to obtain measuring (supporting)
parameters for the inverse problem solution.  The
coolant/air flows were held constant, whereas the
inlet air temperature is varied while
measurements were taken.  Then the air/glycol
flows change and experiment was repeated, and
so on.  The fluid flow rates were chosen as
maximum and minimum values of the actual
vehicle HVAC system operation conditions.  In

such a manner the selected rates of heat transfer
streams span all possible range of heat transfer in
the heat exchanger under investigation.  The
following pairs of glycol/air flows were chosen:
Qliq = 1000±5 L/hr & Qair = 400±5 Kg/hr; Qliq =
1000±5 L/hr & Qair = 200±5 Kg/hr; Qliq = 300±5
L/hr & Qair = 400±5 Kg/hr; and Qliq = 300±5 L/hr
& Qair = 200±5 Kg/hr.  The fresh air inlet
temperature range was selected from –150C to
270C.  Glycol inlet temperature was 85±1.50C,
which is consistent with real operation of a
mobile HVAC system.  The heater core
dimensions were: M = 0.233 m, N = 0.155 m, L =
0.043 m.  To solve the one-dimensional problem,
the rod of 0.043 m in length, was divided into 42
sections with a pitch of 10-2 m, and the first kind
boundary conditions at the 42nd node.  The
identification results of heat flux as a function of
air inlet temperature are presented in Fig. 6.

Fig. 6. Heat Flux between Automotive Heater 
Core and Ambient Air
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   Firstly, the obtained boundary conditions can be
used for the simulation of heater thermal system.
Another possible application is the use these
parameters for the calculation of heater capacity
and evaluation of the coolant side  heater core
performance.  The heater capacity and
performance data are applied to the heater core
manufacturing process, as well as for the HVAC
system performance evaluation.  Other
applications are is the same as discussed in
previous sections such as heater material design
and coil design optimization.

 CONCLUDING REMARK
The proposed comprehensive approach and

methodology of AIF is usable and perspective for
the solution of various thermal optimization and
identification problems occurred during mobile
HVAC system design and development.
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ABSTRACT
An inverse analysis based on adjoint formula-

tion of forced convection heat transfer is proposed
to obtain the optimal thermal boundary conditions
for heat transfer characteristics; such as a total heat
transfer rate or a temperature at a specific location.
In the inverse analysis via adjoint formulation, the
heat flow is reversed in both time and space. Thus,
using the numerical solution of the adjoint prob-
lem, we can inversely predict the boundary condi-
tion effects on the heat transfer characteristics. As
a result, we can obtain the optimal thermal bound-
ary conditions in both time and space to control the
heat transfer at any given time. A numerical solu-
tion of the adjoint problem in a two-dimensional
enclosure is presented to illustrate the capability of
the present method.

NOMENCLATURE
L differential operator defined in Eq.(9)

dimensionless length
n unit normal vector to the boundary
Pr Prandtl number
Q dimensionless heating rate
q dimensionless heat flux
T dimensionless temperature
t dimensionless time
u dimensionless velocity vector
x dimensionless space vector
x dimensionless horizontal coordinate
y dimensionless vertical coordinate
δ Dirac’s delta function
Γ boundary
θ dimensionless temperature

defined in Eq.(2)
τ dimensionless specific time

Ω forced convection domain
ξξξξξ dimensionless space vector

at a specific location
Subscripts

b bottom wall
h heating area on wall
in inlet
l left wall
opt optimal heater location
out outlet
r right wall
s steady state
u upper wall
q boundary specified via heat flux
θ boundary specified via temperature

Superscripts
* adjoint operator or adjoint variable
- given or controllable value

INTRODUCTION
Since forced convection heat transfer is one of

the fundamental processes in heat transfer, a large
number of analytical and experimental studies have
been made for various configurations [1, 2, 3]. How-
ever, the thermal boundary conditions employed in
most studies have been limited to an isothermal or
a uniform heat flux condition. Although the uni-
form thermal boundary condition is useful to sim-
plify heat transfer phenomena and sometimes gives
a good approximation for practical conditions, much
of heat transfer problems that we encounter in prac-
tical applications have nonuniform and also un-
steady thermal boundary conditions.

With recent progress in computer hardware and
numerical simulation techniques [4, 5, 6], numeri-
cal prediction of heat transfer characteristics has
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been possible. The numerical methods can be ap-
plied to heat transfer problems under arbitrary
boundary conditions, which cannot be treated by
analytical approaches. Thus, a number of packages
of software for the convection heat transfer have
been developed and are already used as a design
tool. However, each result obtained by a numerical
simulation gives a particular solution under a spe-
cific boundary condition; this means that we need
to solve the problems again if the boundary condi-
tions are modified. From the viewpoint of design
or control, the boundary conditions to achieve the
desired heat transfer characteristics are more sig-
nificant than the heat transfer characteristics under
specific boundary conditions. Thus, the problem
becomes inverse one [7, 8].

From the viewpoint mentioned above, we have
proposed the use of a numerical solution of an ad-
joint problem for a steady-state forced convection
problem, in which the adjoint problem was derived
from the linearity of energy equation. As a result, it
was shown that the mean heat transfer characteris-
tic can be expressed as a function of the surface
temperature or the surface heat flux distribution;
thus, the mean heat transfer characteristic can gen-
erally be evaluated under arbitrary steady thermal
boundary conditions [9, 10].

In this paper, the adjoint approach mentioned
above is extended to the unsteady forced convec-
tion problems under unsteady thermal boundary
conditions. A numerical solution of the adjoint prob-
lem enables us to predict the heat transfer charac-
teristic, such as the total heat transfer rate or the
temperature at a specific location, for arbitrary time
changes of thermal boundary conditions.

GOVERNING EQUATION AND

BOUNDARY CONDITIONS
Consider a forced convection field Ω with

boundary Γ. When the fluid is incompressible and
the properties are not temperature dependent, the
energy equation in forced convection problem can
be written in a dimensionless form as

∂
∂

+ ⋅ ∇ = ∇
T t

t
T t

Pr
T t

x
u x x x

,
, ,

b g b g b g b g1 2

(1)
where x is the space vector, t is the time, T is the
temperature, u is the velocity vector, and Pr is the
Prandtl number. In this study, we assume that the
flow field is steady and is given by a numerical so-

lution; thus the energy equation (1) is a linear differ-
ential equation with a space-dependent coefficient
u(x).

Here, we introduce a temperature θ defined as
the difference from a known initial temperature dis-
tribution, such as

θ x x x, , ,t T t T tb g b g b g≡ − ≥0 0 (2)

Further, we suppose that the boundary Γ consists
of the temperature-specified boundary Γθ and the
heat-flux-specified boundary Γ

q
, namely

Γ Γ Γ= ∪θ q (3)

Under these assumptions, the governing equa-
tion and the boundary conditions adopted in this
study can be summarized as follows:

∂
∂

+ ⋅ ∇ = ∇
θ

θ θ
x

u x x x
,

, ,
t

t
t

Pr
t

b g b g b g b g1 2

 (4)

θ x x,0 0b g = ∈Ω (5)

θ θ θx x x, ,t tb g b g= ∈Γ (6)

q t
Pr n

q t q

x u n

x x

,

,

b g
b g

≡ ∂
∂

− ⋅

= ∈

1 θ θ

Γ (7)

where θ x ,tb g  and q tx,b g  represent the boundary
temperature and the boundary heat flux, both of
which are given or controllable, and n denotes the
outward unit vector normal to the boundary.

INTEGRAL EQUATION
For convenience in representing the integral

equations derived later, we write Eq.(4) as

L θ( , )x t = 0 (8)

where L  is the linear operator defined as

L ≡ ∂
∂

+ ⋅ ∇ − ∇
t Pr

u xb g 1 2
(9)

Let us now consider the weak form of Eq.(8),
which can be expressed as

θ θ
τ

*

Ω
Ωzz =

0
0L d dt (10)

where θ*  is a test function or an adjoint tempera-
ture and τ is the specific time. Applying the diver-
gence theorem to Eq.(10), we obtain the following
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integral equation:

θ θ θ θ

θ θ

τ τ

τ
Ω Γ

Ω

Ω Γ

Ω

zz zz
z

= −

−

0 0

0

L * d dt q q d dt

d

* * *

*

d i

(11)
where q* is the adjoint heat flux defined as

q
Pr n

*
*

= ∂
∂

1 θ
(12)

and L *  is the adjoint operator for L , and L *  pos-
sesses the form as

L *

t Pr
≡ − ∂

∂
− ⋅ ∇ − ∇u xb g 1 2

(13)

In the adjoint operator derived above, the signs of
unsteady and convection terms become negative,
while that of diffusion term is unchanged, when
compared with those in Eq.(9). This means that any
adjoint problems derived later should be solved
backward in time, and the solutions will be reversed
in both time and space.

In order to eliminate the last term in the right-
hand side of Eq.(11), we set the adjoint tempera-
ture at t = τ  as

θ τ* ,x xb g = ∈0 Ω (14)

which can be regarded as an initial condition for
the adjoint problem. In addition, for convenience,
defining an integral operator as

f g f t g t d dt* , ,
Γ Γ

Γτ τ
τ≡ −zz x xb g b g

0

(15)
we arrive at the following integral equation:

θ θ θ θ
τ τ τ

Ω Γ Γ
Ωzz = −

0
L * d dt q q* * ** *

(16)

BOUNDARY INTEGRAL RELATIONSHIPS
Equation (16) suggests that if we can eliminate

the left-hand side integral, which is a time-domain
integral, we can obtain several time-boundary inte-
gral relationships.

First, let us adopt the simplest adjoint problem,
such as

L * tθ* ,xb g = 0 (17)

and let us set the boundary conditions for the ad-

joint problem, such that

θ δ τ θ
* ,x xt tb g b g= − ∈Γ ,

q t q
* ,x xb g = ∈0 Γ (18)

where δ ⋅b g  is Dirac’s delta function. Then we ob-
tain the following boundary integral relationship:

Q q d

q q
q

τ τ

θ θ

θ

θ

τ τ

b g b g≡

= −

z x,

* ** *

Γ
Γ

Γ Γ
(19)

Equation (19) indicates that if we numerically solve
the adjoint equation (17) under the initial and bound-
ary conditions in Eqs.(14) and (18), we can predict
the total heat transfer rate on Γθ  at t = τ  under
arbitrary thermal boundary conditions.

In a similar fashion, if we choose

L * t tθ δ δ τ* ,xb g b g b g= −ξ (20)

under

θ θ
* ,x xtb g = ∈0 Γ ,

q t q
* ,x xb g = ∈0 Γ (21)

we get the following relationship:

θ τ θ θ
τ τ

θ

ξ , * ** *b g = −q q
qΓ Γ (22)

where ξξξξξ is a specific location at which we want to
predict the temperature. Equation (22) implies that
the solution of Eq.(20) under Eq.(21) enables us to
evaluate arbitrary thermal boundary condition ef-
fects on the temperature at ξξξξξ. Moreover, if we re-
place the point impulse in the right-hand side of
Eq.(20) with that in a finite area, we can predict the
mean temperature within the area.

For steady-state problems, the time-dependent
notations can be simplified as follows:

θ θx x,t sb g b g→ ,   q t qsx x,b g b g→ ,

L L→ ≡ ⋅∇ − ∇s Pr
u

1 2
(23)

θ θ* *,x xt sb g b g→ ,  q t qs
* *,x xb g b g→ ,

L L*
s Pr

→ ≡ − ⋅ ∇ − ∇* u
1 2

(24)

δ τ − →tb g 1 ,

    f g f g f g ds s s s* ,
Γ Γ Γ

Γτ → ≡ zb g b g b gx x    (25)
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Then the relationships obtained in Eqs.(19) and (22)
become

Q q d

q q

s s

s s s s
q

≡

= −

z xb g
d i d i

Γ
Γ

Γ Γ

θ

θ

θ θ* *, , (26)

θ θ θ
θ

s s s s sq q
q

ξb g d i d i= −* *, ,
Γ Γ (27)

for steady-state problems.

COMPUTATIONAL IMPLEMENTATION
Let us now consider Eq.(20) as an example for

computational implementation of the adjoint prob-
lem. The implementation is surprisingly easy. Re-
versing the velocity vector and shifting time, such
that

′ = −u u , ′ = −t tτ (28)

we obtain

∂
∂ ′

+ ′ ⋅ ∇ = ∇ + ′θ θ θ δ δ
*

* *

t Pr
tu

1 2 ξb g b g
(29)

This is the same form as an energy equation having
a point source term. Thus, the adjoint problem ob-
tained in Eq.(29) can easily be solved by a standard
heat transfer code based on a finite difference
method or a finite element method.

It should be noted that the solution of the ad-
joint problem described in Eq.(29) converges rap-
idly in time, because it is an impulse response from
a unit impulse at ξξξξξ. In other words, only the early
stage of the solution is significant and the late stage
is negligible. Thus, we can predict θ(ξ,ξ,ξ,ξ,ξ,τ) in Eq.(22)
at arbitrary time τ  by recycling a truncated solu-
tion in the convolution integral with respect to the
time, which is defined in Eq.(15).

In addition, using a relationship

θ θs t dt* * ,x xb g b g= ′ ′
∞z0 (30)

we can also obtain the steady-state solution of the
adjoint problem from the truncated unsteady solu-
tion.

ILLUSTRATIVE EXAMPLE
As an illustrative example of the present method,

we computed an adjoint problem in a two-dimen-
sional enclosure with one inlet and one outlet as
shown in Fig.1. The purpose of this example is to
predict the influence of the inlet temperature and

the left- and bottom-wall heating on the temperature
at ξξξξξ (x = 0.25, y = 0.25), when the temperatures on the
other walls and at the outlet are fixed at zero. This
can be done by solving Eq.(20) under the boundary
conditions (21), which become

θ* ,x xt in u r outb g = ∈ ∪ ∪ ∪0 Γ Γ Γ Γ (31)

q t l b
* ,x xb g = ∈ ∪0 Γ Γ (32)

in this example. Then, using the adjoint solution,
the temperature at ξξξξξ and at τ can be predicted by

θ τ θ θ
τ τ

ξ , * ** *b g = −
∪

q q
l b inΓ Γ Γ

(33)

In the computation, we assumed that the Prandtl
number is 0.71, and employed a standard finite dif-
ference method for both the flow and adjoint tem-
perature computations, in which the computational
domain was nonuniformly divided into 100 grid
points in both horizontal and vertical directions. Al-
though the computational time step was 2 10 7× −  to
make computation stable, the computed results were
saved in files at intervals of 2 10 3× −  until t = 0.6, at
which all the adjoint variables were converged to
almost zero, and were enough to calculate the con-
volution integral in Eq.(33).

We should note that all the results presented be-
low, except some direct simulation results only for
the confirmation, can be obtained from a single nu-
merical solution of the adjoint problem mentioned
above. The computation time for the adjoint prob-
lem is almost equal to that for the conventional
forced convection problem under a specific bound-
ary condition.

Fig.1  Configuration of model forced
convection field in a two-dimensional
enclosure with one inlet and one outlet
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Optimization of Wall Heating
Let us consider the influence of steady inlet tem-

perature and steady wall heating on the tempera-
ture at ξξξξξ. From Eq. (27), the temperature at ξξξξξ under
steady-state condition can be obtained by

θ θ θs s s s sq q
l b in

ξb g d i d i= −
∪

* *, ,
Γ Γ Γ

(34)

where θ s
*  and qs

*  are the adjoint temperature and
adjoint heat flux in steady state, which can be cal-
culated from the truncated unsteady solution of ad-
joint problem using the relationship in Eq.(30). The
steady-state adjoint temperature field obtained by
the time integration is shown in Fig.2(a), and the
adjoint temperature distributions on left and bot-
tom walls and the adjoint heat flux distribution at
inlet are shown in Fig.2(b).

From Fig.2(b), we can predict the most effec-
tive heating location to increase the temperature at
ξξξξξ; in this example, this location is around x = 0.4 on

the bottom wall. Thus, if we install a heater on a
wall in a steady-state situation, the location around
x = 0.4 on the bottom wall is the best to raise the
temperature at ξξξξξ.

To demonstrate the results in Fig.2, let us con-
sider the minimization of wall heating rate to achieve
θ s ξb g = 1  when the inlet temperature is unity within
the inlet (θ in = 1). From Eq.(34), if the heating area
on the wall is Γh  and the heat flux qh  is uniform
on the heating area, the required heating rate Qh

can be obtained as

Q q
q d

d
h h h

s

s

h
in

h

≡ =
+z
z

1 *

*

x

x

b g
b g

Γ

Γ
Γ

Γ
θ (35)

where h  is the heater length. In this optimization
(minimization) problem, we assume h  to be 0.2
and set  the optimal heating area on Γ

opt

( 0 3 05. .≤ ≤x ).
The optimal heating rate, which is determined

by applying Γ
opt

 to Eq.(35), is indicated in Tab.1, in
which the heating rate of uniform heating on both
left and right walls are also indicated. Table 1 sug-
gests that if we install a heater on Γ

opt
, the heating

rate to achieve θ s ξb g = 1  is less than half of that
required in the uniform heating. The results in Tab.1
were confirmed by direct numerical simulations.
The resulting temperature fields are shown in Fig.3;
the agreement of predicted temperatures at ξξξξξ with
the temperatures by the direct simulations can be
seen to be quite good.

Optimal Control of Wall Heating
As an unsteady optimization problem using the

adjoint solution obtained, let us consider an opti-
mal control of a heater installed on a wall. The ob-
jective of this example is to maintain θ ξ ,tb g = 1 by
controlling the heater input Q topt b g , when the inlet
temperature θ in tb g  is changed in time. For simplic-
ity, the heater location is fixed at Γ

opt
 ( 0 3 05. .≤ ≤x )

determined in the above steady-state problem, and
the inlet temperature and the heat flux on the heater
are uniform in space as well as those assumed in
the steady-state problem.0
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Fig.2  Steady-state results obtained from a
unsteady adjoint computation

(a)  adjoint temperature field

(b)  influence of inlet temperature and wall
heating on temperature at ξξξξξ

  Table 1  Predicted optimal heating rate

  Heating Area Γh       Γopt       Γ Γl b∪   None

  Heating Rate Qh      0.845       1.791

  Predicted  θ s ξb g            1.0           1.0    0.751

u = 200

ξ

θ* = 0

θ*
=

0

θ* = 0

q* = 0

q
*

=
0

θ* = 0
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Under these assumptions and using the relation-
ship derived in Eq.(33), the temperature at ξξξξξ can be
expressed as

θ ξ τ θ τ

τ θ

τ

τ

, *

*

b g b g b g
b g b g

= −

− −

z
z

opt opt

in in

t Q t dt

Q t t dt

0

0

(36)

(c)  optimal heating on Γ
opt

( Qh = 0 845. , θ
s
(ξξξξξ) = 0.993)

Fig.3  Direct numerical simulation results
associated with Table 1

where

θ θopt
h

t t d
opt

* * ,b g b g= z1
x

Γ
Γ ,

Q t q t din
in

* * ,b g b g= z x
Γ

Γ (37)

which are indicated in Fig.4. On the basis of the
property of convolution integral in Eq.(36), both
θ opt t* b g  and Q tin

* b g  at small t indicate the immedi-
ate effect, while those at large t indicate the effect
after some delay. Thus, Fig.4 shows that the heat
flow from the heater at Γ

opt
 reaches ξξξξξ more quickly

than that from the inlet.
In accordance with the relationship in Eq.(36)

with the known impulse responses θ opt t* b g  and
Q tin

* b g  shown in Fig.4, the optimal heater input
Q topt b g  must satisfy the following relationship to
maintain θ ξ ,tb g = 1 under arbitrary inlet tempera-
ture variation θ in tb g .

θ τ τ
τ

opt optt Q t dt f* − =z b g b g b g
0

(38)

where f τb g  is the function of τ, such as

f Q t t dtin inτ τ θ
τb g b g b g= + −z1
0

* (39)

which can be calculated if the inlet temperature
variation is specified. Thus, if we can evaluate
Eqs.(38) and (39) by a certain numerical manner,
the optimal heating rate Q topt b g  can be explicitly
obtained at any τ. In this example, we employed a
time discretization method to evaluate the convo-
lution integrals in Eqs.(38) and (39); in time
discretization, stepwise profiles at time intervals of
2 10 3× −  were used to evaluate all functions appear-
ing in the above convolution integrals.

Fig. 4  Impulse responses to ξξξξξ from inlet ( Γin )
and from optimal heating area (Γ

opt
)
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Fig.6  Time change of temperature field with optimal contorol indicated in Fig.5(b)

Fig.5  Optimal control of heating rate on Γ
opt

 to maintan θ ξ ,tb g = 1  against
temperature variation at inlet

As an example, let us assume that the inlet tem-
perature θ in tb g  suddenly drops for a short period
as shown in Fig.5(a) and 5(b), in both of which the
initial temperature fields are the same as that shown
in Fig.3(c); thus, in both cases, the temperatures at
ξξξξξ are initially maintained at unity (θ ξ , ,t tb g = ≤1 0 ).

Figure 5(a) shows that if the heater input is not
controlled, the temperature at ξξξξξ decreases with some
delay after the decrease of the inlet temperature.
On the other hand, with optimally controlled heater

input shown in Fig.5(b), the temperature at ξξξξξ can be
maintained at unity against the decrease of the inlet
temperature.

In order to confirm the present optimal control
result, the corresponding numerical simulation was
carried out using the optimal heater input suggested
in Fig.5(b). The temperature fields obtained are dis-
played in Fig.6 at typical times. As shown in Fig.6,
the temperature at ξξξξξ can satisfactorily be maintained
with optimally controlled heater input.
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CONCLUDING REMARKS
For general evaluation of thermal boundary con-

dition effects on forced convection heat transfer, we
propose a noniterative inverse method based on an
adjoint formulation of the energy equation. The
main features of the present approach can be sum-
marized as follows:

(1) A single adjoint computation enables us to
predict the heat transfer characteristic, such as the
total heat transfer rate or the temperature at a spe-
cific location, for arbitrary time changes of thermal
boundary conditions.

(2) Using the adjoint solution, we can obtain
the optimal thermal boundary conditions both in
time and space to control the heat transfer at any
given time.

(3) The computation time for the adjoint prob-
lem is almost equal to that required in an ordinary
numerical simulation of forced convection problem
under a specific boundary condition.
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ABSTRACT 

Results of research of heat and mass 
transfer processes in the thermal pipes subjected 
to vibrating influence are submitted. The vibra-
tions influence on thermal resistance of thermal 
pipes and the maximal transferred ability was ex-
perimentally investigated. Characters of this in-
fluence determine the incomplete adequacy of the 
existing now representations to a real picture of 
processes of heat and mass transfer in porous sys-
tems. In particular, it is experimentally estab-
lished, that thermal resistance of a thermal pipe 
can both decrease and rise at action of vibration. 
On the basis of experimentally established de-
pendences the new concept of influence of vibra-
tions on processes in thermal pipes is offered. The 
statement of a task of the wide theoretical and ex-
perimental researches of influence of vibrations 
on heat and mass transfer intensity in the porous 
systems is submitted. 
 
INTRODUCTION 

Energy stations and units of modern technol-
ogy are characterized by high values of thermal 
capacity and mechanical pressure. These charac-
teristics have a main influence on a choice of a 
material and a design data of this devices [2, 6]. 
Thus, joint influence of thermal capacity and me-
chanical pressures is shown, as a rule, only in the 
account of change of properties of the construc-
tional materials at the increased temperatures [5]. 
 However, other aspect of such interference ex-
ists: variable pressure causes the vibration of 
power unit elements, that can result in change of 
intensity of heat and mass transfer processes, pro-
ceeding in it under certain conditions. Effect of 
vibrations on the intensity of heat exchange, in-
cluding in heat pipes, was investigated and earlier 

[1,3, 6]. Results of these researches testify to am-
biguity of such influence - vibration of a heat-
transmitting surface or the liquid can both to in-
crease, and to reduce effective factor of heat ex-
change. In represented work preliminary results 
of experimental researches of influence of vibra-
tions on the thermal resistance and the maximal 
transmitted capacity of heat pipes are given. 
 
EXPERIMENTAL RESEARCH 

For realization of experimental researches 
thermal pipes with the gas channel diameter from 
1 up to 20 mm made of a thin-walled metal pipe 
and supplied with matches made from metal grid 
were selected. Working bodies of thermal pipes 
are water, acetone and spirit at the various degree 
of filling.  

The heat pipe was settled on the vibrating 
stand. For a heat supply and heat removal from a 
heat pipe external heat-carriers - the hot and cold 
water, directed in the heating and cooling cham-
bers were used accordingly. In case of need crea-
tions of the big gradients of temperatures as a 
source of heat the electric heater (spiral from 
nichrome on a warmed site of a heat pipe) was 
used. A transport site of a thermal pipe with the 
purpose of reduction of losses of heat was cov-
ered with a thick layer of thermoresistance mate-
rial. 

For an estimation of a thermal condition of a 
pipe on an external surface of transport site were 
welded the thermocouple conductors, allowing to 
measure absolute values and differences of tem-
peratures of a working body in different areas of a 
thermal pipe. Besides to measurement the differ-
ence between the temperature of cold water on an 
input and on an output from cooling chamber was 
subject. For this purpose the differential thermo-
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couple of graduation cuprum - copelium was 
used.  

On a platform of the vibrating stand the 
frame of fastening of a thermal pipe and the ac-
celeration gauge, connected to the specialized 
measuring device was settled. Model calculations 
of ther-mal resistance of a pipe wall (results here 
are not represented) have shown, that at intensity 
of heat transfer at a level up to 100 W/sm2 tem-
perature drop on thickness of a metal wall and a 
match of a thermal pipe does not exceed 0.1K. At 
the same time the error of measurement of a dif-
fere-nce of temperatures of surface heat pipe was 
estimated by us at a level 0.2 K. Therefore, we 
neglected by thermal resistance of pipe wall  and 
believed, that the measured temperature of pipe 
surface  is approximately equal to working body 
vapor temperature of the appropriate zone. 
During experiments the following parameters 
were measured and registered: 

- temperature increase of cool water on a 
cooled site of thermal pipe; 

- temperatures of thermal pipe surface in 
places, where the thermocouples was setting, at 
the established mode of heat exchange;  

- the mass speed of current of cold water 
was determined by measurement of time which 
was necessary for the filling of measuring vol-
ume; 

- vibration acceleration of fastening frame of 
thermal pipe ; 

- the frequency of vibrations, which was 
generated by vibration stand. 

Processing results of measurements was 
consisted in calculation of thermal resistance of a 
heat pipe and the maximal transmitted capacity at 
the various parameters of vibrating influence. 
Further, among the parameters of system describ-
ing its thermal and mechanical condition, were 
searched such, for which influence on the thermal 
resistance and transmitted capacity appeared the 
strongest and unequivocal.  

Definition of parameters of vibrating influ-
ence (amplitude of fluctuation and vibration 
speed) was carried out on known dependences 

 
a = uω,   u = ω A,  ω = 2π f,  
 

where a is vibration acceleration,- u is vibration 
speed; A is amplitude of vibrations; f is fre-
quency; ω  is circular frequency. 

Thermal resistance of a thermal pipe was 
understood as size, return to effective factor of 
heat conductivity 

( )
lW

TT
R

⋅
⋅−

= 21

, 
where R is thermal resistance, K / Wm; T1, T2- are 
temperatures of a surface of warmed and cooled 
sites, accordingly, K; W is transmitted thermal 
capacity, W; l  is length of a transport site of a 
thermal pipe, m. 

Some results of experimental researches are 
submitted on fig. 1-3. 

Fig 1. Dependence of thermal pipe resistance  
on transmitted capacity 

 
On fig. 1 continuous curve shows depend-

ence of thermal resistance of a heat pipe with di-
ameter of 6 mm from the transmitted thermal ca-
pacity, taken at absence of vibrations. Points of 
different color show some characteristic modes of 
a vibrating heat pipe. 

The kind of dependence of thermal resis-
tance from transmitted capacity and character of 
vibrations effect for a pipe with diameter of 6 mm 
is a differs from the results received for heat pipes 
of the greater size very not enough. However for 
more tiny pipes this dependence differs from 
usual (fig. 2). The positive inclination of diagram 
R=f (W) in a range of small values of transmitted 
capacity first of all is evident. Character of effects 
of vibration of different frequencies on this de-
pendence is determined, basically frequency. 
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Fig 2. Dependence of heat pipe resistance on 
transmitted capacity at various frequencies of 

vibration 
 

 

Fig. 3. Dependence of transmitted capacity of 
a heat pipe on temperature of a heated up 
site under various frequency of vibration 

 

Rather low frequencies of vibration (100-
300 Hz) sharply worsen efficiency of a heat pipe 
in the field of small values of transmitted thermal 
capacity. Vibrations of higher frequencies (1500-
3000 Hz), on the contrary, reduce thermal resis-
tance in the field of average and high values of 
transmitted capacity. Obviously, qualitative dis-
tinctions of characteristics of pipes in diameter of 
6 and 4 mm shows strong influence of edge ef-
fects on a stream parameters in the thermal pipes 
of small diameter. 

The characteristic of a heat pipe is submitted 
as dependence of transmitted capacity from tem-
perature of the hot end on fig. 3.. These data 
qualitatively correlate with the data fig. 2: high-
frequency vibrations increase transmitted capacity 
at the fixed temperature gradient, and low-
frequency vibrations, on the contrary, reduce it. 

Thus, vibrations of various frequencies have 
differently an effect for efficiency of heat pipes of 
the different characteristic size. The greatest ef-
fect (positive) is rendered vibrations with fre-
quency about 100 Hz for a thermal pipe with di-
ameter of 6 mm, this characteristic frequency 
grew up to several thousand Hz for a pipe in di-
ameter of 4 mm. 

The given here experiments results have not 
by universal character unfortunately. The strong 
experiment dependence of the characteristic fre-
quencies causing abnormal changes of character-
istics of a thermal pipe was detected not only for 
its characteristic size, but also for orientation of a 
pipe concerning a direction of vibrations, for type 
of wick and for other parameters. The correlation 
analysis on the limited volume of experimental 
data has not allowed determining types of this de-
pendence. For example, in fig.4 dependence of 
thermal resistance of a heat pipe on parameters of 
vibrating influence are given. 

The given in figure 4 data are received for a 
heat pipe with diameter 20 mm. In this series of 
experiments the fluctuations with frequency 0 - 
30 Hz and acceleration of 0-300 m/s2 were used. 
On fig. 4 (a) influence of vibration of various fre-
quencies on the thermal resistance is shown at the 
fixed vibrating acceleration equal of 100 m/s2.  

Apparently from figure, appreciable influence 
on a mode of operation of this heat pipes the vi-
brations of a narrow frequency range - about 17 - 
25 Hz is showing. On fig. 4 (b-d) dependence of 
thermal resistance from the amplitude of fluctua-
tions, vibrating speed and vibrating acceleration 
for this frequency range are represented. 
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Fig. 4. Thermal resistance of a heat pipe as 

function of parameters of vibration 
 

 
Analyzing these data, it is possible to con-

clude, that the independent parameters determin-
ing a mode of operation of a vibrating heat pipe 
are frequency and vibrating acceleration. Thus, 
influence of vibrating acceleration is shown only 
in some narrow enough range of frequencies, 
which is various for pipes of a different design. 
So for a similar heat pipe with diameter 6 mm the 
characteristic frequency has made 110 Hz, and for 
a pipe with diameter 3 mm has made near 800-
1000 Hz. 

Such type of dependence of a mode of opera-
tion of a heat pipe causes the assumption of the 
resonant phenomena. The nature of this resonance 
can not be connected to mechanical fluctuations 
of a design of a thermal pipe or acoustic waves in 
a steam phase of the heat-carrier. A liquid phase 
of the heat-carrier in capillaries is a unique prob-
able element for which such own frequencies can 
be characteristic. 

Dependence of thermal resistance from vibra-
tion acceleration appeared rather complex and 
ambiguous. At small-transmitted capacities the 
increase of vibrating acceleration resulted in 
growth of thermal resistance of a thermal pipe. 
On the contrary, at the big heat demands, 
amplification of vibration reduced thermal 
resistance. Value of thermal resistance generally 
grew with growth of transmitted capacity. But 
depending on a level of thermal capacity and 
frequency of vibration it could be as higher, as 
below thermal resistance, which was registered 
for a not vibrated heat pipe (fig. 2). 
 
DISCUSSION 

The possible mechanism of influence of 
vibrations on heat and mass transfer processes 
with boiling in thermosyphons was presented in 
[1, 3, 4]. In the present report we shall not repeat 
its interpretation, referring the reader to our pub-
lished works. This mechanism is consisted of ac-
count of change of a angle of wetting owing to 
moving of a solid wall relatively of vapour bub-
bles. In a heat pipe unlike thermosyphon as  the 
evaporation occurs not in a bubble, but on a 
surface of a meniscus. Therefore as a first 
approximation this mechanism can be used for an 
estimate of influence of vibrations on heat and 
mass transfer processes in heat pipes. But it is 
necessary to expect, that this mechanism is added 
by change of a surface of a meniscus owing to 
movement of a solid wall along an axis "meniscus 
- fluid". The change of quantity of an evaporating 
fluid from a surface of a meniscus of capillary - 
porous systems under effect of vibrations is de-
termined by the relevant solution of a hydrody-
namic problem. The law of oscillations 
determines the motion of a solid surface 
concerning the interphase boundary of a meniscus 
 

)sin(ωτ⋅= A
 that is            
 

)cos(ωτωω ⋅⋅= Aw  
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The solid rough wall, driving in one side, 
catches a fluid at the expense of watering. The di-
rection of vibration acceleration (in comparison 
with a force direction of gravity) determines value 
of "parachute extraction", which increases at the 
growing of evaporating surface. 

Unwatering a part of a surface takes place at 
motion in the opposite side. Thus, the surface of a 
meniscus is distorted depending on values of vi-
bration acceleration, roughness of a solid wall, 
viscosity of a fluid, angle of wetting, surface ten-
sion, force direction of gravity. Such quality 
mechanism of influence of vibrations follows 
from the analysis of the experimental data on in-
fluence of value of amplitude of vibrations on 
change of efficiency of heat-transfer properties of 
heat pipe. Let's consider a problem in common 
statement. Under the assumption of small thick-
ness by a carried away wall of a fluid at tip sec-
tions of a meniscus, the flow of a fluid is flat and 
covered by equation of the Navier-Stokes: 

 
                τν ∂∂=∂∂ wyw 22                      (1) 
 
where w is speed of displacing layer of liquid, νν  
is kinematical viscosity, ττ is time,  y is coordinate.  

The boundary conditions of a considered 
problem are recorded in such view: 

at τ=0: w=0 for 0≤y≤∞; 
at τ>0: w =wR=Aω cos(ωτ) for y=0; 

at τ>0: w =0 for y=∞. 
The solution of an equation (1) can be found 

through a Laplace transformation by analogy with 
the solution E.Dwyer: 
 
 

[ ]
dt

t

tytAy
yw ∫ −

−−⋅⋅
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πν
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)(4/exp)cos(
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where t is a integration variable. 

Following Cooper M.G. -Lloyd A.J.P. [8], 
we shall enter an allowance about a flow continu-
ity of a mass of a fluid which is flowing past 
through a boundary layer, that is we use a re-
quirement of equality of rates of flow on the right 
and at the left for a plane problem: 
 

     ∫
∞

=
0

0 ),( dyyww τδ ω
                               (3) 

where δ0 is  thickness of carried away layer.  

The left-hand part of this equation represents 
a rate of flow through microlayer, carried away 
by a moving wall, with velocity of a wall wω 
(without slipping). The right part represents a rate 
of liquid which is running in this microlayer. The 
value δ according to the theory of a boundary 
layer is equale displacement thickness of a 
boundary layer ϑw and it determines thickness of 
microlayer at the moment of its formation. Pa-
rameter ϑw  is determined by a velocity profile 
w(y) at flow of a semi-infinite mass of a fluid 
near a wall, runing on with rate wω . Let's rewrite 
(3) as follows 
 

     ∫
∞

=
0

)/1( wdywωδ                                    (4) 

 
Substituting here by solution (2) we obtain a 

ratio 
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Calculation of this integral does not repre-

sent the special difficulties. Final relation (5) is 
resulted in a following view 
 

               dt
t
t
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We enter a new variable z =τ-t. Then (6) is re-
written as follows. 
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This integral can be divides into two parts  
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This integral is reduced to a sine and cosine 
to an Frenel' integral (or can be computed ap-
proximately after expansion trigonometric func-
tion into a series) 

 

( )[ ]212
2

ωτν
ωτ

δ
ω

−≈
w

A  

 
The surface of a meniscus grows, if the liq-

uid film does not come back in an initial position. 
It is possible to find the change of a watering an-
gle and surface of a meniscus from geometrical 
constructions, if value of δ  is known. 

Approximately efficiency of vibration action 
is determined by the formula 
 

)45/2(
cos

1
2

θ
θ

η
−

+=
ñr

A  

 
where rc is a capillary radius; θ  is a watering an-
gle, in degrees. 
 
CONCLUSION 

Thus, in the submitted work on the basis of 
the analysis of experimental data the consistent 
physical model of influence of vibration for work 
of a thermal pipe is offered. At the construction of 
this model the classical inverse problem was 
solved: the most rational explanation of behaviour 
of complex heat and mass transfer systems under 
influence of vibrations was chosen from set of 
possible. 

Unfortunately, the physical model given 
here, does not describe all features of registered 
experimental results. In particular, this model 
does not give the answer to a question about the 
mechanism of influence of transmitted capacity 
on a sign of effect of influence of vibrations. 
Therefore, the calculated model for definition of 
thermal  resistance  and the  maximal  transmitted 

capacity of thermal pipes, which are subject to vi-
bration, can be constructed only after accumula-
tion of a plenty of experimental data. 

As it is visible, the problem of definition of 
influence of vibrations on heat and mass transfer 
of heat pipe and thermosyphon very composite 
and requires the further study both theoretically 
and experimentally. 
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ABSTRACT 

Identification of thermal resistance of the gas-
gap between the ingot and mould during 
continuous casting of metals is the subject of 
presented paper. Analysed parameter estimation 
problem of the steady-state heat conduction 
belongs to the group of inverse problems. 
Presented work shows the possibility of applying 
of the least square adjustment method with a 
priori data for identification of thermal resistance 
as well as the interphase location and the 
temperature field  within the ingot and mould. 
The most important feature of the approach is that 
the unknown thermal resistance of the is obtained 
from the temperature measurements at the number 
of sensor located in the wall of the mould by 
solving appropriate inverse problem. The validity 
of the solution of the inverse problem is checked 
by comparison with the results of direct problem.   
In the present work, a front-tracking method with 
an automatic mesh generation finite element 
technique (so called deforming or moving finite-
elements) for steady-state equation conduction-
advection problems is developed. Such an 
approach makes possible to find exact solid-liquid 
interface location, because it is integral part of the 
solution of the considered problem. Due to the 
strong convective nature of the boundary problem 
(casting velocity, thermal parameters) the special 
up-wind technique is applied. 
 
 
INTRODUCTION 

One of the most important technological 
parameters, which influence the process of 
solidification of the metal in the ingot, is thermal 
resistance of the gap between the mould and 
ingot. The inverse technique is proposed by the 
authors for identification of thermal resistance on 
the base of temperature measurements within the 

wall of the mould. The process of continuous 
casting is analysed.  
Numbers of theoretical models and experiments 
have been evaluated to describe thermal 
resistance in processes of continuous casting [7], 
[5]. Those models should however deal with a 
very complex phenomenon’s taking place within 
the ingot. We can mention here phase change, 
solidification shrinkage, thermal contraction etc. 
It makes the problem very difficult to be 
described and solved. Experiments, for example 
measurements of temperature in the cast and in 
the mould cannot be directly used to describe 
thermal resistance but can be used for validation 
of the mathematical models. 

Thermal resistance between the cast and mould 
can be identified using inverse technique. 
Presented work shows the possibility of applying 
of the least squares adjustment method within a 
priori data for identification of thermal 
resistance. To apply the method the mathematical 
model of the process has to be evaluated. 
Mathematical models of the physical processes 
usually involve several input data, which directly 
or indirectly come from the measurements. In the 
situation when mathematical models of the 
process is evaluated and also certain quantities, 
which appear in the model, are known the surplus 
of information arises. That surplus of information 
can be used for evaluating the most likelihood 
values of unknown quantities and measurements. 
It is due to the fact that either mathematical model 
or measurements are not absolutely exact. 
Inaccuracies of the mathematical models usually 
result from the incomplete knowledge about the 
process. Very often mathematical difficulties 
force to simplify the model. Inaccuracies of 
measurements generally result from the accuracy 
of measurement. Surplus of information gives the 
opportunity to improve accuracy of unknown 
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quantities and parameters comparing to the 
situation when minimum number of information 
concerning analysed process is available. The 
problem of calculation the most likelihood 
estimates of the sough for quantities (in the sense 
of given criterion) is often called co-ordination 
technique. The most effective and widely used co-
ordination technique is the least square 
adjustment method LSAM that belongs to the 
group statistically optimal estimation methods. 
The least square adjustment technique refers to 
two groups of quantities: unknown (which are not 
measured) and measured. These quantities are 
interrelated by the equations of mathematical 
model (so called constraint equations). In contrary 
to the classical algebraic problems all the 
quantities are here treated as stochastic. Essential 
aim of calculations is to evaluate the most 
likelihood estimates of unknown and measured 
quantities.  

 
Fig.1 Geometry of the problem 

 In this paper problem of identification of 
thermal resistance between the mould and ingot is 
solved using least squares approach with a priori 
data. 

Metal is moving at the constant velocity wz 
through a region Ω. The region Ω is defined as a 
control volume, where Ω=ΩL»ΩS and ΩL…ΩS=0. 
Where ΩL - liquid domain, ΩS - solid domain, WC 
- mould domain, ΩG - gas gap between the mould 
and ingot. 

 
FORMULATION OF THE PROBLEM 

First stage of formulation of boundary 
problem is to evaluate mathematical model of 
transient temperature field within the ingot and 
mould.  

   Solidification of metal takes place within the 
region Ω. The governing equation in the Eulerian 
frame (the co-ordinate system is attached to the 
mould) without heat sources has a form [1],[4]: The Finite Element Model was adopted for 

solving analysed Stefan problem under following 
assumptions: 
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zipiiΩ(r,z)L,S,C,G ii  (1) 1. the cylindrical geometry of the calculation 
domain (ingot and mould) is considered,  

2. the problem is steady state in the co-ordinate 
system attached to the mould, 

where: wzL=wzS=wz ∧ wzC=wzG=0, r - radial co-
ordinate, z - axial co-ordinate, T(r, z)  - is a 
temperature at spatial point (r, z), ρi - density, cpi- 
specific heat, λi- heat conductivity, i = L, S or C 
indicate the solid or liquid phases, respectively, 
wz- is the casting velocity. 

3. the temperature distribution in the ingot and 
mould are axially symmetrical, 

4. the phase change occurs at a constant 
temperature, 

5. the convection in liquid metal is neglected, 
6. the velocity of the ingot is constant, 
7. the material parameters, like thermal 

conductivity or heat capacity are temperature 
independent but different in liquid and solid 
phases, 

The temperature of the solid/liquid interface, is 
known: 
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 (2) 8. the heat is transferred through the gap 
between the ingot and mould. 

where Tm  is the solidification temperature and 
∑Ωbf indicates the solid/liquid interface. In the 
Lagrangian co-ordinate system (the co-ordinate 
system is attached to the ingot), the energy 

The geometry of the problem is shown in Fig.1.  
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balance at the solid/liquid interface can be 
expressed as [1], [4](Stefan condition):  
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 (3) After integrating over an element boundary and 
without loosing the generality we will take under 
consideration only the boundary over a single 
element because ρSÿχÿwz is a constant value: 
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where χ - is the latent heat of fusion, wr  - is the 
velocity vector of the solid/liquid interface in the 
Lagrangian frame,  - is a unitary vector.  nr  
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   The set of the most important external boundary 
have a form: 
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Using Galerkin method with quadratic shape 
function we can calculate the heat fluxes on the 
interphase elements. After transformations of the 
integrals (6) we obtain:  where T0 - specified temperature at the upper 

level of the mould (casting temperature of the 
liquid metal), Tk - specified final temperature of 
the solidified (and cooled) metal, T∞ - ambient 
temperature, aI - heat transfer coefficient ( i=1,2), 

→→→

=== ijHCzaiHCracHz ,, .  Indexes S, L 

and C refer to the solid phase, liquid phase and 
mould domain respectively. 
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 FINITE ELEMENT FORMULATION 
To solve the boundary Stefan probl

,0

em the 
finite element approach has been used. Using the 
Galerkin method [3], [6] we obtain the algebraic 
system of linear equations of the following form 
  (4) QTA =−⋅ where A1, A2, B1, B2, C1, C2

∆

, D1, D2 are the 
coefficients. where A is stiffness matrix, T is a one-column 

matrix of unknown temperatures , and Q is a one-
column matrix of boundary conditions. 

The left side of equation (7) we can define as: 

To verify the solid/liquid interface position, we 
have to check the energy balance at the 
solid/liquid interface (3). In a steady state 
condition and in the fixed frame (Eulerian) the 
solid/liquid interface is fixed but the body is 
moving at the constant velocity wz. Notice that in 
the Eulerian frame material movement in the 
tangential direction doesn't affect the position of 
the interface. So we can rewrite the energy 
balance (3) to the following form: 

  (11) ,: ee
L

e
S

e dSqqq −−=

and it is the discrepancy of energy balance on the 
liquid/solid interphase segment. During 
calculation the equation (7) has to be satisfied 
with respect to given accuracy ε:  
 .ε<−− ee

L
e
S dSqq  (12) 

Iteration procedure starts from the arbitrary 
position of the solid/liquid interface defined by 
the user. Then we obtain the temperature field by 
solving the linear system of algebraic equations 
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obtained form (1) using Galerkin method with the 
isothermal boundary condition on the solid/liquid 
interface. To check if the position of the 
interphase is in the right place we search the 
discrepancy (12) for each finite element located 
on the interphase. When the condition (12) is not 
fulfilled then we have to update the interface 
position. When ∆qe > 0 then we move the 
interface location in the positive direction, 
otherwise in negative direction (Fig. 2). 

where 
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The next difficulty, which should be overcome, is 
the convective nature of the analysed problem. 
When applying the standard Galerkin method, the 
matrix associated with the convective term is 
strongly non-symmetric, and we can obtain non-
realistic results of calculations. In practice, 
solutions are often corrupted by spurious node-to-
node oscillations. Oscillations are more likely to 
appear in convection-dominated cases (high 
Peclet numbers) when a downstream boundary 
conditions forces rapid change in the solution. It 
is known that for a Peclet number greater then 1: 
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solution has strong oscillations. To remedy for 
this problem is to refine the mesh in such a way 
that the element Peclet number is less then 1. In a 
finite element framework, up winded convective 
terms can be developed in several different ways. 
The initial upwind finite element formulation 
employs modified weighting functions to achieve 
the upwind effect. In essence, the element 
upstream of a node is weighted more heavily than 
the convective downstream of a node. We use the 
method proposed in [2], based on modification of 
the weighting function. In the case when only 
movement of the ingot is considered in the axial 
direction z with the constant velocity wz, we select  
the upwind parameters as follows: 

Fig. 2 Analysis of the interface location update 

 
To update the position of the interphase we 
assume, that the temperature distribution close to 
the interphase location can be interpolate by a 
priori given function Te(z) 

e

e.g. polynomial of the 
shape: 
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       Numerous physical problems (including 
numerical representation of boundary problems of 
heat conduction) can be described in the form of 
linear matrix constraint equation: 

Hence, the inequality of the heat flux on the 
boundary interphase we be expressed as follows: 
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where dEe is the interface update on each element 
from the boundary interface. The value of dEe is 
calculated from relationship: 

where A are rectangular matrices of coefficients 
(corresponding to the equation (4)), x= [T,λ] 
denotes vector of nodal temperatures T (few of 
them are known from measurements) and 
unknown thermal conductivity of the gap λ, c is 
the vector of boundary conditions. 
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Solution of equation (20) can be derived applying 
least square approach. Equation (20) is satisfied 
by the exact values of quantities x. When we put 
into equation (20) results of x0 measurements and 
initially estimated values of unknowns we get 

 , (21)wcAx0 =+  

where w 

x

denotes the vector of discrepancies. The 
aim of the least square adjustment technique is to 
find such corrections δ~  which satisfy constraint 
equation 
 ( ) ,~ 0cxδxA 0 =++  (22) 
and minimise quadratic form 
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where V is the covariance matrix of the results of 
measurements. 

   As the result of solution of an optimisation 
problem (23) and (22) one obtains following 
relationship describing estimates of unknown 
quantities  and covariance matrix of G ?: λ~λ~

 ( ) ( CxAFBBFBλδλλ 01T11T0 +−=+= −−−~~  (24) ),
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   Relationships (24) and (25) are widely used for 
co-ordination of the wide range of problems 
including the thermal processes and inverse heat 
conduction problems [9]. On the other hand, 
standard least squares adjustment technique often 
leads to the wrong results when solving inverse 
boundary heat conduction problems [10]. 
Accuracy of estimation can be improved by the 
modification of optimisation procedure by adding 
stabilizing term. This concept is realized by least 
squares adjustment method with a priori data. 
    When analysing physical or technical problems 
it is usually possible to estimate values of sough 
for unknown quantities λ0 and covariance matrix 
Gλ0 of initial estimate of unknown quantities. This 
a priori information lies at the base of 
formulation of enhanced least squares method. 
This concept has been successfully used to 
stabilize solution of inverse boundary heat 
conduction problems [8]. 
Basic matrix equation describing a 
problem (constraint equation) has a form 
(20) and include unknown quantities λ 

and results of measurement T. Similarly 
to the standard least squares approach we 
have to find such a corrections Tδ~ and  
which satisfy constraint equation (22) and 
minimise certain quadratic form. In the 
case of proposed approach that quadratic 

measured quantities: 

λδ~

form involves either unknown or 
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where V is the covariance matrix of 
measurements and Gλ0 is the covariance matrix of 
initially estimated unknowns λ0. 

For LSAM with a priori data matrix Gλ0
-1 

decrease sensitivity of the algorithm on 
inaccuracies of input data and improve accuracy 
of the method. 
 
IDENTIFICATION OF THERMAL 
RESISTANCE BETWEEN THE CAST AND 
MOULD 

Presented method was used for identification of 
thermal resistance between copper ingot and steel 
mould. Thermal resistance in the gap between the 
ingot and mould is strongly dependent from the 
heat conductivity in the gas-gap. This relation can 
be expressed in the form: 

 ,
i

GH
iR

λ
=  (27) 

where λi - heat conductivity, HG- thickness of the 
gas-gap, Ri- thermal resistance of the gas-gap. 
Since the thickness of the gas-gap HG is assumed 
at the mathematical model to be constant, then in 
the identification analysis will be considered the 
virtual heat conduction coefficient λi on the place 
of thermal resistance Ri calculated from (27).  

  An ingot has 1 m length and 0.1 m of radius. 
The mould (made from steel) has length 0,22 m 
and its wall is of 0,025 m of thickness. Thermo- 
physical properties of metal are: thermal 
conductivity λL = 226 W/mK, λS = 394 W/mK, 
specific heat cL = 475 J/kgK, cS = 380 J/kgK, 
density ρL = 8300 kg/m³, ρS = 8930 kg/m³, the 
temperature of phase change Tm = 1083 °C, latent 
heat of solidification χ = 209340 J/kg and the 
velocity of the ingot wz = 0,002 m/s. Due to the 
axial symmetry, only half of the domain is 
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discretized. Along the surface ag and cd first kind 
boundary condition were assumed, i.e. T0 = 1100 
°C and Tk = 20 °C. On the surface ed, ek, kj, ij 
boundary condition of the third kind is assumed, 
where α1 = 9000 W/m²K, α2 = 1500 W/m²K and 
T∞ = 20 °C. Relative accuracy for convergence of 
calculations calculation is selected as 0.1 %. The 
values of temperature measurements for 
identification of thermal resistance of the gas-gap 
where selected from the solution of direct 
problem. The size of the gas-gap in the direct 
problem was calculated on the analysis of the 
simplified analysis of thermal shrinkage of the 
solidified part of ingot. 
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Sample temperature distribution in the ingot 
and mould is shown in the Fig. 3 and 4.  
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Fig. 5 Phase change location 
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Fig. 3 Temperature distribution in ingot 
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Fig. 4 Temperature distribution in mould 

Fig. 6 Thermal resistance identification 
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Tab. 1 Results of identification  The results of the identification are shown in the 
Fig. 6 and absolute error of identification is given 
in the Tab. 1. It can be seen that differences 
between exact and identified values are relatively 
low and appears just at the beginning of the gas-
gap. The interface location is presented in the Fig. 
5. It is easy to see that for the analysed 
measurement discrepancy δ the difference 
between exact solution and results of 
identification is not observed. 

 

Measurements disturbance 

δ=1 K δ=5 K 

Thermal 
conductivity 

(exact) 

 
W/mK 

Identified 
 

Identification 
relative error, 

Identified 
λ  

Identification 
relative error,

 % 
5264,39 9954,29 50,01 4802,42 65,90

291,92 405,21 50,29 11626,96 25,86

32,83 32,57 5,44 30,35 26,49

6,92 6,92 1,95 6,83 9,94

2,19 2,22 1,48 2,32 7,20

0,81 0,80 1,76 0,76 9,29

0,33 0,34 2,23 0,36 10,62

0,15 0,15 1,92 0,15 10,02

 % iiλ

iλ

   
CONCLUSIONS 
      Inverse problem was formulated and 
algorithm of least square adjustment method with 
a priori data was used for identification of thermal 
resistance between ingot and mould during 
permanent casting of metals. Calculation and 
numerical tests have proved that proposed method 
can be effectively used for solving inverse 
boundary heat conduction Stefan problem. 
Important future of least squares adjustment 
method is the possibility of direct statistical 
estimation of results. It is important advantage 
because in practice there is usually no possibility 
to verify accuracy of calculations. Result of the 
present inverse analysis can be used for 
optimisation of the process of casting metals.   

 
On the basis of the sensitive coefficient analysis 
were observed that the major influence on the 
identified values have the temperature 
measurements in the mould. Measurements points 
where located at the nodes of the finite element 
mesh in mould.  
Since the first four elements in the mould have 
direct contact with the liquid metal it have been 
assumed that the thermal resistance of this 
elements is equal to zero (therefore corresponding 
thermal conductivity tends to infinity on this 
elements). As size of these elements is close to 
10-1

δ

0 m so this assumption require physical aspect 
of the phenomena. 
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 In this paper the measurement results were 

simulated on the basis of the solution of direct 
problem (“exact” solution) corresponding to the 
inverse problem. Inaccuracy of measurements 
was simulated by adding to the exact solution the 
random disturbance:  
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ABSTRACT 
In fluid distribution the problem of monitoring 

the network status in order to identify abnormal 
conditions and locate leakages arises. In the paper 
an inverse approach resorting to a multi-layer 
perceptron back-propagation Artificial Neural 
Network (ANN) is proposed in order to locate 
leakages based on pressure and flow rate 
information. Strategies for generating input data 
and for correlating by ANN such data to the fluid 
distribution system status are presented. A two-
level architecture is selected, composed by a main 
ANN at the first level and several branch-specific 
second-level ANNs in cascade to the main one. 
The branch in which the leakage occurs is 
identified resorting to the ANN operating at the 
first level while the specific second-level ANN is 
activated to accurately estimate the magnitude 
and location of the leakage in the selected branch. 

 
NOMENCLATURE 
D Diameter (m) Subscripts 
f Friction factor i i-th node 
k Loss coefficient (kg/m7) j j-th node 
L Length F Fanning 
p Pressure Superscripts 
q Volumetric flow rate in Inlet 
Re Reynolds number ex Outlet 
v Velocity Symbols 
  ε Roughness 
  ∆p Pressure loss (Pa) 
  ρ Density (kg/m3) 
 
INTRODUCTION 

Piping networks have found wide diffusion in 
industrial and civil applications where fluids have 
to be distributed to several consumers or 
processes. In order to carry out such task in an 
effective and safe manner the occurrence of 
unauthorized withdrawal, spills and leakages 
should be identified and promptly eliminated. 
Therefore, the problem of monitoring the network 
status in order to identify abnormal conditions 
and locate leakages arises. In the literature, 
despite the significant efforts made, an effective 

solution to the networks monitoring problem has 
not been accomplished and it still presents a 
significant challenge. 

Current technologies for fault detection and 
identification (FDI) are based on methods which 
are both dependent or not-dependent on process 
parameters. Not-dependent technologies include: 
• injection of tracing substances in the fluid 

stream; 
• analysis of acoustic emissions from leaks; 
• pressure waves transmission; 
• visual inspection; 
• detection of leak-generated temperature 

variations resorting to infrared thermography; 
• identification of radar or radio frequencies 

emitted from transmitters located inside the 
pipes and permeating outside through pipe 
cracks. 

At the moment, however, such classes of 
techniques are expensive, often intrusive and 
perturbating the whole fluid network, or difficult 
to monitor by telemetry. 

Methods dependent on process parameters, 
instead, are based on establishing mass and 
energy balances at different network nodes using 
measured values of flow rates (q) and pressure 
levels (p). However, it is well known that 
computation of the network boundary conditions 
starting from measured q and p values at the 
moment presents mathematical difficulties that 
are far from being solved. On the contrary 
evaluation of p and q at each node of the network 
is straightforward when boundary conditions are 
known. Therefore the FDI in piping networks 
based on process parameters results in a classical 
inverse engineering problem, that is determination 
of causes (leaks) starting from knowledge of their 
effects (p-q maps) [1].  

Control of fluid distribution networks requires 
monitoring of the current state of the system. 
Although telemetry systems represent a promising 
solution for evaluating state variables in the 
network (pressure and flowrates), their 
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widespread diffusion is impaired by the high 
costs. State estimation techniques are therefore 
utilized to ascertain system status from a limited 
number of information. However, both metering 
and telemetry systems are subject to errors having 
a negative impact on the accuracy of the state 
estimation calculation. Results may be therefore 
very inaccurate when compared to the actual 
system state. Moreover, the analytical techniques 
adopted are rather complex and computationally 
intensive. Therefore, a robust, efficient and low 
time consuming means to evaluate the entire fluid 
network status starting from a limited amount of 
state knowledge is required. 

In this paper at first a recursive mathematical 
model of a generic network has been presented, 
enabling the direct computation of the system 
status in any condition. The inverse problem is 
successively stated discussing difficulties 
involved in its analytical solution, also presenting 
the available techniques to correlate state 
variables during perturbated operations of the 
network. A solution approach based on the 
utilization of an ANN is then presented 
examining possible ANN architectures and 
selecting a multi-layer perceptron back-
propagation network. The strategy for coding of 
input and output data with reference to the real 
system and the utilization of this method are 
discussed. A two-level architecture is selected 
composed by a main ANN at the first level and 
several branch-specific second-level ANN in 
cascade to the main one. The branch in which the 
leakage occurs is identified resorting to the global 
ANN operating at the first level while the specific 
second-level ANN is activated to precisely 
estimate the magnitude and location of the 
leakage in the selected branch. 

 
LITERATURE REVIEW 

A considerable amount of research effort has 
focused on the identification of leaks in fluid 
distribution networks addressing either the 
compressible or incompressible fluid flow cases. 
As already mentioned available techniques rely 
either on process-dependent or process-
independent variables. Silk and Carter [2] 
presented an in depth review of available 
techniques related to process-independent 
methods. As far as process-dependent methods 
are concerned, the most common is the line 
volume balance technique utilizing data supplied 
from flow rate meters located at the extremity of 
each branch. Usually such approaches prevent the 

exact pinpointing of the leak location. Ellul [3] 
proposed a method in which measured pressure 
and flow rate data are compared with those 
computed on the basis of a mathematical model of 
the system and the leak amount is made 
proportional to the obtained difference. Leaks 
lower than 5% may be discovered with processing 
times in the order of minutes. Stouffs and Giot [4] 
present methods based on mass balances able to 
treat transient states of compressible fluids 
highlighting how the practical detectable limit is 
2-3% for compressible fluids. Billman and 
Isermann [5] propose an adaptive non-linear 
observation method of the pipeline dynamic 
behaviour, along with a special correlation 
technique, based on the measurement of pressure 
and flow rate data at the inlet and exit of a branch. 
Leaks around 2% for liquids and 10% for gases 
have been detected. Siebert [6] developed a 
method based on the statistical analysis (cross-
correlation) of signals sampled over a time 
interval of 1.7 s, being able to locate leaks in the 
order of 0.2% for liquids, while for gases the 
value of 5% was reached. Also Zhang [7] adopted 
statistical signal analysis techniques to address the 
problem, detecting 1% leaks on a 37 km pipeline. 
Whang et al. [8] developed a method able to 
identify leaks of 0.5% in 120 m long water pipes 
in negligible time delay utilizing an 
autoregressive modeling approach requiring only 
4 pressure measurements with a sampling time of 
20 ms. Hamande et al. [9] tested a leak detection 
system on an actual ethylene pipeline operated 
since 1989. The system relied on 21 pressure 
measurement stations and 2 flowrate meters 
associated with a mathematical model of the 
pipeline, enabling detection of 7% leaks in a 60 
minutes time span. Parry et al. [10] describe 
another system adopted for LPG pipelines 
interfaced with a measurement instrumentation 
enabling detection of 2% leaks over times ranging 
from 46 minutes to 9 hours depending on the 
distance of the leak from the nearest measuring 
station. Another leak detection system for 
pipelines was developed by using artificial neural 
networks for leak sizing and location [11]. This 
system can detect and locate leaks down to 1% of 
flow rate in pipelines in about 100 s with a 
probability of success that is greater than 50% for 
the smallest leak. In the paper specific signal 
processing techniques able to reject spurious 
alarms due to compressibility effects subsequent 
to operational transients are developed. However, 
this method too involves leaks identification in 
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single–branch pipelines only. Generally speaking, 
besides such approaches, usually aimed at long 
pipelines or single branches of a network, in case 
of inverse problem solution, calculation of all 
pressures and flow rates in a fluid distribution 
system may be accomplished by formulating and 
solving the mass and/or energy conservation 
equations. Such balances have to be consistent 
with the measurements carried out in the system 
provided that there are as many independent 
equations as there are variables that are to be 
calculated [12]. However, neglecting numerical 
difficulties, the analytical solution to such 
equations may become impossible if 
measurements are corrupted by noise or are 
unavailable as often happens in practice. State 
estimation techniques may overcome this problem 
[13] but introducing a much higher computational 
effort, even if utilization of sparsity exploiting 
techniques and numerically stable factorisation 
besides parallel and distributed computation 
[13,14,15,16] may leviate this difficulty. In recent 
times artificial intelligence techniques, in 
particular Neural Networks, have been proposed 
to analyze fluid distribution networks in order to 
exploit their intrinsically parallel structure, 
leading to high computational efficiency, but also 
their robustness as global state estimators. The 
main utilization of ANNs has been by formulating 
the state estimation problem in terms of analog 
neural networks and utilize such networks to 
solve the systems of linear equations involved 
[17,18,19,20]. Since a water distribution system is 
described by an overdetermined set of nonlinear 
equations, Gabrys and Barjela [18,19] utilized 
ANNs to solve the nonlinear set of differential 
equations resulting from the application of the 
Newton Raphson iterative method to the solution 
of the linearised water network equations. An 
optimization problem may be then defined which 
enables to minimize the discrepancies between 
the actual measurements and the values calculated 
from the mathematical model of the network 
itself. To account for uncertainties in 
measurements some authors [14,18,19,21,22,23] 
also developed a methodology called Confidence 
Limit Analysis which allows for constructing 
mathematical models of the system, taking into 
account effects of measurement uncertainty on 
accuracy of the derived state estimates. The 
problem of leak detection has been mainly faced 
resorting to analytical techniques based on the 
analysis of residuals (i.e. errors on the mass 
balances at the nodes) and the paths linking them 

[13,24,25]. As far as neural networks are 
concerned, recently Barjela and Gabrys [20] 
proposed an approach based on pattern 
recognition, applied to the calculated state 
estimates and residuals with their corresponding 
confidence limits, carried out by a specifically 
developed General Fuzzy Min-Max (GFMM) 
neural network for clustering and classification. 
The adopted neuro-fuzzy recognition approach to 
leak detection is based on the examination of 
patterns of state estimates and has been 
successfully applied to a small but realistic water 
distribution network and tested using data 
covering a 24-h period of operation [23]. In this 
paper, instead, a simplified approach to leak 
detection and location is suggested using an ANN 
as a global classifier, among the possible 
pressure/flow rate patterns, in order to directly 
correlate state variables values to network states. 

 
THE PROPOSED METHODOLOGY 

The methodology is based on two main phases 
(figure 1): 
• evaluation of pressure/flow rate conditions 

(effects) by simulation, imposing the piping 
network’s boundary conditions (causes); 

• correlation of effects with causes by Neural 
Networks. 
 

Data correlation 
by ANN 

Network
status 

Piping network 
simulation 

Boundary 
conditionsP/Q

values

Boundary 
conditions 

Figure 1. Inverse approach for piping fault 
detection and identification. 

 
In order to carry out the training step of the 

ANN the direct problem is solved at first resorting 
to the mathematical model of the network. In 
particular, variables at the nodes are computed in 
case of either normal operation and when 
artificial leakages are introduced, enabling to 
determine a set of patterns characterizing the 
system status in several conditions of normal or 
abnormal operation. Normal operating data could 
be in fact obtained on the field but only for 
existing networks, moreover this is a time 
consuming task. Furthermore no data are readily 
available for atypical events (i.e. leakages) or 
operation in non standard situations while it is not 
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feasible to obtain such data from physical 
simulation on the real network. Therefore, a 
mathematical model of the network has been 
utilized to predict the status of the network 
consequent to normal and abnormal flow 
situations and generate learning data sets. 
Successively the ANN is trained on these data 
sets representing the system status (i.e. pressures 
and flow rates) in different operating conditions 
either with or without leakages. In this way a 
robust correlation between leak effects (p-q maps) 
and location-amount of leaks (causes) may be 
defined. However, the ANN should be able to 
reject the noise represented by the inevitable 
measurement errors affecting the sensors. In order 
to increase robustness of the ANN, the input data 
sets may be therefore altered respect the accurate 
values exactly representing the system status by 
superimposing random deviation to the pressure 
drop and the leak flow readings, comprised in the 
instruments uncertainty range. During the running 
phase the ANN is fed with actual measurements 
of pressure and flow rate from a limited number 
of nodes and performs clustering and 
classification tasks giving in output the location 
(branch) and magnitude of the leak. 

In more detail the following main steps have 
to be performed in the proposed methodology: 

1. development of a mathematical model of the 
network for p and q evaluation starting from 
the actual boundary conditions; 

2. simulation of leakages occurring and 
computation of resulting p and q values in the 
network (data generation); 

3. correlations of leaks patterns to p and q data 
resorting to ANN. 

4. integration of the ANN system in the piping 
network in order to carry out real-time and 
on-line monitoring and leak identification 
tasks based on actual fluid network measured 
operational status. 

The entire process is schematized in figure 2. 

Implementation of the ANN-based pattern 
classification system in particular involves: 

a) ANN architecture definition; 
b) selection of data structure and ANN input 

and output layer; 
c) ANN training; 
d) ANN testing; 
e) running phase. 

 

Accurate input data

Actual topology
Physical system

simulation

Inaccurate
measurements
simulation

Network status
Instrument errors

STEP 1: DATA GENERATION

Inaccurate simulated
measurements

Network status

ANN training Classification of
network status

STEP 2: DATA CORRELATION

Actual
measurements

ANN running
Estimation of
network status and
leak identification by
pattern recognition

STEP 3: PATTERN RECOGNITION

Figure 2. Main steps of the proposed 
methodology. 

ESTIMATION OF THE NETWORK STATUS 
Several well proven methods for the solution 

of a direct fluid distribution network problem are 
available in the literature [12,26]. In this work an 
efficient and easy to use algorithm has been 
developed able to simulate any fluid distribution 
network of arbitrary topology.  

Pressure drop due to friction losses of the flow 
rate qij across a generic branch connecting nodes i 
and j may be expressed as 

∆pij = kij (qij)2     (1) 

where kij is the loss coefficient  
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The Fanning friction factor fF, a function of flow 
regime and wall roughness, has been expressed by 
the following empirical correlation: 
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However, the mass balance asks that  

Σi (qij + qin
i + qex

i) = 0 ∀j   (5) 

meaning that both the mass balances at the nodes 
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Σi qij = 0   ∀j    (6) 

and the overall external flow rate balances  

Σi (qin
i + qex

i) = 0      (7) 

have to be satisfied. Therefore eq. 5 may be 
rewritten as 
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Indicating by ΣI the summatory at left hand 
member and with ΣII the summatory at right hand 
member one gets the expression for the pressure 
at the j-th node as 

II
IΣp j Σ

=  (9) 

The algorithm is as follows: 

Initialization phase: 
• inputs of tentative inlet flowrate values at 

each network node qin
i =(0,1), the value is set 

to 1 to indicate that the node receives an 
input external flowrate, otherwise it is set to 
0; 

• input of actual exit flowrate values qex
i; 

• input of tentative values of pressure pi at 
nodes. Pressure at the network input nodes 
are considered to be known and to remain 
constant, while pressures at any other node is 
the simulation output; 

• definition of network topology. This is 
carried out resorting to the pressure loss 
coefficient kij: it is initially assigned value 1 
if nodes i and j are connected by a branch, or 
value 0 otherwise; 

• definition of length Lij and diameter Dij for 
each network branch. 

Network simulation phase 
1. branch flow rates qij are computed by eq. 4; 
2. the average fluid velocity in each branch vij = 

qij/πDij
2/4 is computed as well as the 

Reynolds number; 
3. the Fanning friction factor is computed 

(eq.3); 
4. values of loss factor kij are updated through 

eq. 2; 
5. pressures at the nodes pj are updated through 

eq. 9; 
6. flowrates for the nodes receiving an external 

flow rate (those where the initial value was 

qin
i = 1 are also updated through eq. 9 by 

maintaining constant the assigned pj value 
and solving eq. 9 for qin

i; 
7. flow rates qij for the other generic branches 

are updated by eq. 4. 

The entire procedure is iterated until 
convergence of computed flow rates qij is 
obtained. 

The algorithm shows fast convergence and 
enables an easy configuration of the network 
topology during the data initialization phase. In 
fact it does not require to define a different set of 
equations to be solved according to the specific 
network analysed. Program outputs are pressure 
values at each nodes and flow rate values at each 
branch. This algorithm was compared with other 
traditional solution approaches (the Hardy-Cross 
iterative method and the solution of a set of 
equations describing conservation of flow rate at 
the nodes of the algebraic sum of pressure loss 
across any pipe loop [26]) obtaining very good 
agreement as shown in Table 1 for a simple 5-
nodes network. 

Table 1 Comparison of computation methods. 
qin

1 (l/s) 100 
qex

4 (l/s) 50 
qex

5 (l/s) 50 
Branch 1-2 Length – Diameter (m) 300 - 0.3 
Branch 1-3 Length – Diameter (m) 300 - 0.3 
Branch 2-4 Length – Diameter (m) 200 - 0.3 
Branch 2-3 Length – Diameter (m) 500 - 0.3 
Branch 3-5 Length – Diameter (m) 400 - 0.3 
Branch 4-5 Length – Diameter (m) 500 - 0.3 

Computed flow rates (l/s) 
Branch Hardy-Cross Mass/energy 

balance 
This work 

1-2 47.30 47.14 47.17 
1-3 52.70 52.85 52.83 
2-3 10.10 10.08 10.01 
2-4 57.50 57.22 57.18 
3-5 42.70 42.77 42.81 
4-5 7.30 7.22 7.19 

The simulation of a leaking network may be 
simply carried out by inserting in the desired 
branch, fictious nodes from where the leakage 
flowrate spills. The user may specify the leak 
amount, its location and the interested branch. 
The program then rearranges automatically the 
network configuration consequent to the increase 
of the number of nodes and branches respect the 
original network and computes the new values for 
pressures and flow rates. Such values therefore 
may represent the readings supplied under 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

degraded operation by measuring instruments 
distributed on the networks, that shall be analysed 
to locate the leaks. According to the control 
method hypothesized, the input flow rate will 
increase in order to compensate for the leaking 
flowrate by maintaining the fixed pressure at the 
input nodes. Besides generating training data for 
the ANN, the program is a useful tool to explore 
the amount of pressure perturbations consequent 
to leakages and assess the required sensitivity of 
the measuring instruments so that the flow 
anomaly can be positively detected. Effect of  
signal noise may also be evaluated. On the 
contrary given a set of measuring instruments 
having a specified sensitivity, the minimum leak 
amount able to be detected may be computed. 
Optimal placement of sensors along the network 
may also be studied. Such issues are of great 
importance for the practical utilization of this 
method. In fact, the quality of available pressure 
sensors determines the accuracy that can be 
obtained in determining the location of the leak 
along the pipe.  
 
UTILIZATION OF ANN FOR FDI 

In order to solve the leak detection and 
identification problem in a generic fluid 
distribution network, the use of ANNs is proposed 
by exploiting their classification abilities. Main 
goal is to recognize patterns among the pressure 
and flowrate data supplied by a set of measuring 
instruments distributed across the piping network 
and as a consequence select the branch where leak 
occurs, location along the branch and amount 
(figure 3). ANN are basically a non linear transfer 
function applied to a set of input variables. 
Physically the ANN is composed by a set of 
elementary computing units, the neurons, 
connected each other according to the peculiar 
network structure adopted.  
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and location
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conditions
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Figure 3. Leak identification through ANN. 

Each neuron’s output is the value of its non-
linear activation function computed on the 
weighted sum of the input signals to the neuron 
itself. Assigned to the neurons connections are 
weights which are generally chosen during the 
network training phase in order to minimize the 
error between the output values computed by the 
ANN and the true values corresponding to the set 
of input data processed by the ANN. The error 
function may be considered as a surface in the 
space of weights leading to the utilization of 
gradient-based minimization techniques. 
Computational performances may be enhanced if 
multiple neuron layers are introduced between the 
input and output layer. ANN have proven 
succesful in approximating non linear 
multivariable functions and in classification tasks. 
Provided that a sufficiently large training data set 
is available, ANN may be useful when it is 
difficult or impossible to obtain a mathematical 
model of the system to be solved by analytical 
methods, when new data have to be processed at 
high speed in real time, and when the 
computation method should be robust and fairly 
insensitive to noise in the input data. Topologies 
of ANN which show best classification abilities 
are the Probabilistic Neural Network (PNN), the 
Radial Basis Function (RBF) network and the 
Multi Layer Perceptron (MLP).  

Selection of neural network type 
Characteristics of aforementioned ANNs will 

be briefly discussed in the following in order to 
make some consideration about the type of 
network which is more likely to represent the best 
candidate for this application. However, the final 
choice will depend on an extensive 
experimentation and the characteristics of the 
actual fluid network being studied. A PNN is 
basically a Bayesian classifier into a neural 
network architecture. This kind of ANN does not 
update the internal weights during the training 
phase. Rather, it stores the training sets and 
compares them with the actual input during the 
working phase in order to select the weight set 
which corresponds to the closest training set 
respect the actual data input (Nearest Neighbor 
method) and compute the output accordingly. 
PNN output in this case is simply the class of the 
leak, i.e. a code identifying one of the original 
training set that represent a known and specific 
status of the network (characterized by a given 
leak amount and location). PNN generally result 
the best classifier when inputs very similar to 
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those utilized for the training phase are utilized. 
Adding a noise to the input data respect the 
training data may result in some input cases not 
correctly classified. In case of incorrect 
classification the error is likely to be not on the 
leak amount or position on a branch but on the 
branch itself, making the computation output 
useless for the purposes of the study. It follows 
that the main drawback of the PNN lies in the fact 
that no estimation of the ANN output uncertainty 
can be made.Therefore even if the PNN shows 
perfect correspondence between known inputs 
and corresponding classes it is rather seriously 
affected by inevitable disturbances in the sensors 
reading, making it quite unreliable in this 
application. In fact a leak or an alteration of 
sensor signals generating a p/q pattern much 
different from those the ANN has been trained on, 
or very similar to the pattern generated by an 
entirely different leak condition may completely 
deceive the ANN which could indicate in output a 
leak class entirely different from the real one. The 
output layer may consist simply of a neuron 
indicating a number directly corresponding to one 
of the classes of training data. However, the 
required output coding (consisting in the 
association of the input to a class among those 
utilized for training) prevents from recognizing 
readily an erroneous result. RBF networks are 
made up by two external layers with the hidden 
layer composed by neurons having gaussian 
activation function while the output layer is 
composed by simple neurons carrying out a linear 
combination of the output of hidden neurons. This 
type of ANN showed interesting performances 
during preliminary trials, including significant 
robustness to noise, when applied to a single 
branch. In particular the uncertainty in leak 
location remained the same but the flowrate noise 
was nearly directly transferred to the new leak 
estimation value making RBF network even more 
robust than the MLP. However, it resulted highly 
unreliable when applied to a fluid distribution 
network. The ANN could not classify inputs 
altered by a noise while also in absence of noise it 
was not possible to minimize the ANN errors 
which involved indistinctly any component of the 
output vector. MLP are multilayer networks 
where the neuron activation function is sigmoidal. 
The MLP also shows good robustness respect 
alteration of input values. During the performed 
test MLP correctly identified the branch where 
the leak occurred in all the examined cases. 
Therefore the MLP may represent the best 

compromise among good previsional capability 
and good noise rejection. This latter type of ANN 
offered the best performance compromise and has 
been adopted in the following of the study. 

Information coding 
Different input-output coding schemes and 

number of neurons in the external layers may be 
utilized when MLP are utilized to correlate state 
variables in fluid networks. In particular, inputs 
may be the absolute or relative pressure loss 
respect the nominal value (better if normalized in 
the 0 to 1 range) at the nodes where such 
measurements are available as well as the 
boundary conditions (flow rate measurement at 
the inlet nodes and head at the fixed heads nodes).  
Outputs may be coded as binary 0-1 to identify 
the leaking branch (if an output neuron is 
associated to each branch) or as values comprised 
in the 0 to 1 range if the degree of leak severity 
(as a predefined percentage of nominal branch 
flow rate) and the leak location along a branch (as 
a predefined fraction of the branch length) need to 
be estimated. The kind of output coding may be 
selected in order to suit specific requirements, but 
the preferable input coding is the one based on 
relative variations of the input variables respect 
the value at nominal operating conditions. 

Overall neural network architecture 
MLP is the better suited architecture in this 

kind of application but a single MLP presents 
some output coding limitations that may prevent 
obtaining a good accuracy in real applications. On 
the other hand, given its proven function 
approximation capability, on a single branch 
application the MLP may guarantee a satisfying 
accuracy and a proper presentation of output data. 
This leads to the utilization of a hybrid network 
structure having two levels (figure 4). A first-
level MLP is utilized to locate the branch where 
the leak occurs in order to subsequently activate 
specific second-level branch-dedicated MLPs 
having the task of precisely estimating the leak 
flow rate and location. In this way the complex 
task of identifying leaks in realistic fluid 
distribution networks may be subdivided in two 
sub-problems that may be fairly easily solved 
separately by dedicated MLP artificial neural 
networks. In case of unstationary distribution 
networks where periodic variations of the overall 
state are observed the entire structure is repeated 
and possibly selected by another ANN as 
suggested by Gabrys and Barjela [23]. 
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LEVEL 1 NETWORK

LEVEL 2 NETWORKS

Leaking branch identification
Leak amount and location
on selected branch

Subnetwork 1

Subnetwork n

Figure 4. Two-level neural network architecture. 
 

CONCLUSIONS 
In this paper the feasibility of utilizing 

Artificial Neural Networks to locate leaks over a 
fluid distribution network has been discussed also 
analysing the relevant literature. A suitable 
overall two-level ANN architecture is presented 
where a first-level ANN determines the branch 
where the leak occurs and a specific second-level 
ANN estimates leak amount and location. The 
proposed architecture has been satisfactorily 
tested in a simplified case obtaining promising 
results. Details of the implementation phase on a 
real test case and a discussion of performances 
will be carried out in a forthcoming paper. As a 
future research work the complexity of problems 
which can be solved with this approach will be 
assessed and the robustness of the ANN to 
measurement errors of the sensors will be 
evaluated in order to define the conditions of 
applicability to actual fluid distribution networks 
of this method. More specifically some practical 
issues having economic relevance will be dealt 
with, such as the determination of the sensors’ 
required number and accuracy level which 
minimizes the total monitoring system cost 
maintaining a required level of previsional 
capability. 
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ABSTRACT 

In this paper, the conjugate gradient method 
with adjoint problem is applied for the 
identification of the heat and mass transfer 
coefficients at the surface of drying capillary-
porous bodies. The unknown functions are 
supposed to vary along the surface open to the 
surrounding environment. The effects of 
temperature and moisture content measurements 
on the inverse analysis are examined. The inverse 
problem is solved by considering either the heat 
or the mass transfer coefficients as unknown, as 
well as by considering simultaneously both 
functions as unknown. 
 
NOMENCLATURE 
Bim  mass transfer coefficient 
Biq  heat transfer coefficient 
C  measured moisture content 
Ko  Kossovitch number 
Lu  Luikov number 
M  measured temperature 
Pn  Posnov number 
ra  aspect ratio 
S  objective functional 
X,Y dimensionless Cartesian coordinates 
 
Greeks 
∆φ   sensitivity function for moisture content 
∆θ  sensitivity function for temperature 
Ψk  conjugation coefficient def. by Eq. (6.b) 
α  parameter defined by Eq. (2.m) 
β  parameter defined by Eq. (2.n) 
βk  search step size at iteration k 
φ  dimensionless moisture content 
γ  parameter defined by Eq. (2.o) 
γk  conjugation coefficient def. by Eq. (6.a)  
λ  Lagrange multiplier 
θ  dimensionless temperature 

τ  dimensionless time 
 
INTRODUCTION 

The phenomena of coupled heat and mass 
transfer in capillary porous media has been 
drawing the attention of research groups for a 
long time, because of its importance in several 
practical applications, such as drying. For the 
mathematical modeling of such phenomena, 
Luikov [1] has proposed a model based on a 
system of coupled diffusion equations, which 
takes into account the effects of the temperature 
gradient on the moisture migration.  

The computation of temperature and moisture 
content fields in capillary porous media, from the 
knowledge of initial and boundary conditions, as 
well as of the thermophysical properties 
appearing in the formulation, constitutes a Direct 
Problem of heat and mass transfer [1,2]. 
Appropriately formulated direct problems are 
mathematically classified as well-posed, that is, 
their solutions satisfy the requirements of 
existence, uniqueness and stability with respect to 
the input data [3-5]. On the other hand, the 
estimation of boundary conditions in Luikov’s 
formulation, by using temperature and/or 
moisture content measurements taken in the 
medium, is an Inverse Problem of coupled heat 
and mass transfer [3-5]. Generally, inverse 
problems are mathematically classified as ill-
posed [3-5]. Despite the ill-posed character, the 
solution of an inverse problem can be obtained 
through its reformulation in terms of a well-posed 
problem, such as a minimization problem 
associated with some kind of regularization 
(stabilization) technique. Different methods based 
on such an approach have been successfully used 
in the past for the estimation of parameters and 
functions, in linear and non-linear inverse 
problems [3-5]. Recently, several articles dealing 
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with the solution of inverse problems of coupled 
heat and mass transfer appeared in the literature 
[6-15].  

In this paper, we examine the solution of 
inverse problems involving the identification of 
the heat and mass transfer coefficients at the 
surface of a capillary-porous body, as a function 
estimation approach.  The unknown quantities are 
supposed to vary along the surface of the body, 
open to the surrounding environment. The 
conjugate gradient method with adjoint problem 
[3-5] is used for the identification of the unknown 
functions. The inverse problems of estimating one 
single function are examined, as well as the 
inverse problem of simultaneously estimating 
both functions. The effects of the use of 
temperature and moisture content measurements 
on the inverse analysis are examined, by using 
simulated measured data with random errors. 
 
PHYSICAL PROBLEM AND 
MATHEMATICAL FORMULATION 

The physical problem involves a two-
dimensional capillary porous medium in 
Cartesian coordinates, initially at uniform 
temperature and uniform moisture content. The 
lateral surfaces of the body are impervious to 
moisture transfer and thermally insulated. The 
bottom boundary, which is impervious to 
moisture transfer, is in direct contact with a 
heater. The top boundary is in contact with the 
dry surrounding air, thus resulting in a convective 
boundary condition for both the temperature and 
the moisture content. The mass and heat transfer 
coefficients at this boundary may vary along the 
surface open to the surrounding environment. The 
linear system of equations proposed by Luikov 
[1], with associated initial and boundary 
conditions, for the modeling of such physical 
problem involving heat and mass transfer in 
capillary porous media, can be written in 
dimensionless form as:  
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where the following dimensionless variables were 
defined: 
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 The properties of the porous medium 
appearing above include the thermal diffusivity 
(a), the moisture diffusivity (am), the thermal 
conductivity (k), the moisture conductivity (km) 
and the specific heat (c). Other physical quantities 
appearing in the dimensionless groups of Eqs. (2) 
are the heat transfer coefficient (hq), the mass 
transfer coefficient (hm), the thickness of porous 
medium (h), the width of the porous medium (L), 
the prescribed heat flux (q), the latent heat of 
evaporation of water (r), the temperature of the 
surrounding air (Ts), the uniform initial 
temperature in the medium (T0), the moisture 
content of the surrounding air (u*), the uniform 
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initial moisture content in the medium (u0), the 
thermogradient coefficient (δ) and the phase 
conversion factor (ε). Lu, Pn and Ko denote the 
Luikov, Posnov and Kossovitch numbers, 
respectively [1].  
 Problem (1) is referred to as a Direct Problem 
when initial and boundary conditions, as well as 
all parameters appearing in the formulation, are 
known. The objective of the direct problem is to 
determine the dimensionless temperature and 
moisture content fields, θ(X,Y,τ) and φ(X,Y,τ), 
respectively, in the capillary porous media.  
   
INVERSE PROBLEM  

For the inverse problem of interest here, the 
functions Biq(X) and Bim(X) are regarded as 
unknown quantities. For the estimation of such 
functions, we consider available the transient 
temperature measurements Mi(τ) taken at the 
locations (Xi,Yi) i=1,…,I, as well as the moisture 
content measurements Cn(τ) taken at the 

locations ),( **
nn YX , n=1,…,N. We note that the 

measurements may contain random errors, but all 
the other quantities appearing in the formulation 
of the direct problem are supposed to be exactly 
known.  

Inverse problems are ill-posed [3-5]. Several 
methods of solution of inverse problems, such as 
the one used here, involve their reformulation in 
terms of well-posed minimization problems. We 
consider our objective functional in the form: 
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where θ and φ are the estimated temperature and 
moisture content, respectively, which are obtained 
from the solution of the direct problem with 
estimates for the unknown functions. In equation 
(3)  wθ and wφ are weights for the temperature and 
moisture content measurements, respectively. 

For the minimization of such objective 
functional, we use here the conjugate gradient 
method with adjoint problem, as described next. 
 
 
 

CONJUGATE GRADIENT METHOD 
 The iterative procedure of the conjugate 
gradient method is given by: 
 

)()()(1 XdXBiXBi kkkk β+=+  (4) 
 
where the superscript k denotes the number of 
iterations, β k is the search step size, d k(τ) is the 
direction of descent and Bi(X) may represent 
Biq(X) and Bim(X). 
 The direction of descent d k(τ) is a conjugation 
of the gradient direction with previous directions 
of descent. It is given in the following general 
form:

)()()]([)( 1 XdXdXBiSXd qkkkkk ψγ ++−∇= −
 
(5) 

where γ k and ψ k are conjugation coefficients. 
The superscript q in equation (5) denotes the 
iteration number where a restarting strategy is 
applied to the iterative procedure of the conjugate 
gradient method.  
 Different versions of the conjugate gradient 
method can be found in the literature depending 
on the form used for the computation of the 
direction of descent given by equation (5) [3-5, 
16,17]. In this paper, the so-called Powell-Beale’s 
version is used due to its superior robustness for 
the solution of non-linear inverse problems [17]. 
 Powell [16] suggested the following 
expressions for the conjugation coefficients, 
which gives the so-called Powell-Beale’s version 
of the conjugate gradient method [16,17]: 
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 In accordance with Powell [16], the 
application of the conjugate gradient method with 
the conjugation coefficients given by equations 
(6) requires restarting when gradients at 
successive iterations tend to be non-orthogonal 
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(which is a measure of the local non-linearity of 
the problem) and when the direction of descent is 
not sufficiently downhill. Restarting is performed 
by making ψ k = 0 in equation (5). 
 The non-orthogonality of gradients at 
successive iterations is tested by using: 
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where ABS (.) denotes the absolute value. 
 A non-sufficiently downhill direction of 
descent (i.e., the angle between the direction of 
descent and the negative gradient direction is too 
large) is identified if either of the following 
inequalities is satisfied: 
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 For the numerical implementation of the 
iterative procedure of the conjugate gradient 
method, auxiliary problems are required, namely 
the sensitivity problems and the adjoint problem, 
as described next. 
 
SENSITIVITY PROBLEMS AND SEARCH 
STEP SIZE 

The sensitivity problem is used to determine 
the variation in temperature and in moisture 
content due to changes in the unknown quantity. 
Since the present work deals with the estimation 
of two unknown functions, two sensitivity 
problems are required in the analysis. They are 
derived by considering perturbations in the heat 
and mass transfer coefficients, each at a time, as 
described next. 

Let us consider that the temperature θ(X,Y,τ) 
and the moisture content φ(X,Y,τ) undergo 
variations ∆θ1(X,Y,τ) and ∆φ1(X,Y,τ), respectively, 
when the mass transfer coefficient Bim(X) is 
perturbed by ∆Bim(X). By substituting in the 
direct problem (1) θ(X,Y,τ) by 

[θ(X,Y,τ)+ ∆θ1(X,Y,τ)],  φ(X,Y,τ) by 
[φ(X,Y,τ)+ ∆φ1(X,Y,τ)] and Bim(X) by [Bim(X)+ 
∆Bim(X)], and then subtracting from the resulting 
problem the original direct problem, we obtain the 
following sensitivity problem for the sensitivity 
functions ∆θ1(X,Y,τ) and ∆φ1(X,Y,τ): 
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Similarly, the sensitivity problem for the 

sensitivity functions ∆θ2(X,Y,τ) and ∆φ2(X,Y,τ), 
resultant from a perturbation ∆Biq(X) in Biq(X), 
can be obtained as: 
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 Linearized expressions can be obtained for the 
search step-sizes for the iterative procedures for 
the estimation of Biq(X) and Bim(X), by 
minimizing the objective functional at each 
iteration with respect to these quantities. We omit 
details of such derivations, but they can be readily 
found in Ref. [5]. 

 

ADJOINT PROBLEM AND GRADIENT 
EQUATIONS 

The adjoint problem is derived by multiplying 
the governing equations of the direct problem by 
Lagrange multipliers, integrating in the spatial 
and time domains that they are valid and then 
adding the resultant equation to the original 
functional (3). The directional derivative of the 
functional in the direction of the perturbation of 
each of the unknown functions is then obtained 
and the resultant expression, after some lengthy 
but straightforward manipulations, is allowed to 
go to zero. The same adjoint problem is obtained 
for perturbations in Biq(X) and Bim(X). The adjoint 
problem, for the computation of the Lagrange 
Multipliers λ1(X,Y,τ) and λ2(X,Y,τ), is given by: 
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 in 0 < X < ra  , 0 < Y < 1 and τ > 0   (10.b) 
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With the limiting process used to obtain the 

adjoint problem (10), we can also identify the 
following expressions for the gradient directions, 
where it was taken into account the hypotheses 
that Biq(X) and Bim(X) belong to the Hilbert space 
of square integrable functions in the domain  
0 < X < ra:   
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The use of the conjugate gradient method may 

result on stable solutions if the Discrepancy 
Principle [3-5] is used to specify the tolerance for 
the stopping criterion of the iterative procedure. 
In the Discrepancy Principle, the solution is 
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assumed to be sufficiently accurate when the 
difference between measured and estimated 
quantities is of the order of magnitude of the 
measurement errors. 
 
RESULTS AND DISCUSSIONS 
 For the results presented below, we examined 
test-cases involving the drying of a capillary-
porous body with dimensions h=0.05m and 
L=0.5m, made of ceramics, with properties [7]:  
k=0.34W/mK, km,=2.4x10-7kg/msoM, c=607J/kgK 
r=2.5x106J/kg, T0=24oC, u0=80oM, δ = 0.56oM/K 
and ε = 0.8. The air conditions were taken as 
Ts=30oC and u*=40oM and the applied heat flux as 
q = 40 W/m2. Therefore, the dimensionless 
numbers appearing in the formulation were 
Lu=0.2, Pn=0.084, Ko=49 and Q=0.9.  
 For the estimation of the unknown heat and 
mass transfer coefficients, we made use of 
simulated temperature and moisture content 
measurements. Two different levels of 
measurement errors were examined here: errorless 
measurements and measurements with standard-
deviation of 1% of the maximum value of the 
measured quantity. Hypothetical functions 
containing discontinuities, which are the most 
difficult to be recovered through the solution of 
the inverse problem, were used to generate the 
simulated measurements. 
 Let us consider initially in the analysis the 
estimation of the heat transfer coefficient Biq(X), 
by assuming that the mass transfer coefficient 
Bim(X) is exactly known. For this case, Bim(X) was 
taken as the same function as for Biq(X). Figure 1 
presents the functions estimated for Biq(X), 
obtained with errorless temperature measurements 
(wθ=1 and wφ=0 in equation (3)) and with 
different sensor configurations, as well as the 
exact function used to generate the simulated 
measurements. The sensor configurations are 
given in table 1. The sensors were equally spaced 
along the X direction, at the Y position specified 
in this table. We also present in table 1, the RMS 
errors [5] obtained with the different sensor 
configurations. Table 1 shows that the accuracy of 
the estimated function deteriorates as the sensors 
are located farther from the top boundary, as well 
as when fewer sensors are used for the inverse 
analysis. However, note in figure 1 that quite 
accurate results could be obtained even with 13 
sensors located at Y = 0.85 (which corresponds to 
7.5 mm below the top surface). 
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Figure 1. Results obtained for Biq(X) with known 

Bim(X) by using temperature measurements 
 

Table 1. Sensor configurations used for the 
estimation of Biq(X) with known Bim(X). 

Config. Number of 
Sensors 

Y 
Location 

RMS 
Error 

1 33 0.925 4.38 x 10-2 
2 33 0.85 4.58 x 10-2 
3 13 0.85 1.11 x 10-1 

 
 We now consider the estimation of Bim(X) by 
using temperature measurements (wθ=1 and wφ=0 
in equation (3)), and assuming Biq(X) as exactly 
known for the inverse analysis. For this case, 
Biq(X) was taken as the same function as for 
Bim(X). Figure 2 presents the estimated function 
obtained with measurements containing random 
errors, of 17 sensors equally spaced, at the 
position Y = 0.85. Figure 2 shows the interesting 
fact that temperature measurements provide 
useful information for the estimation of Bim(X). 
This is an important result, because quite involved 
and inaccurate techniques for the measurement of 
moisture content can be avoided, in favor of 
inexpensive and accurate temperature 
measurements, for the estimation of Bim(X), if 
Biq(X) is known. On the other hand, the use of 
moisture content measurements can result on 
accurate estimations for Bim(X), as illustrated in 
figure 3; but not for the estimation of Biq(X). The 
estimated function shown in figure 3 was 
obtained with moisture content measured data 
containing random errors (wθ=0 and wφ=1 in 
equation (3)), of 17 sensors equally spaced, 
located at Y=0.85.  
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Figure 2. Results obtained for Bim(X) with known 

Biq(X) by using temperature measurements 
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Figure 3. Results obtained for Bim(X) with known 
Biq(X) by using moisture content measurements 

   
 The simultaneous estimation of Biq(X) and 
Bim(X) is now examined. For this case, the use of 
only temperature measurements or only moisture 
content measurements resulted on quite 
inaccurate estimated functions. Therefore, 
temperature, as well as moisture content 
measurements, were required for the simultaneous 
estimation of Biq(X) and Bim(X). Figures 4.a,b 
present the results obtained for Biq(X) and Bim(X), 
respectively, by using in the inverse analysis 
simulated measurements containing random 
errors of 14 temperature sensors and 15 moisture 
content sensors. In this case, we used 

2
max/1 Mw =θ and 2

max/1 Cw =φ in equation (3), 

where Mmax and Cmax are the maximum measured 
values of temperature and moisture content, 
respectively. The temperature sensors and the 
moisture content sensors were located at Y=0.9, 
evenly spaced along the X direction. Figures 4.a,b 

show that quite accurate results can  be obtained 
for the simultaneous estimation of Biq(X) and 
Bim(X), if both temperature and moisture content 
measurements are used in the inverse analysis.   
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Figure 4.a. Results obtained for Biq(X) by using 

temperature and moisture content measurements - 
simultaneous estimation of Bim(X) and Biq(X)  
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Figure 4.b. Results obtained for Bim(X) by using 

temperature and moisture content measurements - 
simultaneous estimation of Bim(X) and Biq(X)  

 
CONCLUSIONS 
 In this paper we solve the inverse problem of 
simultaneously estimating the mass and heat 
transfer coefficient at the surface of a drying-
capillary porous body. The unknown quantities 
are treated as functions of the position along the 
surface open to the surrounding environment. The 
present inverse problem is solved with the 
conjugate gradient method of function estimation 
with adjoint problem. 

Results obtained with simulated 
measurements indicate that the present approach 
is capable of recovering the heat transfer 
coefficient, with the use of only temperature 
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measurements, if the mass transfer coefficient is 
known for the analysis. If the heat transfer 
coefficient is regarded as known for the inverse 
analysis, the mass transfer coefficient can be 
estimated by using either temperature 
measurements or moisture content measurements. 
Both temperature and moisture content 
measurements are required for the simultaneous 
estimation of the mass and heat transfer 
coefficients. The present solution approach is 
stable with respect to measurement errors. Quite 
accurate results were obtained even for functional 
forms containing discontinuities, which are the 
most difficult to be recovered by inverse analysis. 
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ABSTRACT 

In this paper, the conjugate gradient method 
with adjoint problem is applied for the 
identification of the heat flux at the surface of 
ablating materials, by assuming no a priori 
information regarding the functional form of the 
unknown. Simulated measurements of the 
position of the ablating surface are used in the 
inverse analysis, together with simulated 
temperature measurements. The accuracy of the 
conjugate gradient method with adjoint problem 
is examined for functions containing sharp 
corners, with different orders of magnitude for the 
peak-flux. 
 
INTRODUCTION 

An important requirement for the thermal 
design of heat shields of vehicles re-entering the 
atmosphere, which are subjected to extremely 
high heat loads, is to have prior accurate 
information regarding the thermal properties of 
the materials utilized [1]. With respect to the heat 
loads that the surface of the re-entering vehicle 
are subjected to, an usual approach for the design 
of the heat shield is to use simplified models, such 
as those described in reference [2]. On the other 
hand, the use of inverse analysis techniques can 
provide the important information on how 
accurate such simplified models are [3,4]. In 
reference [4], we examined the use of temperature 
measurements taken below the surface for the 
solution of such inverse problem. Accurate results 
were obtained for functions containing sharp 
corners and discontinuities, but for small 
magnitudes of the peak-flux, when the portion of 
material removed during ablation is small. 

In this paper, we examine the use of surface 
position measurements, in addition to temperature 
measurements, for the estimation of the boundary 

heat flux at the surface of ablating materials. We 
show that the use of surface position 
measurements in the inverse analysis is specially 
important to recover heat fluxes with large 
magnitudes, when the portion of material 
removed during ablation is significant. 
Measurements of the position of the ablating 
surface can be performed with different 
experimental techniques, as described in [5]. For 
the solution of the inverse problem, we use the 
conjugate gradient method of function estimation 
with adjoint problem [6,7], also known as the 
Alifanov’s variational method. 
 
DIRECT PROBLEM 

The physical problem under picture in this 
paper consists of a one-dimensional slab of 
thickness b0 initially at the temperature T0(x), 
which is lower than the temperature of ablation 
Tab. The surface of the slab at x = b0 is heated with 
a heat flux q(t), while the other surface at x = 0 is 
kept insulated. As the slab is heated, the 
temperature of the heated surface may reach the 
temperature of ablation; the material will then be 
removed and a moving boundary problem will be 
established. For vehicles re-entering the 
atmosphere, the heat flux increases during the 
initial stages of the re-entry procedure, passes 
through a peak value and then decreases, perhaps 
even to negative values, when the surface of the 
vehicle is cooled by convection in the lower 
portions of the atmosphere [2]. Thus, when 
solving the direct problem with this kind of heat 
flux, three distinct periods come into picture: (i) 
the pre-ablation period, which lasts from the 
beginning of the re-entry procedure until the 
heated surface reaches the ablating temperature; 
(ii) the ablation period, when a moving-boundary 
problem takes place because of ablation; and (iii) 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

the post-ablation period, which begins when the 
ablation process ends and the surface of the solid 
remains again fixed. More specifically, these 
three periods take place, respectively, during the 
following time intervals: 0 < t ≤  tab, tab < t ≤  tab,f  
and tab,f < t ≤  tf, where tab, tab,f and tf denote the 
time when ablation begins, the time when ablation 
ends and the final time, respectively. For 
convenience in the analysis, the pre-ablation and 
post-ablation periods are generally referred to as 
no-ablation periods and take place during the 
following general time interval t0 < t ≤  t0 + δ t0, 
with duration δ t0. 

For the physical problem under picture in this 
paper, the thermal decomposition of the material 
is neglected. The mathematical formulation of 
this problem can be written in dimensionless form 
as: 
 

No-ablation periods ( 000 δττττ +≤< ): 
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with the energy balance at the heated surface 
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For the pre-ablation period, the subscript i in 
equation (1.d) refers to the initial temperature 
distribution. For the ablation and post-ablation 
periods, the subscript i in equations (2.d) and 
(1.d), respectively, refers to the known 
temperature distribution at the end of the 
preceding period. In order to write the problem 
above in dimensionless form, the following 
variables were used: 
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where α, k, cp and H are the thermal diffusivity, 
thermal conductivity, specific heat and heat of 
ablation of the ablating material, respectively. 
 
INVERSE PROBLEM 
 The inverse problem under picture in this 
paper is concerned with the estimation of the 
surface heat flux Q(τ ) by using the transient 
measurements of M temperature sensors located 
inside the slab at positions Xm, m = 1,…,M. 
Furthermore, we assume available for the inverse 
analysis the transient measurements of a sensor 
capable of measuring the position of the ablating 
surface, during the time interval 0 ≤  τ ≤  τ f. All 
other quantities appearing in the formulation of 
the physical problem are assumed to be exactly 
known; but, the measurements may contain 
random errors, which are assumed here to be 
additive, uncorrelated, normally distributed, with 
zero mean and known standard deviation. 
 The unknown surface heat flux is estimated 
separately for the pre-ablation, ablation and post-
ablation periods. The solution of the inverse 
problem is obtained through the minimization of 
the following functionals, for the no-ablation 
periods and for the ablation period, respectively: 
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(4.b) 
where )(τµm  are the measured  temperatures and 

)](;,[ ττθ QX m  are the estimated temperatures at 
the measurement locations Xm, m = 1,…,M, while 
Bexp(τ) and )](;[ ττ QBest  are the measured and 
estimated surface positions, respectively. In 
equation (4.b), w1(τ ) and w2(τ ) are weighting 
functions for the temperature and surface position 
measurements, respectively. 
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ITERATIVE PROCEDURE 
 The iterative procedure of the conjugate 
gradient method, applied for the estimation of the 
unknown function Q(τ ), is given by: 
 

)()()(1 τβττ kkkk dQQ +=+  (5) 
 
where the superscript k denotes the number of 
iterations, β k is the search step size and d 

k(τ ) is 
the direction of descent. 
 The direction of descent d 

k(τ ) is a conjugation 
of the gradient direction with previous directions 
of descent. It is given in the following general 
form: 
 

)()()]([)( 1 τψτγττ qkkkkk ddQSd ++−∇= −  (6) 
 
where γ k and ψ k are conjugation coefficients. The 
superscript q in equation (6) denotes the iteration 
number where a restarting strategy is applied to 
the iterative procedure of the conjugate gradient 
method [8]. In this paper, Powell-Beale’s version 
of the conjugate gradient method is used due to its 
superior robustness for the solution of non-linear 
inverse problems [8,9]. 
 For the numerical implementation of the 
iterative procedure of the conjugate gradient 
method, two auxiliary problems are required, 
namely the sensitivity problem and the adjoint 
problem, as described next. 
 
SENSITIVITY PROBLEM AND SEARCH 
STEP SIZE 
 The sensitivity problem can be obtained by 
assuming that the temperature θ (X,τ ) is perturbed 
by an amount ∆θ (X,τ ), when the unknown heat 
flux Q(τ ) is perturbed by ∆Q(τ ). Note that B(τ ) is 
also perturbed by ∆B(τ ) during the ablation 
period, as a result of the perturbation ∆Q(τ ). By 
replacing θ (X,τ ) by [θ (X,τ ) + ∆θ (X,τ )], B(τ ) by 
[B(τ ) + ∆B(τ )] and Q(τ ) by [Q(τ ) + ∆Q(τ )] in the 
direct problem given by equations (1) and (2), and 
then subtracting the original direct problem from 
the resulting expressions, the following sensitivity 
problems are obtained for the no-ablation and 
ablation periods, respectively: 
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where the energy balance (2.e) for the perturbed 
functions is given by: 
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 Expressions for the search step size β k can be 
obtained by minimizing the functional S [Qk+1(τ )] 
with respect to β k [6,7].  
 
ADJOINT PROBLEM AND GRADIENT 
EQUATION 
 The adjoint problem is derived by multiplying 
the governing equations of the direct problem by 
Lagrange multipliers, integrating in the spatial 
and time domains that they are valid and then 
adding the resultant equation to the functional. 
Therefore, one single Lagrange multiplier, 
namely λ(X,τ), is necessary for the no-ablation 
periods, so that the extended functional is given 
by: 

∫ ∫

∑ ∫

=

+

=

=

+

=









∂
∂

−
∂
∂

+

+−=

)(

0
2

2

1

2

00

0

00

0

),(

)}()](;,[{)]([

τ δττ

ττ

δττ

ττ

τ
θ

τ
θ

τλ

ττµττθτ

B

X

M

m
mm

dXd
X

X

dQXQS

 

 (9) 
 

 On the other hand, two Lagrange multipliers 
are required for the ablation period, because the 
surface position is calculated with the energy 
balance given by equation (2.e). Therefore, the 
extended functional for the ablation period is 
given by: 
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 Expressions for the variation ∆S[Q(τ )] of the 
functional S[Q(τ )] can be developed by assuming 
that θ (X,τ ) is perturbed by ∆θ (X,τ ), as well as 
B(τ ) is perturbed by ∆B(τ ), when Q(τ ) is 
perturbed by ∆Q(τ ). The variation ∆S[Q(τ )] gives 
the directional derivative of S[Q(τ )] in the 
direction of the perturbation ∆Q(τ ) [6]. By 
replacing θ (X,τ ) by [θ (X,τ ) + ∆θ (X,τ )], Q(τ ) by 
[Q(τ ) + ∆Q(τ )], B(τ ) by [B(τ ) + ∆B(τ )] and 
S[Q(τ )] by {S[Q(τ )] + ∆S[Q(τ )]} in equations 
(9,10), subtracting from the resulting expressions 
the original equations (9,10), performing some 
lengthy but straightforward manipulations and 
letting the terms containing ∆θ (X,τ ) and ∆B(τ ) to 
go to zero, the following adjoint problems are 
obtained: 
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where G*(τ ) is given by: 

)}()](;[{2)( exp
* ττττ BQBG est −=  (12.g) 

 
 In the limiting process used to obtain the 
adjoint problem, the following expression is 
obtained for the gradient of the functional, by 
assuming that the unknown function Q(τ ) belongs 
to the space of square integrable functions in the 
time domain of interest: 
 

]),([)]([ ττλτ BQS −=∇  (13) 
 
which is valid for both no-ablation and ablation 
periods. 
 The use of the conjugate gradient method may 
result on stable solutions if the Discrepancy 
Principle [6,7] is used to specify the tolerance for 
the stopping criterion of the iterative procedure. 
In the Discrepancy Principle, the solution is 
assumed to be sufficiently accurate when the 
difference between measured and estimated 
quantities is of the order of magnitude of the 
measurement errors. 

 
RESULTS AND DISCUSSIONS 
 We now examine the present inverse analysis 
approach for the estimation of the unknown 
boundary heat flux at the surface of ablating 
materials. For all test-cases examined below, the 
material was assumed to be Teflon, with 
properties ρ = 1.922x103 kg/m3, k = 0.22 W/(m K), 
cP = 1.256x103 J/(kg K), α = 9.11x10-8 m2/s, 
H = 2.326x106 J/kg and Tab = 833 K [10]. 
However, we note that, qualitatively, similar 
results were obtained with other ablating 
materials. The thickness of the slab was taken as 
0.020 m. The duration of the experiment was 
supposed to be 400 s and the frequency of 
measurements, for both temperature and surface 
position, was 10 Hz. In order to simulate the heat 
flux at the surface of the vehicle during 
atmospheric re-entry, a triangular heat flux, with 
different peak-fluxes, was used to generate the 
simulated temperature and surface position 
measurements. Two different levels of 
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measurement errors examined in this work 
included: (i) errorless measurements and (ii) 
temperature measurements with standard 
deviation equal to 0.01 (1% of the ablation 
temperature) and surface position measurements 
with standard deviation equal to 0.008. For the 
standard deviation of the surface position 
measurements, it was taken into account the 
sensitivity of instruments available for this 
purpose [5]. 
 Let us first consider the case involving a 
triangular heat flux with peak-flux of 50 kW/m2. 
Figure 1.a presents a comparison of the exact heat 
flux used to generate the simulated measurements 
with the estimated functions obtained with 
errorless measurements, as well as with 
measurements containing random errors. The 
initial guess used for the iterative procedure of the 
conjugate gradient method is also presented in 
this figure. The results shown in figure 1.a were 
obtained by using only temperature measurements 
in the inverse analysis, of a sensor located at 
X = 0.9. Furthermore, such results were obtained 
by using a single objective functional for the 
whole-time domain, i.e., for 0 ≤ τ ≤ τ f [4]. Figure 
1.a shows that quite accurate results could be 
obtained in this case, by using only temperature 
measurements in the inverse analysis. Such is the 
case because, for a peak-flux of 50 kW/m2, the 
portion of material removed by ablation is quite 
small. In fact, after ablation finishes, the surface 
position was at X=0.99 for this case.  
 Figure 1.b shows the transient variation of the 
temperature sensitivity function, ∆θ (X,τ ), in the 
slab, for different positions. Such sensitivity 
function was obtained from the solution of the 
sensitivity problems (7,8) for a unitary 
perturbation of the heat flux, i.e., ∆Q(τ ) = 1. Also, 
the solution of the direct problem with the exact 
heat flux was used to compute the surface 
position B(τ ), as well as ∂ θ / ∂ X and ∂ 2θ /  ∂ X 2 
at B(τ ), which are required for the solution of the 
sensitivity problem during the ablation period (see 
equations (8.a-f)). It is interesting to note in 
equations (7,8) that, during the pre-ablation 
period, the solution of the sensitivity problem is 
independent of the unknown function Q(τ ). On 
the other hand, during the ablation period, and 
consequently during the post-ablation period, the 
solution of the sensitivity problem depends on 
several quantities obtained from the solution of 
the direct problem, because of the non-linear 
character of the function estimation problem 

under picture. Note in figure 1.b the beginning of 
ablation at τ = 0.043, when the sensitivity at the 
position X = 1 vanishes. After ablation begins, a 
decrease of the magnitude of ∆θ (X,τ ) takes place 
for the position X = 0.8 and the rate in the 
increase of the sensitivity at X = 0.6 is reduced. 
These quantities increase again at larger times, 
after ablation finishes. 
 

0.00 0.02 0.04 0.06 0.08 0.10
Time, τ

-4

0

4

8

12

H
ea

t f
lu

x,
 Q

(τ
)

Estimated without random error

Estimated with random error

Exact

Initial guess

 
Figure 1.a. Solution of the inverse problem for a 

peak-flux of 50 kW/m2. 
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Figure 1.b. Temperature sensitivity function for a 

peak-flux of 50 kW/m2. 
 

 Figure 2.a presents the transient variation of 
the temperature sensitivity function, ∆θ (X,τ ), in 
the slab, for different positions, for a peak-flux of 
100 kW/m2. The behavior of the temperature 
sensitivity function for a peak-flux of 100 kW/m2 
is very similar to that for 50 kW/m2 (see figure 
1.b), because the portion of material removed 
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during ablation is also small. For 100 kW/m2, the 
surface position after ablation finishes is at 
X = 0.94. Note also in figures 1.b and 2.a that the 
sensitivity curves for the two peak-fluxes are 
identical during the pre-ablation periods, because 
the estimation problem is linear until ablation 
begins, i.e., the sensitivity problem (7) does not 
depend on the unknown function Q(τ ). 
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Figure 2.a. Temperature sensitivity function for a 

peak-flux of 100 kW/m2. 
 
 It was also possible to obtain accurate 
estimates for the unknown function for a peak-
flux of 100 kW/m2, by using only temperature 
measurements in the inverse analysis, as 
illustrated in figure 2.b. The temperature sensor 
was located at X = 0.9. The results shown in 
figure 2.b were obtained by estimating the heat 
flux separately for the pre-ablation, ablation and 
post-ablation periods, with w1 = 1 and w2 = 0 in 
equation (4.b). Figure 2.b shows that stable results 
were obtained for measurements containing 
random errors, but the peak-flux was 
overestimated, even when errorless measurements 
were used in the inverse analysis.  

Figure 2.c presents the sensitivity function, 
∆B(τ ), of the position of the surface with respect 
to variations in the unknown heat flux, as well as 
the velocity of the moving surface, for a peak-flux 
of 100 kW/m2. Note in this figure that the 
sensitivity of the position of the surface 
immediately increases in magnitude when 
ablation begins and suddenly becomes zero when 
ablation ends. As expected, the sensitivity of the 
position of the surface is zero during pre- and 
post-ablation periods. 
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Figure 2.b. Solution of the inverse problem for a 
peak-flux of 100 kW/m2 obtained with w1 = 1 and 

w2 = 0 in equation (4.b). 
 

Figure 2.d presents the estimated functions for 
a peak-flux of 100 kW/m2, obtained by using 
temperature measurements during the no-ablation 
periods, and surface position measurements 
during the ablation period, i.e., w1 = 0 and w2 = 1 
in equation (4.b). The temperature sensor was 
located at X = 0.9. We note that the heat flux was 
exactly recovered when errorless measurements 
were used in the inverse analysis, which was not 
the case when only temperature measurements 
were assumed available (see figure 2.b). A 
comparison of figures 2.b and 2.d reveals an 
increase in the oscillations of the solution after 
ablation began, when surface position 
measurements containing random errors were 
used in the inverse analysis. 
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Figure 2.c. Surface position sensitivity 

function for a peak-flux of 100 kW/m2. 
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Figure 2.d. Solution of the inverse problem for a 
peak-flux of 100 kW/m2 obtained with w1 = 0 and 

w2 = 1 in equation (4.b). 
 
We now examine a more strict case involving 

a peak-flux of 500 kW/m2. Figure 3.a presents the 
transient variation of the temperature sensitivity 
function, ∆θ (X,τ ), in the slab, for such peak-flux, 
for different positions. For this case, the final 
surface position after ablation finished was at 
X = 0.56. A comparison of figures 2.a and 3.a 
shows an increase in the maximum magnitude of 
∆θ (X,τ ) when the peak-flux increases from 
100 kW/m2 to 500 kW/m2. However, the sudden 
increase in ∆θ (X,τ ) takes place when the ablating 
surface is quite close to the measurement position. 
Obviously, temperature measurements do not 
contribute with useful information for the 
estimation of the surface heat flux, after the 
ablating surface passes through the temperature 
sensor position and burns the sensor. Therefore, 
for large magnitudes of the heat flux, when the 
portion of the material removed during ablation is 
large, it appears that the use of a large number of 
temperature sensors, spread along the slab, would 
be required for the inverse analysis. However, 
even with such an approach the accuracy of the 
inverse problem solution could not be assured, 
because the temperature sensitivity function 
becomes large only for a very short period of 
time, exactly before the sensor gets burned. On 
the other hand, reasonably accurate results could 
be obtained when measurements of the surface 
position were used in the inverse analysis, as 
described below. 
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Figure 3.a. Temperature sensitivity function 

for a peak-flux of 500 kW/m2. 
 
 Figure 3.b presents the sensitivity function, 
∆B(τ ), of the position of the surface with respect 
to variations in the unknown heat flux, as well as 
the velocity of the moving surface, for a peak-flux 
of 500 kW/m2. Note in figures 2.c and 3.b that, 
differently from the results for a peak-flux of 
100 kW/m2, the response of the sensitivity of the 
position of the surface is lagged with respect to 
the surface velocity for 500 kW/m2. Because of 
such a lag, accurate results could be obtained for 
the estimated function in this case, only when the 
initial guess for the iterative procedure was 
reasonably close to the exact function, as 
illustrated in figure 3.c. 
 The initial guess used for the results shown in 
figure 3.c was obtained by neglecting the 
temperature gradient in equation (2.e) and by 
approximating the velocity of the surface in this 
equation by using the surface position 
measurements; the velocity dB(τ )/dτ was 
calculated by using a backwards finite-differences 
approximation in time. The results presented in 
figure 3.c were obtained by using temperature 
measurements during the pre- and post-ablation 
periods, and surface position measurements 
during the ablation period, i.e., w1 = 0 and w2 = 1 
in equation (4.b). Two temperature sensors were 
used in this case, located at the positions X = 0.5 
and X = 0.9. The sensor at X = 0.9 was burned 
during the ablation period, and the sensor at 
X = 0.5 was required for the estimation of the heat 
flux during the post-ablation period. We note that 
the results obtained by using only temperature 
measurements for this case were completely 
inaccurate. 
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Figure 3.b. Surface position sensitivity function 

for a peak-flux of 500 kW/m2. 
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Figure 3.c. Solution of the inverse problem for a 
peak-flux of 500 kW/m2 obtained with w1 = 0 and 

w2 = 1 in equation (4.b). 
  
CONCLUSIONS 
 This paper addresses the use of surface 
position measurements, in addition to temperature 
measurements, for the solution of the inverse 
problem of estimating the heat flux at the surface 
of ablating materials. For heat fluxes of small 
magnitude, when the velocity of the ablating 
surface is small, the use of only temperature 
measurements may result in accurate estimations 
for the unknown function. On the other hand, for 
heat fluxes with large magnitudes, temperature 
measurements do not provide sufficient 
information for the estimation procedure. 
Measurements of the position of the ablating 
surface are then required in order to obtain 
accurate estimations for the surface heat flux. 
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ABSTRACT 
     The Maximum Entropy and Levenberg-
Marquardt methods were applied to assess the 
direct emissions of chemical pollutants and other 
input parameters used in multimedia 
environmental models. An environment 
consisting of air, water sediment and biota was 
considered. Results obtained by using 
experimental concentration data of some 
hydrocarbons measured in a type of mussel 
(“mexilhão perna-perna”) in Guanabara Bay are 
presented.  
 
NOMENCLATURE 

SA  
sediment area, m2. 

WA  
water area, m2. 

AC  chemical concentration in air, mol/m3. 

MC  
chemical concentration in mussel,      
mol/m3  

SSC  
chemical concentration in dry sediment, 

mol/m3. 

STC  
total chemical concentration in sediment, 

mol/m3.    

VFQC
 

chemical concentration in aerosol 

particles, g/m3. 

VPWC  
chemical concentration in water 

particles, g/m3.  

VPXC  
chemical concentration in inflow water 

particles, g/m3. 

WC  
chemical concentration in water, mol/m3. 

W IC  
chemical concentration in inflow water, 

mol/m3. 

W TC  
total chemical concentration in water, 

mol/m3. 

ENPD  
density of water particles, g/m3. 

ENQD  density of aerosol particles, g/m3. 

ENSD  
density of sediment particles, g/m3. 

WE  
emission rate to water, mol/h.  

BNG  
solids burial rate, g/m2h. 

DNG  
solids deposition rate, g/m2h. 

RNG  
solids resuspension rate, g/m2h. 

IG  water inflow rate, m3/h. 

JG  
water outflow rate, m3/h.

 
 

H  Henry’s law constant, Pa.m3/mol 
AWK  

air-water partition coefficient.
 
 

OCK  
organic carbon-water partition 

coefficient. 

OWK  
octanol-water partition coefficient. 

SWK  
sediment-water partition coefficient. 

TK  sediment-water mass transfer coefficient, 
m/h. 

VK  
volatilization mass transfer coefficient 

(air side), m/h. 

VWK  
volatilization mass transfer coefficient 

(water side), m/h. 

RGIO  
fraction of organic carbon in inflow 

water particles. 

RGPO  fraction of organic carbon in water 

particles. 

RGRO  
fraction of organic carbon in 

resuspended sediment solids. 

RGSO  fraction of organic carbon in sediment 

solids. 
Q  scavenging ratio. 
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R  gas constant, Pa.m3/molK. 

AINR  
rain rate, m/h. 

DST  
degradation half life in sediment, h. 

DWT  
degradation half life in water, h. 

KT  room temperature, K. 

MKT  chemical melting point, K. 

DEPAV  aerosol dry deposition velocity, m/h. 

FSV  
volume fraction  of particles in surface 

sediment. 

SV   active sediment volume, m3.  

WV  
water volume, m3. 

 
INTRODUCTION 
     Guanabara Bay is a highly urbanized tropical 
estuary located in the state of Rio de Janeiro, 
Brazil. The total population in the vicinity of the 
bay is close to 10 million inhabitants. Its drainage 
basin encompasses an area of about 4.0x109 m2 
including 12 municipalities, the city of Rio de 
Janeiro and the second largest industrial comp lex 
in Brazil. Chemical, petrochemical, food 
processing, metallurgical plants and textile 
industries are the main economical activities. The 
bay presents anoxic conditions being heavily 
contaminated by organic and inorganic chemicals 
released daily in its waters. Its main sources of 
pollution are the intense discharges of domestic 
and industrial effluents [1]. Many industries 
produce effluents containing significant amounts 
of polycyclic aromatic hydrocarbons (PAHs). 
Several PAHs are mutagenics and/or 
carcinogenics and are particularly important due 
to the contamination of seafood and the 
consequent possibility of human exposure. 
Monitoring programs are necessary to assess 
concentration levels, persistence, fate, 
transport/transformation rates and partition of 
potentially harmful chemicals among the 
environmental media. In the absence of 
monitoring, multimedia environmental models 
often provide the only way to predict the 
approximate concentration of the chemicals in the 
media. The multimedia model proposed to 
determine the fate of PAHs in Guanabara Bay is 
the "Quantitative Water Air Sediment Interaction" 
(QWASI) developed by Mackay and coworkers 
[2,3]. The purpose of this work is to evaluate 
some input parameters of the model as mass 
transfer coefficients, emission rates to the media, 
etc. using the inverse problem technique. The 

direct problem consists of the solution of the 
advective-diffusive transport equations of the 
model, which given the contaminant 
concentrations in water and sediment.  The 
solution of the inverse problem is accomplished 
by the Generalized Maximum Entropy and 
Levenberg-Marquardt methods using 
concentrations of different PAHs in water and 
sediments of Guanabara Bay. The values were 
approximated from the measured concentrations 
in a type of mussel (“mexilhão perna-perna”). 
 
MATHEMATICAL FORMULATION OF THE 
DIRECT PROBLEM 
     The direct problem corresponds to the 
advective-diffusive chemical transport described 
by the mass balance equations for the media or 
compartments that comprise the environment. 
These compartments are air (consisting of well-
mixed air, aerosols and rain), water (consisting of 
well-mixed water and particles of organic and 
mineral matter origin), sediment (well mixed and 
homogeneous) and biota (only one aquatic 
specie), [2,3]. 
     The overall steady states mass balance 
equations for the water and sediment 
compartments are given respectively by 
 

=
dt

dC
V WT

W  [1]+[2]+[3]+[4]+[5]+[6]+[7]+[8]+   

                 [9]-[10]-[11]-[12]-[13]-[14]-[15]=0  (1) 
 

dt
dC

V ST
S  =[12]+[15]-[5]-[6]-[16]-[17] = 0       (2) 

 
    The numbered terms on the right side of the 
equations, above, represent the processes, 
involving the chemical. See Fig. 1. They are: 
[1] absorption                           AWVWA KKAC /  

[2] wet particles deposition 

            )/(106 6
VFQPENQRATWAINA CVQDFARCx  

3] dry particles deposition   
       )/(106 6

VFQPRATENQWDEPAA CVFDAVCx  

[4] rain dissolution                  AWWAINA KARC /   

[5] sediment resuspension   
                             )/( ENSRGSWRNRGRSS DOAGOC  

[6] sediment-water diffusion       SWSTSS KAKC /  

[7] water inflow 
             

WPIIWI KGC )*1/()*1( RGPOCRGIOC OKOK ++  
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[8] water particle inflow         ENPVPXIW I DCGC /  

[9] direct emissions                                        WE  

[10] volatilization                                  WVW AKC  

[11] water transformation   0.693 WDWW T TVC /⋅  

[12] sediment deposition   … RGPOCWDNW OKAGC  

[13] water outflow                                      JW GC  

[14] water particles outflow 
                                           RGPOCVPWJW OKCGC  

[15] water-sediment diffusion              . STW AKC  

[16] sediment transformation 
DSSST TVC /693.0 ⋅  

[17] sediment burial                 ENSWBNSS DAGC /  

    The solution of equations (1) and (2) can be 
solved, given the chemical concentrations in 
sediment and water according to equations (3) 
and (4).  
 

SSC   
=  ( [1] + [2] + [3] + [4] + [7] + [8] + WE )  

          ( RGPOCWDN OKAG  + ST AK )/{( WV AK + JG  + 

                RGPOCWDN OKAG  + RGPOCVPWJ OKCG   + 

          0.693
DW

WWT

T
VF

⋅ )(
ENS

RGSWRNRGR

D
OAGO

 + 
SW

ST

K
AK

 + 

    
DS

SST

T
VC

+
ENS

WBNSS

D
AGC

)( WV AK +0.693*
DW

WWT

T
VF + 

       RGPOCWDN OKAG + JG + RGPOCVPWJ OKCG   + 

        RGPOCWDN OKAG + SV )}                               (3) 

 

WC   
= SSC  

SW

ST

ENSRGS

WRNRGR

K
AK

DO
AGO

+( +0.693
DS

STS

T
FV

⋅  

          )
ENS

WBN

D
AG

+ /( RGPOCWDN OKAG + ST AK )     (4) 

 
The auxiliary correlations used were: 

KAW RTHK /=  

ENSRGSOCSW DOKK =  
if  KMK TT > , RATF = )/1(79.6exp( KMK TT−⋅ )  

else 1=RATF   

W TF = ENPPWENPRGIOCPW DCDOKC /)(1 +−  

STF =
SW

FS
FS K

V
V

−
+

1
           

OWOC KK 7101.4 −⋅=   

VK  = )/( VWAWVAAWVAVW KKKKKK +  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Processes considered in the direct 
problem.  
 
 
INVERSE PROBLEM.   
     This work assumes the following 
considerations    
1.   The equations (2) and (3), we observed that 
the concentration chemical in the water and in the 
sediment depends on several parameters some 
related directly to the pollutant and other to the 
medium. Most of the parameters were obtained 
from chemical tables [4]. 
2. El value of the individual concentration 
chemical in water, was approximate by

  

∑= PAHsCC MW ( in water ∑PAHs/  in mussel)    (5) 

 

∑ PAHs is the total concentrations of measured 

PAHs. The Table 1 presents the concentrations of 
measured PAHs in the mussel and the sediment, 
and calculated for the water in the Guanabara 
Bay. 
3. There are five PAHs (anthracene, fluoranthene, 
chrysene, pyrene and benzo(a)pyrene.) for each 
PAHs we have the equations related to the 
concentration of the PAHs in the water and in the 
sediment, equations. (2) and (3). 
4. For each PAHs we have two considered 
unknowns parameters: direct emission and the 
diffusion coefficient.   

 Wet part. deposition 
              [2] Air\water 

Absorption 
         [1] 

Dry particles   
Deposition 
         [3] 

Rain dissolution 
               [4] 

Sediment  
Resuspension 
        [5] 

Sed.\water 
Diffusion 
       [6] 

Water inflow  [7] 

Particles inflow 
               [8] 

Emission 
       [9]   

Volatization 
        [10] 

Water transformation 
                [11] 

Sediment 
Deposition 
     [12] 

Water outflow [13] 

Particles outflow 
               [14] 

water\sed. 
Diffusion 
     [15] 

Sediment  
transformation 
             [16]  

Sediment 
Burial [17] 

Bioaccumulation 
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Table 1. Concentration of PAHs in the Guanabara 
Bay 

 Mussel Sediment Water 
A 35,08 ng/g 332482 ng/l 90,85 ng/l 
F 70,15 ng/g 531376 ng/l 181,7 ng/l 

C 23,20 ng/g 729530 ng/l 59,6 ng/l 
P 21,46 ng/g 716512 ng/l 55,8 ng/l 
B 11,7 ng/g 798232 ng/l 30,3 ng/l 

∑ PAHs  271 ng/g  701 ng/l 
A = Anthracene, F = Fluoranthene, C = Chrysene, P = Pyrene 
and B = Benzo(a)pyrene.   
     
  In general in a system: if n is it number of 
chemical strengths and p is the total number the 
unknowns therefore 2n is the number of the 
available equations and p is the sum of: 2n the 
number the unknowns related to the pollutants 
and m the number of unknown properties of the 
medium.          
  The problem of estimate p unknowns, having 
only 2n equations available may be solved with 
the Method of Generalized Maximum Entropy or 
the method of Tikhonov functional minimization. 
A variant of the Tikhonov functional 
minimization problem is the Levenberg 
Marquardt's method. 
      We can write jz  the unknowns like of the 
system, with =j 1,2... p. All considered 
unknowns are presented in the table 4, the last 
five are related to the properties physics and 
chemical of the Guanabara Bay 
 
Method of Generalized Maximum Entropy  
     As the number of unknowns p is superior to 
the number of available equations or data (water 
and sediment concentration for each chemical) 
2n, there are a large number of possible solutions 
for the system represented by equations (1) and 
(2). Therefore, the inverse problem is solved as an 
optimization problem where a criterion is defined 
for the choice of one of the possible solutions. 
         Let Z be the vector formed by all unknowns 
of the system for n chemicals. 
 

       Z = { }pzzz ,........., 21                                (6) 

 
      The known data, chemical concentrations in 
water and sediment, are denoted by JC and can 

be calculated by a function Jf (Z) as  

     JC = Jf (Z)                                                   (7) 

Defining 
      JF (Z)  −= JC Jf (Z)                                (8) 

 
Considering the Lagrange multipliers method, the 
Lagrangian is expressed as  
 

qL (Z, Zo, Jλ ) = qBD , (Z,Zo)

 

  
2

1
J∑

=

⋅+
n

J

λ JF  (Z)   (9) 

 

Jλ is the Lagrange multiplier for the J equation, 

ZO is an initial or starting value of Z, qBD , (Z,Zo) 

is the Bregman distance between Z and Zo [5], 
defined as 
 

qBD , (Z,Zo) =

 

qBD , ( qB,η (Z), qB,η ( Zo)) = 

     = qB,η (Z)- qB,η ( Zo) - 〈∇ qB,η (Zo),Z-Zo 〉   (10) 

 

where qB,η  is the functional momento of nth- 

order B  of the q-discrepancy, defined as 
 

      qB,η (Z)=   
1

1 q
z

z
q
i

p

i

B
i

−∑
=

                          (11) 

 
an approximation when 0=q  gives  
 

      qB,η (Z)=   ln
1

i

p

i

B
i zz∑

=

                             (12) 

 
derived from the measurement of the Sharma and 
Mittall [6] directed divergence. This functional 
represents the deviation of an expected value of z, 
raised to the power q, of a priori information of 
the concentration measurement given by the 
inverse problem. The particular case for which 

0→q and B=1 corresponds to the functional 
entropy  
 

      0,1η (Z) =   ln
1

i

p

i
i zz∑

=

                           (13) 

 
From equations (10), (11) and (12) results 
if 0=q  

qBD , (Z,Zo)  = −∑
=

p

i
i

B
i zz

1

)ln(  

         )ln())((1
oioiioi

B
oi zzzBzz −−− -    
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         )(1
oii

qB
oi zzz −−+                                    (14) 

else 

qBD , (Z,Zo)  = −
−∑

=

p

i

q
iB

i q
z

z
1

)
1

(  

               )
1

))(((1

q
z

zzBzz
q
oi

oiioi
B
oi

−
−−− -  

                )(1
oii

qB
oi zzz −−+                             (15) 

 
combining equations (11), (12) and (9), for the 
case of  B = 1   
if  0=q    

qL (Z, Zo, λ) = )ln()ln(
1

oii

p

i
ii zzzz −∑

=

  - 

                        )( oii zz − +   
2

1
J∑

=

⋅
n

J

λ JF (Z)      (16) 

else

      

 

qL (Z, Zo, λ) = )()(
1

oii
q
oi

p

i

q
oi

q
i

i zzz
q

zz
z −−

−∑
=

 

  
2

1
J∑

=

⋅+
n

J

λ JF (Z)                                                (17) 

 
Solution of the Inverse Problem by the 
Generalized Maximum Entropy 
    As discussed in the previous section, the 
inverse problem is formulated as an optimization 
problem [7-10]. Using the Lagrangian given by 
equations (16) or (17) and varying the value of 
the parameter q a family of algorithms is built. 
 To obtain the minimum value of the 
Lagrangian at the critical point the following 
equation is written 
  

iz∂
∂

qL (Z,Zo,λ)=
iz∂

∂
qBD , (Z,Zo)  + 

                    
2

1
J∑

=

⋅+
n

J

λ
iz∂

∂
JF (Z)=0                    (18) 

 
from equations (16) or (17) the unknowns to be 
determined are the Lagrange multipliers  
 ,Jλ  

with  J= 1,2, ..2n ,  ∈Jλ λ      

and the unknowns of the environmental model 

iz , with  i= 1,2,..  p,     ∈iz Z 

that are calculated solving the non-linear system 
(2n+p)(2n+p) formed by  
 

iz∂
∂

qBD , (Z,Zo)   
2

1
J∑

=

+
n

J

λ
iz∂

∂
JF  (Z) = 0          

and JF  (Z) = 0                           

with   i= 1,2...p and J= 1,2…2n                       (19) 
 

A code was written in the MATLAB 
environment in order to solve the system 
described by equation (19). This code provided 
the necessary tools for optimizing the results. The 
minimization of the system (19) was achieved 
with the medium-scale algorithm: SQP, Quasi-
Newton, line-search [11]. 

It becomes evident that the problem of 
evaluating the unknowns depends on the 
experimental data (included in 

JC ), on an initial 

guess for the unknown, on the chemical properties 
and on the general physical properties of the 
environment.  
 
Levenberg-Marquardt Method 
    Another alternative to solve the problem is to 
utilize the Tikhonov functional given by 
  

 [ 
2

1
∑

=

n

J
JF  (Z) ]2  + qBD ,⋅α (Z,Zo)                     (20) 

 
where α  represents the relation between the 
measured clean signal and the noise found in the 
measurements. Usually, the value of α is small. 
     A variant of the Tikhonov functional is the 
Levenberg Marquardt method. For the case in 
which B=1 and q =1, this method results in 
  

    [ 
2

1
∑

=

n

J
JF  (Z) ]2  + ⋅α [Z - Zo]2 →  0            (21) 

 
     The solution of the Levenberg-Marquardt 
method is based on the functional minimization 
given by equation (21). 

RESULTS 
    Figures (2), (3) and (4) show the Bregman 
distance calculated varying q for different values 
of B, evaluated in Z when JF (Z) = 0, with J= 

1,2…2n. In theses figures, we obtain the 
minimum q value for B=2, B=1 and B=0, 
considering which the Bregman distance should 
be greater and equal to zero. Table 2 gives the 
minimum q values obtained for different B .  
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Figure 2. Bregman distance vs q for B=2. 
 
 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-500

-400

-300

-200

-100

0

100

values of q 

B
re

gm
an

 D
is

ta
nc

e 

 
     Figure 3. Bregman distance vs q for B=1. 
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Figure 4. Bregman distance vs q for B=0. 

 
 

Table 2. Minimum q values for different B 
B momentum q    optimum 

2 -2 
1 -1 
0  1 

 
Results obtained by the maximum entropy 
method 

Table 3 shows the physical-chemical 
properties of some PAHs studied in this work [4].  
 
 
Table 4. Assumed physical-chemical properties of 

some PAHs. 
Chem. Molec.mass 

(g/mol) 
Solubility 

(g/m3) 
Vapor Press. 

(Pa) 
A 178.2 0.064 3.5x10-4 
F 202.3 0.245 1.6x10-6 
C 228 1.8x10-3 8.3x10-7 

P 202.3 0.132 6.1x10-4 
B 252.3 1.6x10-3 7.3x10-7 

Chem. Half-life 
decay in 
sed. (h) 

Half-life 
decay in  
water (h) 

Melting  
point 
(oC)) 

Log 
KOW 

A 17000 550 216.2 5.33 
F 55000 1700 111 5.33 
C 55000 1700 255 5.61 
P 55000 1700 156 5.32 
B 55000 1700 175 6.3 

 
 

Table 4. General characteristics of Guanabara 
Bay 

Area (m2) 3.52x108 

Volume (m3) 2.70x109 

Water inflow rate (m3/h) 9.0x106 

Water outflow rate (m3/h) 7.12x106 

Solids deposition rate (g/m2.day) 22.96 

Solids resuspension rate (g/m2.day) 2.65 

Solids burial rate (g/m2.day) 13.52 

Conc. Of particles in water (mg/l) 40.39 

Conc. of part. in inflow water (mg/l) 92.4255 

Conc. Of aerosol particles  (µg/m3) 30 

Volumetric fraction of part. in sed. 0.2895 

Density of  particles in water (kg/m3) 2500 

Density of  particles in sed. (kg/m3) 2500 

Density of aerosol particles (kg/m3) 1500 

Rain rate (m/yr.) 1.15 

Velocity of aerosol deposition (m/h) 7.2 

Scavenging rate 2.0x105 
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Table 5. Maximum and minimum values for the 
unknowns. 

 Unknown Min.  
value 

Max. 
value 

Z1 Direct emission rate 
anthracene (kg/yr) 

10 2.0x104 

Z2 Direct emission rate 
fluoranthene (kg/yr) 

10 2.0x104 

Z3 Direct emission rate 
chrysene (kg/yr) 

10 2.0x104 

Z4 Direct emission rate 
pyrene (kg/yr) 

10 2.0x104 

Z5 Direct emission rate 
benzo(a)pyrene (kg/yr) 

10 2.0x104 

Z6 Sed–water mass transfer 
coeff. anthracene (m/h) 

1x10-5 0.1 

Z7 Sed–water mass transfer 
coeff. fluoranthene (m/h) 

1x10-5 0.1 

Z8 Sed.–water mass transfer 
coeff . chrysene (m/h) 

1x10-5 0.1 

Z9 Sed.–water mass transfer 
coeff . pyrene (m/h) 

1x10-5 0.1 

Z10  Sed.–water mass transfer 
coeff . BaP (m/h) 

1x10-5 0.1 

Z11 Active sed. layer (m) 3.0x10-3 1.0x10-2 

Z12 Fraction of organic 
carbon in sediment solids 

0.03 0.063 

Z13 Fraction of organic 
carbon in inflow water 

particles 

0.240 0.361 

Z14 Fraction of organic 
carbon in water particles 

0.240 0.361 

Z15 Fraction of organic 
carbon in resuspended 

particles 

0.03 0.240 

 
 
Some general characteristics of Guanabara 

Bay are given in Table 4. These data were 
obtained from [12 – 15]. Table 5 presents the 
minimum and maximum values of the unknowns 
evaluated. 
     The q values for B=0 and B=1 shown in table 
2 coincided to be the best in the solution of the 
system (19). 

Tables 6 and 7 present the estimates of the 
chemical and media unknowns respectively, 
obtained with the better q for different B and the 
particular case for B=1 and q=0 (entropy).  

 
 

Table 6. Obtained estimates of the unknown 
chemicals with the better  q for different B. 

Chem.  Emission 
rate (kg/yr) 

Mass transf. 
coeff. (m/h) 

A B=1 q=-1 
B=1 q= 0 
B=0 q= 1 

9019 
8954 
9000 

0.0120 
0.0172 
0.0141 

F B=1 q=-1 
B=1 q= 0 
B=0 q= 1 

12894 
12821 
12881 

0.0191 
0.0291 
0.0229 

C B=1 q=-1 
B=1 q= 0 
B=0 q= 1 

5831 
5756 
5826 

0.00346 
0.00452 
0.00392 

P B=1 q=-1 
B=1 q= 0 
B=0 q= 1 

5714 
5617 
5707 

0.00060 
0.00081 
0.00070 

B B=1 q=-1 
B=1 q= 0 
B=0 q= 1 

4116 
4051 
4114 

0.000143 
0.000328 
0.000186 

 
 

Table 7. Obtained estimates of the unknown 
media with the better q for different B. 

Active sed. layer (m) B=1 q=-1 
B=1 q= 0 
B=0 q= 1 

0.0031 
0.0030 
0.0031 

Fraction of organic carbon 
in sediment solids 

B=1 q=-1 
B=1 q = 0 
B=0 q= 1 

0.045 
0.056 
0.050 

Fraction of organic carbon 
in inflow water particles 

B=1 q=-1 
B=1 q= 0 
B=0 q= 1 

0.355 
0.356 
0.355 

Fraction of organic carbon 
in water particles 

B=1 q=-1 
B=1 q= 0 
B=0 q= 1 

0.354 
0.360 
0.360 

Fraction of organic carbon 
in resuspended particles 

B=1 q=-1 
B=1 q= 0 
B=0 q= 1 

0.032 
0.030 
0.035 

 
 

Table 8. Estimates of chemical unknowns 
obtained by the Levenberg-Marquardt method 

with  α = 0.001 
Chem. Emission rate 

(kg/yr) 
Mass transf. coeff. 

(m/h) 
A 8553 0.0134 
F 12736 0.0219 
C 5572 0.00317 
P 5363 0.000348 
B 3881 1.0x10-6 
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Levenberg-Marquardt Method 
The estimates of unknown chemicals will be 

presented solving the system of equations with 10 
unknowns. It was assumed that the fractions of 
organic carbon: in sediment solids is 0.050, in 
resuspended particles is 0.033, in inflow water is  
0.355 and in water particles is 0.356; the active 
sediment layer is equal to 0.0031 m The results 
are presented in Table 8. 
 
 
CONCLUSIONS AND FUTURE WORK 

The results obtained by the Generalized 
Maximum Entropy method presented 
convergence orders of 10-14 for B = 1 and q = -1 
and 10-17 for B = 0 and q = 1. Better results were 
attained with the Levenberg-Marquardt method 
solving the system of equations with 10 
unknowns and when it was tried to solve the 
system with 15 unknowns, convergence was not 
obtained in many cases, or the order of the 
function to be minimized was 104.  

Finally, it should be emphasized that this work 
is only a first attempt to find the emission rates of 
pollutant chemicals in different regions of 
Guanabara Bay. 
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ABSTRACT
This paper compares two methods for

estimating a heat transfer coefficient: the Iterative
Regularization Method “IRM” [1] and the
Function Specification Method “FSM” with a
spatial regularization [2]. The study is a
continuation of our previous investigations [3,4].
A cylindrical steel bar (L=100 mm and d= 25
mm) is heated up to 900°C and then quenched by
a water jet sprayed on its lower end. The problem
under analysis is multifaceted. First, during the
exchange phase between water and solid surface,
phenomena like vaporization, boiling or forced
convection occur. Second, the metallurgical phase
changes of the considered material have to be
taken into account in the examination of the heat
treatment problem. The study is conducted to
examine and to solve a non linear thermo-
metallurgical inverse problem of estimating time
and space dependent convection heat transfer
coefficient.

NOMENCLATURE
a diffusivity (m².s-1)
Ci specific heat of the phase i
Dn vector of descent direction
dT/dt cooling speed  (°C.s-1)

2z
ta

Fo
∆

=∆  delta Fourier Number

Hγ, Hα enthalpies of the phases γ and α (Jm-3)
H(r,t),Hn+1 heat transfer coefficient (W.m-2.K-1)
HRC Rockwell C hardness
J(H) residual functional

nJ∇ residual functional gradient

Lij, γαL heat transformation of phase i to j
(Jm-3)

n iteration number
Pi, P, Peq proportion of metallurgic phase

(volume fraction)
r spatial coordinates (m)
S sensitivity coefficient
Tinf external Temperature (°C).
Twater temperature of water (°C)
T,Ti temperature in the sample (°C)
T0, Tmax initial and maximal temperatures (°C)
Y,Yi, Ye measured temperatures (°C)
z spatial coordinates (m).
γn descent  parameter
δ² convergence criterion
ε(Τ) emissivity of the sample
ε1 stopping criterion
λi conductivity of the phase i (Wm-1K-1)
ρi density of the phase i (Kg.m-3)
σ² root-mean-square error on the

temperature
ω random number
∆max maximum amplitude of the noise
Ψ(z,r,t) adjoint variable

INTRODUCTION
In the two past decades, the development of

the 2D and 3D inverse methods is increased in
different domains of technology. The final report
of the “2nd Joint Russian-American Workshop on
Inverse Problems in Engineering” [5] have
defined several directions on the development of
some points as: a)  development of methods and
algorithms for solving multidimensional inverse
problems; b) Investigation and improvement of
mathematical models of heat and mass transfer
including physical and chemical transformations
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in materials. For that, the inverse studies on the
heat treatments are increased. The goal is the
estimation of boundary conditions as heat flux,
temperature or heat transfer coefficient [6,7,8]. In
the last decade, several studies have treated the
thermometallurgical problems but as linear and
without coupling. Mainly used methods for
multidimensional problems are: The function
specification method “FSM” with spatial
regularizations [2,9] and the iterative
regularization method “IRM” with the conjugate
gradient method[1,10,11]. These methods are well
documented. Recently, J.V. Beck [12,13] have
initiated comparisons between different method in
1D and linear cases.

We want to compare these above two methods
for the 2D axisymmetric problem  of the
“Jominy” end-quench test. In fine, the difficulty
of the study is in the resolution of the coupled
thermometallurgical problem with a high
nonlinearity (principally in the thermal
conductivity during the phase transformations
(austenite – martensite)).

In this paper, first, we present the
experimental setup. Second, we describe the
direct problem with the difficulties for the
simulation of phase transformations and transfer
between the water jet at 20°C and the quenching
surface at 900°C. Third, we present the two
estimation techniques. We insist on the fact that
we use the same equation systems particularly for
the direct and sensitivity (in variation) problems.
For a first comparison, we apply the techniques
on a material without phase transformations ( we
treat only the heat conduction equation). This
work permit to define the parameters and the
criterion for obtain the best results. At last, for the
coupled thermometallurgical problem on the
16MND5 steel, we compare the two methods.

JOMINY END QUENCH TEST

Principle (Figure 1)
The Jominy end quench test is a standard test

(NFA04-303) used to characterize the
hardenability of steels [14,15]. A steel cylinder
(diameter: 25mm ; length: 100mm) is heated
within the austenitic domain during a preset time
and cooled by a water jet on its lower end (Twater
varying between 15 and 25°C) (Figure 1). After
cooling, hardness measurements are carried out
along the cylinder axis as a function of distance
from the quenched extremity (the Jominy
hardenability curve).

 Jominy curve
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Figure 1: Principle of “Jominy” end-quench test.

Numerical simulation of the Jominy test
In a previous work [4], we have defined the

direct problem. Here, we recall the basic
equations. First, the numerical simulation is
conducted from a fully austenitized 16MND5
steel sample heated at 880°C. The equations,
implemented in both the SYSWELD code and the
estimation code, are the heat conduction equation
(1) and the metallurgical kinetic equations (2) of
the type Leblond-Devaux [16] and Koistinen-
Marburger [17]. The study domain (radial plane)
is defined in cylindrical coordinates assuming the
problem to be axisymmetric:
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In the heat conduction equation, a source term

allows to consider the phase change enthalpy
L αγ  according to the temperature during the
sample cooling. The transformation heat is
calculated according to the phase enthalpy:
L αγ = Hγ - Hα and by considering two
metallurgical phases only: γ (austenite) and α
(ferrite, pearlite, bainite or martensite). Moreover,
the thermophysical characteristics ρ(T), C(T) and
λ(T) are calculated at all time steps by a law of
mixtures according to the temperature. The
boundary and initial conditions are the following:
Lower side:

( ) ( ) ( )[ ]wateri
i

i Tt,r,0T)T,r(H
z

t,r,0zTTP −=
∂
=∂λ−∑    (3)

Upper side:  ( ) 0
z

t,r,zT max =
∂

∂                   (4)

Lateral surface:
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( ) ( ) ( ) ( )[ ]4
infmax

4max
i

i
i Tt,r,zTT

r
t,r,zTTP −σε=

∂
∂λ−∑ (5)

On the axis:      
( )

0
r

t,0r,zT
=

∂
=∂

                   (6)

Initial values:T(z,r, 0) = T0; Pγ (r, z, 0) = 1       (7)
The direct problem is validated in Le Masson

et al. [4,18].

ESTIMATIONS-MINIMIZATION
PROCEDURES

The objective of this research is to determine
the heat transfer coefficient on the lower side of
the sample in function of both time and radius:
H(r,t). The determination is conducted from the
temperature values taken at a depth smaller or
equal to z = 1mm. Two methods are used:

Iterative Regularization Method
The estimation of the heat transfer coefficient

in view of the direct problem (equations (1) to
(7)) can be formulated under the variational form
which implies the residual functional
minimization.

( ) ( )[ ] dtt,r,zYH;t,r,zT)H(J
ft

0

N

1i

2
iiii∫ ∑

=
−=               (8)

where ( ) ( )t,r,zYandH;t,r,zT iiii  represent the
estimated and measured temperatures at N various
points of the material, respectively. The inverse
problem consists in minimizing this residual
functional under constraints given by the
equations of the direct system (equations (1) to
(7)). The minimization is carried out by using the
conjugate gradient method [1]. The function
H(r,t) is considered here as an element of the
Hilbert space, L² and the new functions are
obtained after each iteration as follows:
Hn+1= Hn + γnDn,               n=1, ...                     (9)
where n is the iteration index, γn the descent
parameter, Hn+1the unknown vector to be
estimated and Dn the vector of descent direction
given by:

1nnnn DJD −β+∇−=  (10)

where ( )
2n

n1nn
n

J

J,JJ

∇

∇∇−∇
=β

−
, β0=0.  (11)

with (,) is the scalar product in Hilbert space L².
In the absence of noise, the iteration procedure

is carried on until the following stopping criterion
is verified:

1n

n1n

H

HH
ε≤

−+
                (12)

The gradient nJ∇  (Eq. (10) and (11)) of the
residual functional is obtained for all values of r
and t by the following analytical relationship [1]:

( ) ( )inf
n T)t,r,0(T*t,r,0J −Ψ=∇ .                 (13)

where Ψ(z,r,t) is the solution of the adjoint
problem. More details of the derivation of the
adjoint problem, variation problem and
computational algorithm are given in Le Masson
et al.[3].

Regularization
The inverse problems are ill-posed and

numerical solutions depend on the fluctuations
occurring at the measurements. Small fluctuations
at the measurements can generate big errors in the
solution to be estimated. We use the iterative
regularization method [1] in which the
regularizing condition is the residual criterion:

2*n)H(J δ≈ (14)
where n* is the index of the last iteration at which
the condition J(H) < δ² is verified for the first
time, δ² is the total (integrated) measurement error
defined as:

( )∫ ∑
=

σ=δ ft
0

N

1i
ii

22 dtt,r,z                (15)

 σ²(z,r,t) is the root-mean-square error of the
temperature measurements obtained by
smoothing the measured temperature histories.
The number n* is the regularization parameter of
the method.

Function Specification Method
The method is based on the same principle

than the function sequential specification method
in time with spatial regularization [2]. For two
dimensional heat transfer coefficient we must
minimize the differences between the computed
and measured temperatures at N various points of
the specimen. The time regularization is obtained
by adding a suitable number of future time steps
‘ntf’. The Tikhonov regularization principle is
employed to stabilize spatially the inverse
problem. The inverse problem solution consists in
minimizing the new functional:
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where R1 and R2 are the coefficients of the first
and second order spatial regularization,
respectively. R1 limits the variations of two
consecutive spatial heat transfer coefficients. R2
is  used   for   obtain   smooth   space   variations
between consecutive coefficients. Minimization
of J(H) versus Hn+1 using linearization (Hn+1 = Hn

+∆Hn+1) and assuming temporally that the heat
tranfer coefficient is constant over “nft” time
steps (Hn+j = Hn+1), leads to:
[ ] [ ]( ) [ ] [ ] [ ]rT

1n2
r

2
T DDH*SS +=∆+ +  (17)

The matrice [ ]2
rS (MxM) and the vector [ ]rD

(M)  are defined for the regularization. The
matrice [ ]2

TS (MxM) and the vector [ ]TD  (M)
come from the residual functional without
regularization. Each terms (line l and column h)
of the matrice [ ]2

TS and the vector [ ]TD are
equal to:
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  In these terms, jn
H,T jnn

li
S +

+→ is the sensitivity

coefficient of the temperature jn
iT +  with respect

to the heat transfer coefficient at the point l. Here,
we mention that the sensitivity equations system
is precisely the variation system used in “IRM”
[4] with δH(r,t)= 1 at the node l and =0 for all
other points. In that case, we must solve M
sensitivity problems which are very high
computational time consuming. The direct and
sensitivity systems are solved numerically using
the control volume method and an implicit
scheme. The estimation procedure consists in:
1) Defining the initial values of de H0(t0).
2) Solving the direct system: equations (1) to (7)

for jn1n ttt ++ ≤≤ .
3) Solving all sensitivity problems [4]
4) Calculating [ ]2

TS and [ ]TD

5) Adding  the regularization: [ ]2
rS and [ ]rD

6) Calculating the condition number C: eq. (20)
7) Solving the system (17)
8) Incrementing the vector Hn+1 = Hn +∆Hn+1)
9) Calculating the quadratic criterion J(H):

equation (16)
10) Verifying the convergence criterion (12).
11) And back to step 2) with t = t +δt whether the

convergence criterion is correct or t = t
whether it is not correct.

Regularization
The inverse problems are ill-posed. So we

must define the parameters “ntf” for the time
regularization; R1 and R2 for the spatial
regularization. We choose “ntf” versus the depth
of the measured points and the noise on the
measurements. With the deepest locations of
sensors, the highest number of future time steps is
needed for time regularization. J.V. Beck et
al.[13] show that the accuracy of heat transfer
coefficient estimation decreases with the increase
of number of future times while that the
sensitivity to measurements errors decreases with
the same number.

We choose R1 and R2 versus the calculate of
the condition number:

 [ ] [ ]( ) [ ] [ ]( ) 12
r

2
T

2
r

2
T SS*SSC −++=       (20)

G.Blanc et al.[9] show how to define these
coefficients. We draw the condition number
versus R1 or R2. We choose the best parameter
when the curve is lower than a value (around 200
for exemple, Figure 2 ). We take the value around
R` for measurements without noise and R`` for
measurements with noise.
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Figure 2 : Variation of the condition number.

APPLICATIONS
In order to verify the method, two materials

have been used. One is nickel, without
metallurgical transformations; Another one is
16MND5 steel, the thermophysical characteristics
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ρ(Τ), λ(Τ) and C(T) of which in functional of the
phases and the temperature, as well as the
Continuous Cooling Temperature (C.C.T.)
diagram considered as the basis of the
transformations, are known. In the goal to
perform the comparison between the two methods
we introduce the delta Fourier number defined by

2
Nz

taFo ∆=∆  where a is the middle diffusivity for

Nickel or the diffusivity at the beginning of the
phase transformation of steel, ∆t is the time step
and zN is the sensor locations. Numerical results
presented here are obtained with computed
temperatures taken at the sensor locations zN
=0.15mm and zN =1mm for all thermocouples
which result in four ∆Fo numbers.

Table 1: Delta Fourier number
∆Fo Nickel steel

 z=0.15mm 4.92 1.7
 z=1mm 0.11 0.04

Case of nickel
As regards nickel only the heat conduction

equation has to be solved. Two types of law have
been tested in order to verify the code. The first
law is H(r,t) = 15000 W.m-2.K-1 and the second is
a coefficient, which varies along a dome (H(r,t)=
1000 + 7500 * (sin(πt/tmax) + sin(πr/rmax))). For
“IRM”, we have showed in a previous work [4]
that in the absence of noise, the heat transfer
coefficients are correctly found except near tf
where the initial condition of the adjoint problem
sets the adjoint variable equal to zero and,
therefore, implies that the gradient be always
equal to zero. The more we are moving away
from the surface (z = 0), the more the initial
condition affects estimate and increases the error.

Figure 3: Estimation with “IRM” for z=1mm.

Figure 3 shows the result obtained for z =
1mm and N = 30.

The analysis of these estimates confirms the
error when approaching t = tf. So, the estimation

domain is increased by 15 to 30% beyond the
effective time. Figure 4 shows the result for an
increased time of 15%.

Figure 4: Estimation with “IRM” for z=1mm
and an increased time.

We have the same problem for the dome. The
Figure 5 shows the result for an increased time of
30%.

Figure 5: Estimation with “IRM” for z=1mm and
an increased time of 30%.

Now for “FSM”, we show here that in the
absence of noise, the heat transfer coefficients
equal to 15000 are perfectly found (Figure 6).

Figure 6: Estimation with “FSM” for z=1mm.

For the dome, with theoretical measurements
in z = 0.15mm, the results are correctly found
(Figure 7). With theoretical measurements in
z=1mm, we have some problems at the beginning
because the initial values of the heat transfer
coefficients are equal to 1000 (Figure 8).
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Figure 7: Estimations with “FSM” for z =
0.15mm

Figure 8: Estimations with “FSM” for
z=1mm.

So, we must do several iterations to obtain
the first values at initial time. At the end, near tf,
the values stay constant because the stop
condition is verified at t=tf – ntf*∆t. So, in the
same manner as the “IRM”, we must increase the
estimation domain. We choose the parameters
“ntf” and R1 like as the values of the table 2.

Table 2: Values of “ntf” and R1
  ntf R1

 z = 0,15mm 2 5 10-8

 z = 1mm 8 10-7

In a second phase, we verify that, even in the
presence of noise, the convergence of the
algorithm toward a good estimation is acceptable.
The case of the dome only, for which a noise has
been added to the theoretical thermal cycles, is
presented here. The disturbance is defined by the
relationship: B = ω Tmax ∆max where ω is a random
number in [-1, +1], Tmax is the maximum value of
the surface temperature and ∆max is the maximum
amplitude of the noise. For these numerical tests,
we consider Tmax = 880°C and ∆max = 5%.
Yi(ri,zi,t) = Ye(ri,zi,t) + ω Tmax ∆max i=1,…,N   (21)

Figure 9 shows the results achieved in the case
of the dome at z=0.15mm and for tf = 1s. When
the criterion J(H) is approximately equal to δ² the
best result is reached. We have showed in the

previous work [4] that when computing beyond
the δ², the criterion decreases, while the solution
starts to oscillate. Figure 10 shows the results in
the case of the dome obtained with “FSM”.

Figure 9: Estimations with “IRM” for z=0.15mm
and noise.

Figure 10: Estimations with “FSM” for
z=0.15mm and noise.

With noised data, we must take more “ntf”
(here ntf=4) and we take a bigger parameter of
spatial regularization like as R2 =10-6 . We can see
that the results are correct.

As a conclusion to this section, we can say
that the two estimation methods, for the case of a
material without phase change and for a Fourier
number equal to 0.11, gives good enough results.

Case of 16MND5 steel
The following test cases are analyzed here: a)

H(r,t) = 15000 W.m-2.K-1 for  0 < r < rmax and  0<
t < 2s.  b) H(r,t)= 5000 + 7500 * (sin(πt/tmax) +
sin(πr/rmax)) for  0 < r < rmax  and  0 < t < 2s.

Figure 11: Estimations with “IRM” for
z=1mm
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Figure 11 displays with “IRM” the estimate of
the heat transfer coefficient for the case « a »
from the theoretical thermal curves considered in
z = 1mm with an increased time of 30%. The
results analysis show that the iterative
regularization method is not disturbed by the
phase changes. With “FSM” and for theoretical
measurements in z = 0.15mm, we show that the
results are completely found  (Figure 12) (ntf=2 ;
R1=6 10-8 ; ∆Fo=1.17).

Figure 12: Estimations with “FSM” for
z=0.15mm.

However, for theoretical measurements in z =
1mm (Figure 13)(ntf=8; R1 = 5 10-8; ∆Fo=0.04),
we show that we have an oscillation when the
phase change begin.

Figure 13: Estimations with “FSM” for
z=1mm.

At each mesh, when the transformation begin,
we have a bias on the estimate. The phase change
play a role of perturbation and the measure can’t
dissociate the effects of heat transfer coefficient
and the transformation of material. Archambault
et al. [8] show the same problem for an estimation
of a 1D heat flux and for a coupled
thermometallurgical problem. During the
transformation, we can see oscillations on the
estimate. Figure 14 shows the evolution of the
bias versus the depth of theoretical measurements.
The more we are moving away from the surface
(z = 0), the more the delta Fourier number
decrease. We have more bias on the estimate.

This results with this bias are however validate by
the comparison between the estimated and
theoretical temperatures. The errors are lower
0.1°C.
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Figure 14 : Evolutions of the bias versus the depth
of  theoretical measurements.

We notice the same in case « b ». Results are
displayed in Figures 15, 16 and 17.

Figure 15: Estimations with “IRM” for z=1mm
and an increased time of 30%.

Figure 16: Estimations with “FSM” for
z=0.15mm.

Figure 17: Estimations with “FSM” for z=1mm.

Influence of the phase
transformation in z = 0mm

Influence of the phase
transformation in z =
0.15mm

Influence of the
phase transformation
in z = 0mm

Influence of the
phase transformation
in z = 0.15mm
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At last, we have compared the results of the
“IRM” estimation and the ‘FSM’ estimation in
the case of noise-added thermal cycles considered
at z = 0.15mm and z=1mm. We have the same
results for z = 0.15mm. But, we have oscillations
on the “FSM” estimate for z=1mm.

CONCLUSION
Two methods are compared for the solution of

the inverse coupled thermometallurgical problem
of estimating the transient heat transfer coefficient
from interior temperature histories.

At first, the two methods gave accurate results
for nickel samples which have no phase
transformations. The delta Fourier number is
equal to 4.92 (z=0.15mm) or 0.11(z=1mm). So,
there is no real problem to estimate the heat
transfer coefficient by using both methods.

Second, we add for steel samples phase
transformations. The corresponding delta Fourier
number are equal to 1.7 and 0.04. For ∆Fo=1.7,
z=0.15mm, the two methods gave the same good
results. But, when ∆Fo=0.04 and the high
nonlinearities come in the material, we have a
biased estimation with the “FSM”(an oscillation).
However, the “IRM” give an accurate result.
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ABSTRACT
This paper shows applications of a method for

the estimation of a 2D heat transfer coefficient by
the Iterative Regularization Method “IRM” [1].
The Jominy end-quench test considered here is
used to measure the hardenability of steels. A
cylindrical steel bar (L=100 mm and d= 25 mm)
is heated up to 900°C and then quenched by a
water jet sprayed on its lower end. The
temperature histories are measured using
thermocouples embedded in the sample. The
reproducibility of test is provided by the
automation of the experimental procedure. The
study is conducted to examine and to solve a
thermo-metallurgical inverse problem of
estimating the time and space dependent
convection heat transfer coefficient.

NOMENCLATURE
a diffusivity (m².s-1)
Ci specific heat of the phase i
Dn vector of descent direction
dT/dt cooling speed (°C.s-1)

2z
ta

Fo
∆

=∆
delta Fourier number

Hγ, Hα enthalpies of the phases γ and α (J.m-3)
H(r,t),
Hn+1

heat transfer coefficient (W.m-2.K-1)

HRC Rockwell C hardness
J(H) residual functional

nJ∇ residual functional gradient

Lij, γαL heat transformation of phase i to j
(J.m-3)

n iteration number
Pi, P, Peq proportion of metallurgic phase (volume

fraction)
r spatial coordinates (m)
Tinf external Temperature (°C).
Twater temperature of water (°C)
T, Ti temperature in the sample (°C)
T0, Tmax initial and maximal temperatures(°C)
Y,Yi, Ye experimental temperatures (°C)
z spatial coordinates (m).
γn descent parameter
δ² total measurement error
ε(Τ) emissivity of the sample
ε1 stopping criterion
λi conductivity of the phase i (W.m-1.K-1)
ρi density of the phase i (Kg.m-3)
σ² root-mean-square error of the temperature
ω random number
∆max maximum noise amplitude
Ψ(z,r,t) adjoint variable

INTRODUCTION
Quenching is one of the most critical

operations in the heat treatment of many metallic
parts, affecting both mechanical and structural
properties. The first stage of this study involved
the prediction of the temperature history at the
quenching surface. However, the main difficulty
of these analyses is that the exact flux or heat
transfer coefficient at the quenching surface are
not easy to predict and they cannot be measured
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directly. An inverse estimation of these transient
parameters should be used with temperature
measurements near the quenching surface. In  this
 case, the estimation results are very sensitive to
small errors in experimental data, which may lead
to considerable errors in the estimated values.

Many methods have been proposed to solve
the inverse heat conduction problems for the
estimation of the unknown thermal boundary
conductions in several material processes. Osman
and Beck [4] use the sequential function
specification method in a 1D quenching problem
by solving only the heat conduction equation.
Chen et al. [5] use the Iterative Regularization
Method in a 2D quenching problem with a linear
heat conduction equation. They estimate a 2D
heat flux by fitting the experimental temperature
data (30 values obtained with 4 thermocouples in
the depth z = 2mm). Archambault and al. [6] use
the function specification method in 1D
quenching problem with a coupled thermo-
metallurgical problem. In their results one can see
oscillations on the estimation errors during the
phase transformations.

In this paper, we use the Iterative
Regularization Method “IRM” for the 2D
axisymmetric problem for the “Jominy” end-
quench test. The main difficulty of the problem is
the simulation of the coupled thermometallurgical
phenomena with a high nonlinearity of the
thermal conductivity during the phase
transformations ( austenite - martensite).

First, we present the experiments. Second, we
describe the direct problem with the simulation of
phase transformations and heat transfer between a
water jet at 20°C and a hot specimen surface at
880°C. Third, we present the estimation
procedure. To verify the estimation code, we use
a theoretical heat transfer coefficient which is
similar to the experimental one available in the
literature [12]. Finally, we present the
experimental results for two materials. For the
first, the Nickel, we solve only the nonlinear heat
conduction equation. For the second, the
16MND5 steel, we treat the coupled
thermometallurgical problem.

JOMINY END QUENCH TEST

Principle (Figure 1)
The JOMINY end quench test is a standard

test (NF A 04-303) used to characterize the
hardenability of steels [7,8]. A steel cylinder

(diameter: 25mm ; length: 100mm) is heated
within the austenite domain during a preset time
and cooled by a water jet sprayed on its lower end
(Twater varying between 15 and 25°C) (Figure 1).
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Figure 1: Principle of “Jominy” end-quench test

 After cooling the Jominy bar two parallel
polished plane bands are prepared on two sides of
the test cylinder. Hardness measurements are
carried out along the cylinder axis as a function of
distance from the quenching surface (1.5mm,
3mm, 5mm, 7mm, 9mm, 11mm.......60mm, 70mm
and 80mm). The curve representing the hardness
variations in function of the distance from the
quenched end of the cylinder is called the Jominy
hardenability curve.

induction

Silice tubewith
an inert gas

Vanne

Water jet

Sample

Figure 2: Sketch of experimental setup in the
LET2E laboratory

The experimental setup built according to the
standard gives following characteristics (Figure2):
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• Induction heating in an enclosure filled by
an inert gas (argon);

• Computer-aided control of various actions
(heating, cylinder handling, quenching),
thanks to which the test reproducibility is
satisfactory.

Temperature histories are measured with the
embedded thermocouples in a number of points
near the quenching surface inside the specimen
and at its lateral surface. That makes it possible,
by using inverse methods, to identify parameters
or functions at the quenching surface. The
thermocouples (type K, φ = 70µm) are embedded
perpendicularly of the axis in holes (φ = 0.6mm,
depth between 0.5 mm and 12mm). They are
isolated by alumine tubes (Photo 1). The thermal
kinetic parameters are acquired by a “IOTECH-
Daqbook/216” analyzer and a thermocouple card
“DBK19”.

Photo 1: sample with thermocouples

Numerical simulation of the JOMINY test
In our previous work [9], we have defined the

direct problem. Here, we remind the system of
equations. First, the numerical simulation is
carried out from a fully austenitized 16MND5
steel sample (considered as an equivalent of
ASTM A508 Cl. 3) heated at 880°C. The
equations, implemented in both the SYSWELD
code and the estimation code which we
developed, are the energy equation (1) and the
metallurgical kinetic equations (2) of the type
Leblond-Devaux [10] and Koistinen-Marburger
[11]. The integration domain (radial plane) is
defined in cylindrical coordinates assuming that
the problem is axisymmetric:
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In the energy equation (1), the source term
allows to consider the phase change enthalpy
L αγ  according to the temperature evolution
during the sample cooling. The phase change heat
is calculated according to the phase enthalpy:
L αγ = Hγ - Hα and by considering only two
metallurgical phases: γ (austenite) and α (ferrite,
pearlite, bainite or martensite). The enthalpies of
the phase α and γ are defined by polynomial
functions between 100°C and 1450°C. We
compute the parameters of the metallurgical
kinetic equations with the use of the Continuous
Cooling Temperature (C.C.T.) diagram (Figure
3).
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Figure 3: CCT diagram

We use the finite-difference method to
simulate numerically the Jominy test. For each
node of the finite-difference grid, the cooling
speed and the temperature are computed. With
these two parameters, we can calculate the
percentage of the metallurgical phases. Then, the
thermophysical characteristics ρ(T), C(T) and
λ(T) are calculated at all nodes by using the
mixture law in function to the temperature (for
example: λ(T)=Pγ* λγ (T) +Pα* λα (T)).

For the phase γ  of 16MND5 and for T <
1450°C:
ργ*Cγ(T) =3641440+4638.78*T-11.7784*T²
+0.0155136*T3-9.29165E-6*T4+2.03093E-9*T5
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λγ(T) = 0.0148939+1.24115E-5*T-7.74533E-
10*T²+8.11438E-13*T3

For the phase α of 16ΜΝD5 and for T < 750°C:
ρα *Cα (T) =3620850+2955.1*T-7.52398*T²
+0.0249182*T3-1.68686E-5*T4

λα(T) =0.0525037-3.35115E-5*T+1.76665E-8*T²
-1.74307E-11*T3

The boundary and initial conditions are the
following:
Lower side:

( ) ( ) ( )[ ]wateri
i

i Tt,r,0T)T,r(H
z

t,r,0zTTP −=
∂
=∂λ−∑    (3)

Upper side:   ( ) 0
z

t,r,zT max =
∂

∂                    (4)

Lateral surface:
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i
i Tt,r,zTT

r
t,r,zTTP −σε=

∂
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On the axis:   
( )

0
r

t,0r,zT
=

∂
=∂

                      (6)

Initial values:T(z,r, 0) = T0; Pγ (r, z, 0) = 1       (7)
We precise the hypothesis that we have used

for the theoretical heat transfer coefficient:
The first hypotheses, given by Sorin [12]

(Figure 4), involves the presence of vaporization,
boiling and forced convection at the surface
according to the temperature level.
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Figure 4: Hypothesis for the heat transfer
Coefficient.
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Figure 5: Weighting curve of the transfer
coefficient versus radius.

The second hypotheses comes from the fact
that when examining the water jet at the lower
surface, we can consider the stagnation point or
the stagnation region in the center (r = 0) and the
heat transfer coefficient depending on the radius
(Figure 5).

Figure 6 shows this heat transfer coefficient
for the direct problem. It’s one of the heat transfer
coefficients that we have estimated for the
verification of the estimation code [3].

Figure 6: Theoretical heat transfer coefficient.

ESTIMATION-MINIMIZATION PROCEDURE
The objective of this research is to estimate

the heat transfer coefficient at the quenching
surface of the sample in function of both time and
radius, H(r,t). The estimation is realized by using
the temperature histories measured in the depth
smaller or equal to z = 1mm.

The numerical algorithm built to estimate the
heat transfer coefficient is based on the
variational formulation of the inverse problem
under analysis that leads to the minimization of
the residual functional.

( ) ( )[ ] dtt,r,zYH;t,r,zT)H(J
ft

0

N

1i

2
iiii∫ ∑

=
−=               (8)

where ( ) ( )t,r,zYandH;t,r,zT iiii  represent the
computed  and measured temperature histories at
N various points of the material, respectively. The
inverse problem consists in minimizing this
residual functional under constraints given by the
equations of the direct problem (equations (1) to
(7)). The minimization is carried out by using the
conjugate gradient method [1]. The function
H(r,t) is considered here as an element of the
Hilbert space L² and the improved desired grid
function is obtained at each iteration as follows:
Hn+1= Hn + γnDn,               n=1…                   (9)
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where n is the iteration index, γn is the descent
parameter, Hn+1 is the unknown grid function to be
estimated and Dn is the vector of descent direction
given by:

1nnnn DJD −β+∇−=  (10)

where 
( )

2n

n1nn
n

J

J,JJ

∇

∇∇−∇
=β

−
, β0=0.  (11)

with (,) is the scalar product in Hilbert space L².
In the absence of noise, the iterative procedure

is carried on until the following stopping criterion
is verified:

1n

n1n

H

HH
ε≤

−+
                (12)

The residual functional gradient nJ∇  in Eq. (10)
and (11) is obtained for all values of r and t by the
following analytical relationship [1]:

( ) ( )inf
n T)t,r,0(T*t,r,0J −Ψ=∇ .                 (13)

where Ψ(z,r,t) is the solution of the adjoint
problem. More details of the derivation of the
adjoint problem, variation problem and
computational algorithm are given in Le Masson
et al.[3].

Regularization
The inverse problems are ill-posed and

numerical solutions depend on the fluctuations
occurring at the measurements. Small fluctuations
at the measurements can generate big errors in the
solution to be estimated. We use the iterative
regularization method [1] in which the
regularizing condition is the residual criterion:

2*n)H(J δ≈ (14)
where n* is the index of the last iteration at which
the condition J(H) < δ² is verified for the first
time, δ² is the total (integrated) measurement error
defined as:

( )∫ ∑
=

σ=δ ft
0

N

1i
ii

22 dtt,r,z                (15)

 σ²(z,r,t) is the root-mean-square error of the
temperature measurements obtained by
smoothing the measured temperature histories.
The number n* is the regularization parameter of
the method.

APPLICATIONS
In order to verify the method, two materials

have been analyzed. One is nickel, without
metallurgical transformation; another one is

16MND5 steel, the thermophysical characteristics
ρ(Τ), λ(Τ) and C(T) of which in function of the
phases and the temperature, as well as the C.C.T.
diagram.

Theoretical case
In the paper, Le Masson et al. [3], we have

used several theoretical  heat transfer coefficients
for the verification of the algorithm. Here, we
show the results only for the theoretical heat
transfer coefficient shown above (Figure 6). The
theoretical temperatures are simulated for a
16MND5 steel and in the depth z=0.15mm and
z=1mm. Figure 7 shows the heat transfer
coefficient estimated from the thermal cycles
simulated in z = 1mm. We note that the damping
effect due to the depth generates a decrease of the
boiling peak of Hexp.

Figure 7: H(r,t) estimated from the thermal cycles
simulated in z=1mm.

Figure 8: H(r,t) estimated from the noise-added
thermal cycles simulated in z = 0,15mm.

When a noise is added to the thermal histories,
the estimated values (Figure 8 for z = 0.15mm
and Figure 9 for z = 1mm) remain satisfactory. A
decrease of the boiling peak, however, is
observed for the function Hexp. When the criterion
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J(H) is approximately equal δ², the iterations are
terminated.

Figure 9: H(r,t) estimated from the noise-added
thermal cycles simulated in z = 1mm.

The last result (Figure 10) we present here is a
test without noise relating to the estimation for
thermal cycles simulated in z = 0.6mm at a few
measurement points in the radial direction N = 8
(eight thermocouples uniformly distributed with
thirty space nodes)

Figure 10: H(r,t)  estimated from the thermal
cycles simulated in z = 0.6mm.

Experimental cases

Table 1 : Thermocouple positions (radius r and
depth z)

r (mm) 0.5 2.5 3.5 4.5 5.5 6.5

z (mm) 0.6 0.6 0.6 0.6 0.6 0.6

r (mm) 8.5 10.5 11.9 11.9

z (mm) 0.6 0.6 1.5 3

The two experimental cases have been treated
first with a Nickel sample and second with a
16MND5 steel sample. A good reproducibility of

experiments permits to compare estimation
results. In the both experimental cases, the
thermocouple positions were the same. The table
1 resume the positions of embedded
thermocouples. We note the delta Fourier number
(∆Fo) is around 0.11.

 These K-type thermocouples (φ =70µm) are
embedded perpendicularly  of the axis in holes (φ
= 0.6mm) and  isolated by alumine tubes. After
the heating during 30 minutes up to around
880°C, we obtain a complete austenite
transformation ( defined by the C.C.T. diagram –
16MND5 steel case) and the heat treatment can
begin. The data acquisition begins before the
sample cooling by the water jet and terminate
after five minutes. Our principal goal is the
estimation of the heat transfer coefficient at the
beginning of the heat treatment. So, here, we
present only these critical values (t < 10s for the
16MND5 steel and t < 20s for Nickel). The
Figures 11 and 12 present the estimation results:
Figure 11 for the Nickel sample and Figure 12 for
the 16MND5 steel sample.

Figure 11: Estimation result for the Nickel sample
(0 ≤ t ≤ 20s).

Figure 12: Estimation result for the 16MND5
steel sample (0 ≤ t ≤ 10s).
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In the both cases, we can do the following
remarks:
a) First, we can see that the forms of these heat
transfer coefficients are the same.
b) During the cooling by  the water jet, we
have a highly transient and highly nonlinear
phenomenon. We can see in the center of the
sample an apparition of  vapor and boiling phases
(peaks for r lower of 5mm). In fact, the diameter
of the water jet and that of the sample are 12.5mm
and 25mm respectively. So, at the beginning the
cooling at the center zone is more intensive.
c) After the stabilization of the water jet, we can
remark that the heat transfer coefficient is really a
function of radius and time. We can think, like as
our second hypotheses, that the stagnation point
or the stagnation region is established on the axis.
The heat transfer coefficient grows up with the
radius. So we have the highest heat transfer
coefficient at r = 12.5mm.
d) We can see the evolution of  the heat transfer
coefficient in Figure 13. At the beginning, we
have a big variation between all heat transfer
coefficient values. We can remark that at t=1s for
the small radius (r<5mm) we have an ebullition
phenomenon. When the time increases, the
variation on the heat transfer coefficient becomes
smooth and regular.
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Figure 13: Heat transfer coefficient variations  for
the 16MND5 sample.

e) At last, we draw as in Figure 14  the heat
transfer coefficient evolution versus the
temperature of the quenching surface. We can
remark that for all space nodes of the quenching
surface the heat transfert coefficient has a
maximum value between 100°C and 200°C. Then,
for a temperature around 100°C, the heat transfer
coefficient goes down. In fact, we suppose that
we have a super-critical heat flux between 100°C
and 200°C and forced convection under 100°C.

(This result is similar of those given by Chen et
al. [2]).
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Figure 14: Heat transfer coefficient variations
with  temperature.

We note that the total measurement error δ²
was computed by smoothing the measurd
temperature histories. As the result we calculate
the value of δ². The noise maximum amplitude
was estimated to be around ∆T=10°C. Figure 15
shows the comparaison of three measured and
estimated temperature histories for the nickel
sample.

Figure 15: Comparison between measured and
estimated temperatures.
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Figure 16: Error between five measured and
estimated temperatures
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In Figure 16, we show the residuals between
the measured and estimated temperatures. We can
see that the maximum residual values correspond
to the value estimated above.

CONCLUSION
The objective of the presented experimental

and numerical study was the estimation of a 2D
heat tranfer coefficient during a heat treatment,
the “Jominy” end-quench test. This 2D heat
transfer coefficient is considered as a time and
radius function. It is estimated at the beginning (
20s) of the heat treatment of the sample heated up
to 880°C by the water jet (20°C). During this
period, we have a highly transient and highly
nonlinear phenomenon. In the center of the
sample, we have an apparition of  vapor and
boiling phases (peaks for r lower of 5mm). After
the stabilization of the water jet, we estimate that
the heat transfer coefficient is really a function of
radius and time. In the center, a stagnation region
is developed and at r = rmax the heat transfer
coefficient is maximum. The heat transfer
coefficient values for the nickel sample and the
steel sample are quite similar. We  also analyzed a
variation of the heat transfer coefficient versus
temperature. A maximum value is obtained for a
temperature of the quenching surface between
100°C and 200°C.

We have used the Iterative Regularization
Method to carry out the estimation. The total
measurement error δ² was obtained by smoothing
the measured temperature histories. The noise
maximum amplitude was estimated to be around
to 10°C. The obtained results was verified by
comparing the measured and estimated
temperature histories.

In our future works we should pay more
attention on the confirmations of the physical
analysis and the CCT diagram constructions.
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ABSTRACT

In this work, the application of the Simulated Annealing
Inverse Technique to estimate the temperature history in
GTA welded workpiece was assessed. The method uses
transient temperature data from thermocouples attached
at the opposite face of the welding bead and a quasi-
steady model. In this case, a two-dimensional model with
moving heat sources is used, considering the material
thermal properties constant during all the welding
process. The component of the heat flux input that goes
into the workpiece and the efficiency of the GTAW
process were obtained. The results presented a good
agreement between the estimated and measured
temperature cycle. It was shown a great potential of
using inverse procedure in welding process.

NOMECLATURE
C arbitrary constant, m-1

Cp specific heat, J/kg- oC
d plate thickness, m
F least square function, [oC]2

I welding current, A
k thermal conductivity, W/m2 oC
K0 modified Bessel function of the first kind of

order zero,
Kb the Boltzmann´s constant.
q heat flux input, W/m2

T temperature, oC
t time, s
T0 initial workpiece temperature
V arc voltage, V
v welding speed, m/s
x, y, z moving Cartesian coordinates, m
x´, y´, z´ fixed coordinate system, m
Y measured temperature, oC

GREEK SYMBOLS
� thermal diffusivity, m2/s
� density, kg / m3

� efficiency of the arc

INTRODUCTION
Gas Tungsten Arc Welding (GTAW) is an arc

welding process, in which a voltaic arc is formed
between a non-consumable electrode and a metallic
workpiece. The joint (weld bead) is achieved trough the
fusion of the plate edges and material feeding is optional.

For that, a very intense and moving heat source is
applied over the workpiece. Part of this heat is used to
melt the plate, part is sunk into the workpiece and part is
lost in the environment and in the electrode cooling
system. The prediction of the way that the heat reaches
the plate (intensity, concentration, distribution,
temperature gradient, etc.) becomes extremely useful for
understanding welding phenomena, such as the bead
formation (width and penetration depth) or
microstructure changes in the heat-affected base metal.
Kraus [1], for instance, cites the application of this
predictions on the study of the metallurgical aspects of
welds, e.g., grain growth, size, and orientation, and solid-
state phase transformations, which in turn lead to the
understanding of associated mechanical properties, e.g.,
residual stress, distortion, ductility, and strength.

Many investigators have studied welding heat flow
problems, analytically, numerically, and experimentally.
One can find studies about pulsed current GTA weld
pool [2,3], penetration model of welding [4,5] or heat
conduction analysis of bi-directional multipass welding
[6], among others. The majority of the work, however,
considers the heat flux input to be known for
determining the temperature field. For example, Tsai [3]
studied the pulsed current GTAW process considering a
radial symmetric normal function for the heat transfer
hate. Krauss [1] has formulated the steady state and
transient heat transport for a thin-plate GTA welding
using, in the same way, circular or elliptical Gaussian
distribution for the welder arc heat flux.

In fact, the majority of the assumptions about the
distribution are modeled based on the thermal efficiency
of the welding process, that is, the net quantity of heat
flux input to the workpiece. Usually, the values of this
efficiency are either assumed to be known and taken
from literature or determined by using calorimetric
techniques.

Inverse Heat Conduction Method (IHCM) has
recently been employed in welding process analyses. The
choice of inverse procedure represents a good alternative
to calorimeter methods (easier, cheaper and faster);
actual heat flux can be obtained using experimental data
from a thermocouple located in a region far from the
welding zone. Most of applications treat the problem as a
one-dimensional problem [7], stationary arc welding
processes [8] or inverse phase-change in stationary
conditions [9]. The Simulated Annealing Inverse
Technique, one of the Inverse Technique methods, has
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shown robustness and presented results with a very good
degree of confidence.

There are, however, a large and promising field for
studying new applications and enhancement of this
technique when applied in welding, especially because
there is the opportunity of using theoretical models
applied over experimental data. Thus, in this work is
aimed a contribution for the art state, through the
application of the Simulated Annealing Inverse
Technique on the estimation of the heat flux and,
consequently, the determination of the efficiency and the
temperature distribution during actual GTA welding.

THEORETIC FUNDAMENTALS

Gas Tungsten Arc Welding - GTAW
The GTAW process is commonly used in the

fabrication of heat-sensitive materials, thin gage joints
and dimensionally critical structures. The development
of this process was accelerated early in 1940. Initially,
the process was called Heliarc, since helium was used as
shielding gas. Later, when argon became available, the
process was renamed to Tungsten Inert Gas or "TIG".
Nowadays, the designation Gas Tungsten Arc Welding
(GTAW) turn out to be more generic and preferably
accepted, since other gases rather than argon and helium,
which are inert, can be mixed with them. Hydrogen, for
example, is included for its special benefits [10].

The GTAW equipment basically consists of a power
supply, a welding torch and connecting cables. The torch
utilizes a non-consumable tungsten electrode, usually
alloyed with oxides, such as thoria or ceria, to improve
the electrode performance. Electrodes are attainable in
various diameters, ranging from 0.25 mm up to 6.25 mm,
and are accommodated in the torch by an adjustable
collet. The torch also includes a shielding gas nozzle
through which the shielding gas flows to cool the
electrode and to shield the weld "puddle" or pool from
oxygen (cooling of some torches are aided by water).
Nozzles are selected from a range of sizes, materials and
configurations. Ceramic (alumina) are the most popular
nozzle material, yet metal and fused quartz can be used
in special cases, the latter, which is translucent, to
improve the weld pool visibility. Shape or configuration
of the nozzles is based on aerodynamic principles and
compatibly with special application requirements
involving joint accessibility.

Power supplies are the constant or dropping output
types and use either DC or AC current with transformers
and rectifiers. Direct current electrode negative (DCEN)
is the most often used. Some material, such as aluminum,
demand alternate current, due to its oxide removal
capability. Power supplies can also incorporate a pulsed
generator to give special abilities for the output signal.

Gas tungsten arc welding is a thermal process that
depends on the conducted heat to achieve penetration
into the materials. In this respect, its conductance mode
is similar to laser and electron beam (almost punctual
heat source). They differ substantially from GTAW,
however, in the thermal impingement area dimension

and their rates of energy input. The thermal model
considered here for the GTAW phenomena, however, is
a moving punctual heat source with constant speed in a
thin plate. The model is presented next.

Direct Problem
Solutions to the heat flux equation of a moving

punctual heat-source were given by Rosenthal in 1935
[11]. He assumed that the energy of the heat source
moves with a constant speed v along the x-axis of a fixed
rectangular co-ordinate system, as shown in Figure 1. In
this case, the heat flux (q) can be defined by,

IVq ����  (1)

where V and I represent the arc voltage and welding
current, respectively. The variable � is the thermal
efficiency of the arc and can be defined by

IV
q
�

���   (2)

Considering Figure 1, the general energy equation for
an isotropic and homogenous material, with constant
properties and negligible heat losses, is reduced to :
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Figure 1. Schematic diagram of the welding process on a
flat metal plate with a punctual heat source, q, and a

constant velocity, v [11]
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where � is the thermal diffusivity and x'y'z' is the fixed
coordinate system. Consider now the condition of a
moving punctual heat source (q) traveling with a
constant velocity (v) in the x direction (Fig. 1). If the
source is assigned to the origin of a moving coordinate
system xyzt, then the transformation of a point P(x', y',
z') in the fixed system by x= x'-vt becomes P(x, y ,z, t) in
the moving system xyzt. The transformed form of Eq.(3)
then becomes:
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Assuming that the workpiece is long enough, in such a
way that the "quasi-steady-state" condition can be
established, and that the workpiece thickness is much
smaller than its width and length, so that the temperature
gradients in the z direction can be neglected, Eq. (4)
reduces to:
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Equation (5) can be solved using the separation of
variable method, taking a solution of the form as follows:

),()exp(0 yxgxCTT �����  (6)

in which T0 is the initial workpiece temperature and C is
an arbitrary constant. The solution that can also be found
in the literature [12] is:
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where, K0 is the modified Bessel function of the first

kind of order zero and � � 2
1222 zyxr ��� .

The assumptions involved with Eqs. (6) to (7)
include: a two-dimensional coordinate system with no
radial effects, negligible heat loss from the plate due to
convection or radiation, the source being a punctual
source, and a quasi-steady condition in the workpiece.

Inverse Problem: Simulated Annealing (SA)
Simulated Annealing is derived from an analogy with

the annealing process of material physics [13]. In the
process of annealing, the metal is heated up to a high
temperature, causing the atoms to shake violently.
Providing that the cooling is slow enough, the metal will
eventually stabilize into an orderly structure. Otherwise,
unstable atom structure is found. There is plenty of
information on the current literature, so that in depth
description of this technique is out of this work scope.

There are several inverse techniques besides of SA
that can solve this welding problem. It can be cited, for
example, the conjugate gradient with adjoint equation
method [14], parameter estimation approaches [15],
sequential time domain [16] or genetic algorithm [17].
All methods cited above uses experimentally determined
histories in the sample studied (workpiece) to calculate
the corresponding input heat flux for a given set of
system parameters (welding). The Simulated Annealing
was choice due, mainly, of his robust characteristic.

Simulated Annealing can be performed in
optimization by randomly perturbing the decision
variable and keeping track of the best objective function
value for each randomized set of variables. After many
trials, the set that produced the best objective function
value is designed to be the center, over which
perturbation will take place for the next temperature. The
temperature, that in this technique is the standard

deviation of the random number generator, is then
reduced, and news trials performed.

The objective function can, then, be defined as the
least-square residuals F between the computed
temperature Tji and the measured temperature Yij ,

� ���
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were j represents the index for the thermocouple position
and i the index for measurement time.

Let each configuration be defined by the set of atom
positions where E represents the energy of the
configuration and T is the temperature. In each step of
the configuration, an atom is given a small random
displacement and the resulting change, �E, in the energy
of the system is computed. When the processes
generating new states, this states is either accepted or
rejected, according to the metropolis criterion [18]: if �E
� 0, the displacement is accepted and this configuration
is used as the starting point of the next step. If �E � 0,
the probability that the configuration is accepted is given
by the following equation:

� �TKE beEP �

�� )(   (9)

where Kb is the Boltzmann´s constant. The choice of the
probability function given by Eq. (9) has the
consequence that the system evolves, according to a
Boltzmann distribution

EXPERIMENTAL PROCEDURE
Figure 2 represents the welding rig used in the

experimental procedure. The TIG torch, representing the
punctual heat sources, moves at a constant speed along a
straight path, using a totally automated X-Y coordinate
table. Attention was paid on the end effects, which
results from either starting or of the heat source and
cause a transient thermal state in the weldment. Some
time after the heat source starting or some time before
the heat source extinguishing, the temperature
distribution is stationary with respect to the moving
coordinates, which origin coincides with the center of the
heat source. These regions were eliminated of the
analysis. To prevent from test-plate dimension
interference, the test-plate was hold suspended in air by 4
pointed cylindrical bars, so that, only very small contact
area existed.

Figure 3 illustrates with more details how 10
thermocouples (type K) were located underneath the test-
plate, that is, at the opposite face to the weld bead (heat
source). They were equally distanced of each other (16,6
mm), being that the first one was 25 mm from of the test-
plate edge. Capacitor discharge was used to stick the
thermocouple ends to the plate surface.
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Figure 2. Experimental rig

The procedure used is, however, prone to error, since
the accuracy of heat flux estimation procedure in most of
the inverse heat conduction technique decreases with the
increasing distance from the moving source [19]. Ohadi
and Cheng,[12] showed how they managed with this
behavior in a modeling of temperature distributions in a
workpiece during abrasive waterjet machining. In that
case, since the measurement target was the cutting face,
to avoid this problem, they positioned the thermocouples
slightly away from the cutting interface, but short
enough to minimize the difference between the
calculated and measured temperatures.

In welding applications the problem is even worse.
Due to the high temperatures, the use of the same face on
which the heat source is applied is very difficult. The
thermocouple could be dammed. Supported by Ohadi
and Cheng’s approach, that is the reason why the
opposite face was used for measuring but considering the
heat source position.

The test-plate was made of stainless steel AISI304.
Table 1 presents the thermal properties and dimensions
of the test-plate. Those properties were the ones used in
the calculations.

Table 1. Workpiece base configuration parameters

Material AISI 304

Thermal Conductivity 15.0 (W/mK)

Thermal Diffusivity 3.96 10-6 (m²/s)

Melting Temperature 1427.0 (°C)

Welding Current 102 (A)

Welding Voltage 10.8 (V)

Plate Length 0.2 (m)

Plate Width 0.05 (m)

Plate Thickness 0.004 (m)

Collection and storage of the data from the
thermocouples took place with the aid of a
microcomputer-based data acquisition system (HP 75000
B E1326B), DAS for short. The DAS, under a software
control, sampled (multiplexed) each thermocouple
signals for 0.38 s (totaling 1028 points for each).

The first step in the analysis was the calculation the
heat flux input to workpiece using the inverse technique
(SA). Figure 4 presents the thermal cycles experimented
by each of the 10 thermocouples. These temperature data
are used in Eq. (8) in order to estimate the heat flux that
goes into the workpiece.

25 mm

 B E1326B

HP Série 75000

25 mm

50 mm

200 mm

DAS15mm

4 mm

25 mm

Figure 3. Thermocouple positioning on the test-plate
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Figure 4. Thermal cycle registered during the
experiments

RESULTS AND DISCUSSION
The procedure used to estimate each heat flux

component could be applied for all measured
temperatures over all measurement times. However, in
this work, for minimization, only the temperatures from
the thermocouples that the heat source had passed
through were used to solve Eq. (8). It means that there is
an optimal time for each thermocouple, which
corresponds to the time that each thermocouple reached
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its maximum temperature. It can be expected that, when
the heat source is just above the thermocouple (Fig. 3),
actually a little ahead (there is a diffusion time), the
temperature for this thermocouple should be maximum.
It can also be observed, in this case, that the
thermocouple located downstream (the position of
thermocouple is related to the time by the variable x= x'-
vt'), has no or little information about the heat flux
source. So, its use should be avoided. In other words, the
number of measured temperatures used in Eq. (8) has an
upper limit defined by the position of the heat source for
each instant. These times are made discrete by the
optimal times that each thermocouple took to reach the
maximum temperature.

Table 2 presents the optimum times and the
corresponding positions, calculated by the Simulated
Annealing Technique. Table 2 also shows which
thermocouples were used to minimize the objective
function, F. The maximum temperatures reached by each
thermocouple are shown in Table 3.

Table 2. Optimum times and the corresponding position

Time
[s]

position
x [mm]

thermocouple
used

7.22 0.0250 1
9.12 0.0416 1 to 2

11.40 0.0582 1 to 3
13.30 0.0748 1 to 4
15.20 0.0914 1 to 5
17.48 0.1080 1 to 6
19.00 0.1246 1 to 7
21.28 0.1412 1 to 8
23.18 0.1578 1 to 9
25.08 0.1744 1 to 10

Table 3. Maximum temperatures for each thermocouple

Thermocouple T max [°C]
1 404.5
2 407.6
3 388.2
4 399.2
5 383.2
6 381.1
7 387.6
8 361.6
9 401.2

10 383.3

One consequence of using only the maximum times
is to obtain a heat flux component for each maximum
time used. Table 4 and Figure 6 show the heat flux to the
workpiece estimation considering the optimal times and
the thermocouples used.

Table 4. Estimated heat flux and arc efficiency for
different maximum times (Thermocouple used according

to Table 2)

Time [s] Heat Flux [W] Arc Efficiency
7.22 701.3641 0.6367
9.12 718.1497 0.6519

11.40 719.1958 0.6529
13.30 724.3361 0.6575
15.20 712.2252 0.6465
17.48 717.1894 0.6510
19.00 710.6900 0.6451
21.28 706.3974 0.6413
23.18 719.2376 0.6529
25.08 716.5645 0.6505
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Figure 6. Estimated heat flux for different optimum
times

If only the maximum temperatures are used in the
inverse procedure, the estimated heat flux input to the
workpiece is 677 W, with a corresponding efficiency of
0.62. In fact, this heat flux input represents the average
of estimated heat flux components, in the case that only
one maximum temperature was used at a time.

In this model, factors like metallurgical phase
change, three-dimensional analysis and thickness effects
are not considered. However, the results are good enough
to indicate confidence values for the efficiency, heat flux
and temperature estimations. Unfortunately, there is no
way in this work to compare the estimated and measured
values for heat flux and arc efficiency, so that a better
assessment of the technique validation could be done.
However the arc efficiency found here is situated in the
range of typical values expected for GTWA (0.25 to
0.75) [20].

Once the heat flux to the workpiece is estimated, the
temperature distribution can be obtained solving the
direct problem given by Eq. (7). Figs. 7 and 8 presented
some temperature evolutions at three different times in a
two-dimensional and three-dimensional ways,
respectively.
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Figure 7. Two-dimensional presentation of temperature
distribution in the test-plate at different times

The effect of the moving source can be observed in
these figures. Since a punctual source is assumed in the
model, the highest value of temperature is at the center of
the torch.

Figure 8 Three-dimensional presentation of temperature
distribution in the test-plate at different times.

The comparison between the estimated and
experimental temperatures is shown in Fig. 9. One can
see a satisfactory agreement. The deviations can be
attributed to various factors besides the common
experimental difficulties, such as the assumption of a
two-dimensional quasi-steady-state theoretical model. It
can be noted, in this way, the systematic error caused by
neglecting the influence of the plate thickness, radiation
and convection at the surface variations of thermal



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

properties. A work that considers all these effects is in
currently progress.
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Figure 9. Comparison between estimated and
experimental temperatures at the opposite face of the

welding bead

6. CONCLUSION
The theoretical and experimental approach, based on

the application of the Simulated Annealing Inverse
Technique, showed to be a promising tool for calculating
the thermal history experimented by a workpiece under
welding. The agreement between the predicted
temperature and the measured temperature are
satisfactory, what leads for the reasoning that the
estimated values for heat flux and arc efficient are
reliable. However, new enhancements must be added to
the models, so that more precise outcome can be
expected.
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ABSTRACT
An Inverse Heat Convection Problem is

investigated in this numerical study. Turbulent
forced convection is considered, with a
hydrodynamically fully developed, thermally
developing, incompressible, constant property
flow inside a parallel-plate duct. Velocity and
effective diffusivity distributions of the turbulent
model are characterised by a Reynolds number b+

based on the shear stress velocity.
The identification of b+ from simulated wall

temperature measurements is presented. A heat
flux density is applied along the channel length
and temperature responses are taken at the wall
external surface. Heat transfer has to act as a
small but measurable perturbation of the flow.

The inverse problem is recast into an
optimisation problem solved with a Quasi-
Newton method. Reynolds numbers 105 and 106,
corresponding to two different values of b+, are
considered. Effects of sensor number and
location, as well as magnitude of measurement
error on the estimation accuracy, are examined.

NOMENCLATURE
b channel half-height, m
b+ Reynolds number based on shear stress

velocity =
ν

τbu

De equivalent diameter, m
e wall thickness, m
f squared residues functional to minimise

f,f ′′′ first and second derivatives of f  with
respect to b+

H approximation to f ′′
L channel length, m
L* dimensionless channel length
Nmes number of measurements
Pe Péclet number

Pm motion pressure, Pa
Pr Prandtl number
Prturb turbulent Prandtl number
Re Reynolds number based on mean

velocity
S absolute value of sensitivity
s search direction of the minimisation

algorithm
T temperature, K

U dimensionless velocity =
mu

u

uτ shear stress velocity, m.s-1

u velocity, m.s-1

um fluid bulk mean velocity = ∫
=

=

by

0y

dy)y(u
b

1
,

m.s-1

u+ dimensionless velocity =
τu

u

x axial coordinate, m
y transverse coordinate, m
y+ dimensionless transverse coordinate

= +η− b)1(

Greek symbols
α fluid thermal diffusivity, m2.s-1

αturb turbulent diffusivity for heat, m2.s-1

∆T measurement error, K
∆Tref characteristic temperature difference, K
εeff dimensionless effective diffusivity for

heat
Φ dimensionless applied heat flux =1

η dimensionless transverse coordinate =
b

y

ϕ applied heat flux density, W.m-2

λ thermal conductivity, W.m-1.K-1

λ* solid/fluid thermal conductance ratio
ν fluid kinematic viscosity, m2.s-1

νturb turbulent viscosity, m2.s-1
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θ dimensionless temperature
ρ fluid density, kg.m-3

σ standard deviation of added noise, K
τ shear stress, Pa
ω random number
ξ dimensionless axial coordinate

Subscripts not previously introduced
f relative to fluid
in inlet
k index for current iteration of the

minimisation algorithm
s relative to solid
surf at wall external surface
w at wall i .e. at solid/fluid interface

Superscripts not previously introduced
calc calculated
mes measured

INTRODUCTION
Forced convection in turbulent flow inside

ducts is frequently encountered in industrial
equipment. Many available studies are concerned
with the direct problem, that is: having a
mathematical model and knowing boundary
conditions, one searches to compute the
temperature field over the whole domain.
Applications in which thermophysical properties,
geometric characteristics or boundary conditions
are unknown, but temperature measurements are
locall y available, belong to inverse problems
research area, i.e. from the knowledge of
experimental data, one searches to estimate the
unknowns. The field of Inverse Heat Conduction
Problems has already been intensively covered
but inverse problems related to convective heat
transfer have been much less studied. Turbulent
regime has been investigated in a few studies
involving the identification of boundary
conditions. Estimation of timewise variation of
wall heat flux applied to a parallel-plate duct has
been performed by Liu and Özisik [1] using the
conjugate gradient method with an adjoint
problem. A non iterative sequential method using
a low order model has been proposed by Girault
et al. [2] to simultaneously estimate timewise
variation of two wall heat fluxes applied to a
parallel-plate duct. For the thermal steady state,
estimation of spatially non uniform wall heat flux
in circular pipe flow has been made by Su et al.
[3] using the Levenberg-Marquardt algorithm. In
the present work another class of inverse

problems is investigated. A turbulent flow inside
a parallel-plate duct is considered and the
possibili ty to use heat transfer as a small
perturbation of the flow to estimate a parameter
characterising velocity and effective diffusivity
distributions is explored in this numerical study.
A known heat flux density is applied on the upper
and lower plates of the duct. Temperature
responses, that depend on the unknown, are taken
at the wall external surface. A squared residues
functional buil t with these data and the heat
transfer model solution has then to be minimised
to estimate the unknown. The basic idea of using
temperature or concentration measurements to get
information about velocity field has been under
development for the last decades. Mass transfer is
often used for a more detailed study of the near
wall region. As an example, turbulent fluctuations
in the velocity gradient at wall have been
estimated by Mao and Hanratty [4] using the
measure of a mass transfer coefficient. The fluid
is kept isothermal and mass transfer does not
induce perturbations in the flow. Heat transfer is
used at larger scales. For instance, sea surface
temperature fields and surface meteorological
data have been used by Zavialov et al. [5] to
obtain seasonal near-surface velocity fields in the
southern Brazilian shelf. The present work is
concerned with an industrial application. The
system is first described, governing heat transfer
equation and associated boundary conditions are
written and the turbulent model is presented. The
inverse problem is then formulated.
Configurations under consideration are detailed
and sensors sensitivities are studied. Finally,
results for several inversion cases are presented.

SYSTEM DESCRIPTION

Physical Problem
Let us consider turbulent forced convection,

with a hydrodynamically fully developed,
thermally developing, incompressible, constant
property, turbulent flow inside a parallel-plate
smooth duct. Axial conduction in the fluid and
viscous dissipation are neglected. Conduction
along the flow in the wall material is disregarded.
The assumption of uniform wall temperature
across the whole thickness of the plates is made.
Both plates are subjected to the same heat flux
density. The channel axis being then a symmetry
axis, only half of the duct is considered. A
schematic view of the system is presented
hereafter in Fig.1.
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Figure 1: System description

Governing Equations
For such a problem, the characteristic heat

flux density is the applied heat flux density ϕ. A
characteristic temperature difference can then be
defined as:

f

ref

b
T

λ
ϕ=∆ (1)

So, by choosing a dimensionless applied heat
flux as:

1
T

b

reff

=
∆λ
ϕ=Φ

and introducing the following dimensionless
quantities:

,1,
u

u
U,

b

y
,

bPe

x4
,

T

TT
turb

eff

mref

in

α
α+=ε==η=ξ

∆
−=θ

α
ν=

ν
= Pr,

bu4
Re m  and PrRePe = , the

dimensionless governing steady state energy
equation is written as [6]:
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with following boundary conditions, considering
the channel axis symmetry:
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where 
bPe

L4
L* =  is the dimensionless length of the

channel.
The direct problem consists in the resolution

of Eqs.(2). A numerical solution approximation is
obtained with the Finite Volume Method.
Equation (2a) being linear and parabolic in ξ, the
solution is obtained by using a spatiall y marching
procedure in the ξ direction. An appropriate
typical mesh uses 21 nodes in the ξ direction
(regular mesh) and 30 in the η direction (non
regular mesh, refined near wall).

Turbulent Model
The dimensionless full y developed turbulent

velocity distribution U(η) and the dimensionless
effective diffusivity εeff(η) in Eq.(2a) are
determined by a pseudo-laminar turbulent model
given by Kim and Özisik [7] and presented
below, except for the turbulent Prandtl

number:
turb

turb
turbPr

α
ν= , which has been taken by

Jischa and Rieke [8] as:

Pr

015.0
85.0Pr

turb += (3)

In a classical way, the turbulent model is
expressed with new dimensionless variables.

ρ
τ=τ

wu  is called the shear velocity, where

dx

dP
b m

w −=τ  is the wall shear stress depending on

the gradient of pressure 
dx

dPm  which has generated

the flow, and the fluid density ρ . A Reynolds
number based on the shear stress velocity may be
written as:

ν
= τ+ bu

b (4)

Defining a new dimensionless transverse
coordinate ++ η−= b)1(y , +b  may also be seen as
the dimensionless transverse coordinate at the
channel axis ( 0=η ). A new dimensionless

velocity 
τ

+ =
u

u
u  is introduced.

The turbulent velocity distribution is taken as
the following three-layer model [7]:
• Viscous sublayer:

5y0foryu <≤= +++ (5a)
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• Buffer layer:
30y5foryln505.3u <≤+−= +++ (5b)

• Turbulent core:

( )
30yfor

21

15.1
yln5.25.5u

2
≥


















η+

η++= +++ (5c)

The turbulent viscosity distribution is taken as
the two-layer model [7]:

• 
( ) ( )
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ν
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for y+<40, where k1=0.407 and E=10

• ( )( ) 40yfor211
6

bk 222turb ≥η+η−=
ν

ν +
+

  (5e)

  where k2=0.4

The turbulent velocity and viscosity
distributions are therefore characterised by the
parameter b+.

The Reynolds number is given by:

∫
+=η

=η

++ ηη=
1

0

d)(ub4Re (6)

U(η) and εeff(η) are given by:

∫
+=η

=η

+

+

ηη

η==η
1

0

m d)(u

)(u

u

)y(u
)(U (7)

and 
turb

turbturb
eff Pr

Pr)(
1

)(
1)(

ν
ην+=

α
ηα+=ηε (8)

INVERSE PROBLEM

Formulation
Suppose that b+ is unknown and inlet

temperature is known. In order to identify b+, a
known heat flux density is applied on both upper
and lower plates along the channel length and
temperature responses are taken at the wall
external surface. These measurements are
dependent on the way that heat is transported in
the flow. Thus they depend on b+. The inverse
procedure consists in the determination of b+ from
these simulated temperature data.

Note: the Reynolds number Re based on mean
velocity could have been chosen as the
dimensionless parameter to be identified in the
inverse procedure, but the choice of b+ has been
made for the two following reasons:

• As 
dx

dPbb
b m

ρ
−

ν
=+  (c.f. Eq.(4)), the gradient

of pressure which has generated the flow
appears formally in the expression of b+,
allowing a direct access to this quantity (or
the corresponding wall shear stress τw).

• If Re is the unknown parameter, then for each
iteration of the inverse algorithm, Re has its
current value and b+ needs to be calculated to
obtain u+. This involves, for each iteration,
the resolution of Eq.(6) which is
transcendental in that case. A larger
computing time for inversion is then needed.

The inverse problem consisting in the
identification of b+ may be formulated as an
optimisation problem: find b+ minimising the
squared residues functional f(b+) defined as:

( )∑
=

++ θ−θ=
Nmes

1i

2

i

mes
surfi

calc
surf )b()b(f (9)

where the Nmes,1i,
i

mes
surf ∈θ  are the Nmes

dimensionless temperature measurements taken at
the wall external surface.

According to previous assumptions about the
wall material, the Nmes,1i,

i

calc
surf ∈θ  are obtained

from the dimensionless temperatures
Nmes,1i,

i
calc
w ∈θ  at the fluid/solid interface

coming from the resolution of Eqs.(2), by a
simple heat flux balance:

*i
calc
wi

calc
surf

1

λ
+θ=θ (10)

where 
e

b

f

s*

λ
λ=λ .

Magnitude Of Applied Heat Flux Density
The applied heat flux density ϕ has to be

chosen as a satisfying compromise between two
opposite considerations: a high ϕ to obtain high
sensitivities of the sensors with respect to b+, and
a low ϕ to induce the slightest possible
perturbation of the flow. In fact, when heating the
channel, the flow may be modified by two ways:
generation of natural convection and variation of
the fluid properties. To prevent such events, the
mean increase of temperature induced by ϕ
should not be greater than a few Kelvin. This will
be verified a posteriori.
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OPTIMISATION ALGORITHM
A Quasi-Newton method [9] is used to

minimise f(b+) defined by Eq.(9). This method is
briefly presented in the following paragraphs.

The basic Newton method consists in an
approximation of the objective function f around
the current iterate +

kb  by a quadratic function, that
is a second order Taylor’s expansion. The next
iterate will be kk1k sbb += ++

+  where the search
direction sk is the minimiser of the quadratic
function and is obtained by writing the first order
condition, leading to:

)b(f

)b(f
s

k

k
k +

+

′′
′

−= (11)

The second order condition requires the
positi veness of )b(f k

+′′ , which is not always
assured, depending on the initial guess. The
convergence is guaranteed only if the starting
point is suff iciently close to a local minimiser b+*

at which f ′′  is positi ve. A Quasi-Newton method
is used to ensure the convergence when the initial
guess is not close to a minimiser. It uses a line-
search method: the next iterate is obtained by

kkk1k sbb β+= ++
+  where βk is chosen so that

)b(f)b(f k1k
++

+ <  and to satisfy the curvature
condition, and the search direction sk is not
obtained by Eq.(11) but by:

k

k
k H

)b(f
s

+′
−= (12)

where kH  is an updated approximation to

)b(f k
+′′ .

The gradient )b(f k
+′  is given by:
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=

++
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db

d
2)b(f (13)

Its calculation requires the computation of the

sensitivities Nmes,1i,)b(
db

d
k

i
calc
surf

∈
θ +

+ . These are

approximated with Forward Finite Differences,
yielding, for Nmes,1i ∈ , to:

+

+++
+

+ γ
θ−γ+θ

=
θ

k

ki

calc
surfkki

calc
surf

k
i

calc
surf

b

)b()bb(
)b(

db

d
(14)

where γ is a small perturbation factor.
The numerical evaluation of the gradient

)b(f k
+′  then requires a second resolution of the

direct problem (Eqs.(2)) in addition to the one
needed to compute )b(f k

+ . The computation of

)b(f k
+′′  would then require to solve three direct

problems. To avoid such a time-consuming
operation, )b(f k

+′′  is approximated by kH , using

quantities +
−

+ − 1kk bb  and )b(f)b(f 1kk
+
−

+ ′−′ .

Formulas for kH  and βk can be found in [9].

The general algorithm may be summarised as:

1. Using the current iterate +
kb ,.compute u+ with

Eqs.(5a,b,c) and 
ν

νturb  with Eqs.(5d,e)

2. Compute Re with Eq.(6), U with Eq.(7) and
εeff with Eq.(8) and Eq.(3).

3. Solve Eqs.(2a,b,c,d) to obtain calc
wθ . Compute

calc
surfθ  using Eq.(10) and )b(f k

+  with Eq.(9).

4. Repeat steps 1 to 3 with ++ γ+ kk bb  (γ small )
and compute sensitivities using Eq.(14).

5. Compute )b(f k
+′  using Eq.(13).

6. Compute kH , then sk with Eq.(12) and βk.

7. Set the next iterate to: kkk1k sbb β+= ++
+ .

8. Go to step 1 and set k=k+1.

This iterative procedure is performed until the
chosen stopping criterion (c.f. Eq.(15), Eq.(17)
and following remark) is satisfied.

For a rectangular duct section, the laminar-
turbulent transition corresponds to Re≅2400 (i.e.
b+≅50). Therefore it seems logical to take 50 as
lower bound for b+. This value wil l also be taken
as initial guess for the minimisation algorithm,
according to sensitivity analysis.

THE STUDIED CONFIGURATIONS
The following case is considered: water at

Tin=300K is entering through the region of the
channel subjected to the applied heat flux density.
Fluid properties are then taken as: ν=8.58 10-7

m2.s-1, α=1.47 10-7 m2.s-1 and λf=0.61 W.m-1.K-1.
Solid thermal conductivity is taken as λs=14.9
W.m-1.K-1. The half channel height is b=5 10-2 m
and the domain length used to heat the wall
channel and to simulate the temperature
experimental data is L=De=4b=0.2 m where
De=4b is the equivalent diameter. The wall
thickness is e=2 10-3 m. Two values of b+ are
considered: b+ = 1166 and 9361, corresponding
respectively to Re ≅ 105 and 106. Corresponding
test cases are called respectively case 1 and 2.
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The applied heat flux density ϕ is chosen to be
ϕ = 1750 W.m-2 for the case b+=1166 and ϕ =
13000 W.m-2 for the case b+=9361. According to
Eq.(1), values of ∆Tref are then 142.74 K and
1060.36 K for cases 1 and 2 respectively. Fig.2
shows dimensional temperatures at solid/fluid
interface and wall external surface (21 positions
in the axial direction) for case 1.
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Figure 2: calc
wT  ( � ) and calc

surfT  ( � �  with respect to
axial position, for case 1.

It can be verified that dimensional temperature
at solid/fluid interface and x=L, which is the
hottest point in the fluid domain, is about 301K,
corresponding to an increase of only 1K from Tin.
The assumption of an unchanged flow is then
expected to be valid. It is also verified for case 2.

SENSITIVITY ANALYSIS
The applied heat flux density ϕ = 1750 W.m-2

is considered. Temperatures are not linear
functions of b+, consequently sensitivities are
dependent on b+. Let us call S the absolute value
of the sensitivity given by Eq.(14):

S +

θ
=

db

d calc
surf

In Fig.3 are shown the values of S at possible
sensors locations for three values of b+ (500, 1000
and 5000). Results were intuitively expected. It is
verified that for a given b+, S increases with the
axial location x along the heated channel. If only
one sensor is used, the best possible location is
then at x=L. For a given location, the larger b+,
the lower S is. Hence, it seems useful to start with
b+=50 as the initial guess to ensure the highest
possible sensitivities during the first iterations.
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Figure 3: Values of S for the 21 nodes, for
b+=500 ( � �����
	�	�	��� ���������������� � ).

INVERSION RESULTS AND ANALYSIS

Validation With calc
surf

mes
surf θ=θ

Inversion using “exact” temperatures gives
excellent results whatever the number and
position of sensors. Results obtained with a single
sensor located in x=L (node 21) are given for
cases 1 and 2 (c.f. Table 1). One should note that
the stopping criterion for the minimisation
algorithm is:

)b(f 1k
+
+ < a small number such as 10-10 (15)

Simulation Of Real Measurements
Simulated temperatures mes

surfθ are generated by

adding random errors to temperatures
calc
surfθ computed with Eqs.(2) and Eq.(10) for

applied heat flux density ϕ. That is:

ref

calc
surf

ref

calc
surf

mes
surf T

T

T ∆
∆+θ=

∆
σω+θ=θ (16)

where σ is the dimensional standard deviation of
measurement errors which is assumed to be the
same for all measurements, ω is a normally
distributed random number, meaning there is a
99% probabilit y of the value of ω lying in the
range –2.576<ω<+2.576 and ∆T is the
measurement error. Thus:
-10-1 K<∆T<+10-1 K corresponds to σ=3.88 10-2

K and –2.576 10-1 K<∆T<+2.576 10-1 K
corresponds to σ=10-1 K.

When a single sensor is used, ∆T=+σ is taken.
The iterative regularisation principle [10] is

used to obtain the following stopping criterion:
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Nmes)b(f












∆
σ

≈+
+ (17)

If this criterion is not satisfied in the iterative
process, the algorithm is stopped after a chosen
number of iterations without decreasing f(b+).

Considering the analysis of sensiti vities to b+

and the mesh sensitivity, nodes 1 to 5 have not
been taken as sensors. In Fig.4 are shown both
simulated exact and “measured” dimensional
temperatures for case 1 with σ=3.88 10-2 K.
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Figure 4: calc
surfT  ( �

�
 and mes

surfT  ( � ) at nodes 6 to

21 (case 1 with σ=3.88 10-2 K).

Effect Of Sensor Number And
Measurement Errors

Let us consider a single sensor measurement.
The node 21 is chosen and a simulated error
∆T=+σ=3.88 10-2 K is added. One can note (Table
1) that the solution b+ is underestimated (relative
error ≈ 5 to 6%) for both cases 1 and 2. More
sensors need to be used in the presence of
measurement error. The inverse problem is then
overdetermined since it has more data than
unknowns. Table 1 shows results for case 1 and
σ=3.88 10-2 K when 4, 6 and 16 sensors are used.
With 4 sensors, the results quality is not clearly
improved, but with 6 sensors, results become
more satisfying, and with 16 sensors the
estimation is accurate. For this last case, Figure 5
shows the convergence of f(b+) and b+ with
respect to iteration number.

When noise level is increased to σ=10-1 K, the
estimation using nodes 6 to 21 as sensors is
slightly deteriorated but remains very good
(relative error with the exact value < 1%).

Case 2 is now considered. As b+ is increased
in comparison with case 1, sensitivities should be
lower but this is compensated by a higher value
for the applied heat flux ϕ. Moreover, wall

external temperature data are higher and therefore
less sensitive to additive noise. As a consequence,
estimations are as good as those of case 1 (c.f.
Table 1).

Table 1: Identification results for different test
cases. Estimated values of b+ and relative errors.

CASE 1
Exact value

b+=1166 (Re≅105)

CASE 2
Exact value

b+=9361 (Re≅106)

Node 21
σ=0 K 1166.107

(0.009 %)
9361.001

(0.000014%)

Node 21
σ=3.88 10-2 K 1097.682

(5.859 %)
8889.011
(5.042 %)

4 Nodes
(18 to 21)

σ=3.88 10-2 K
1098.981
(5.748 %)

8989.315
(3.971%)

4 Nodes
6,11,16,21

σ=3.88 10-2 K
1103.986
(5.318 %)

9011.175
(3.737%)

6 Nodes
(16 to 21)

σ=3.88 10-2 K
1145.635
(1.747 %)

9172.593
(2.013%)

6 Nodes
6,9,12,15,18,21
σ=3.88 10-2 K

1146.509
(1.672 %)

9190.534
(1.821%)

16 Nodes
(6 to 21)

σ=3.88 10-2 K
1169.558
(0.305 %)

9378.425
(0.186 %)

16 Nodes
(6 to 21)
σ=10-1 K

1174.952
(0.768 %)

9406.627
(0.487 %)
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Figure 5: Convergence of f(b+) ( � ) and b+ ( �
�

with respect to iteration number (case 1, sensors
at nodes 6 to 21, σ=3.88 10-2 K)



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

Effect Of Sensor Location
As it can be seen in Table 1, for case 1 and a

given number of sensors (4 or 6), the estimation
with sensors close to x=L is worse than the one
obtained with sensors equally positioned between
nodes 6 and 21. This seems strange because the
closer the sensors are to L, the higher are their
sensitivities. Nevertheless, this may be explained
by the fact that data close to L present redundant
information, especially in presence of noise.

Reconstruction Of Turbulent Quantities
Once b+ has been identified, estimated profiles

of velocity u and turbulent diffusivity αturb are
obtained using Eqs. (5a-e), (6), (7), (8) and (3).
Fig.(6) shows reconstructed profiles for case 1
and two configurations of inversion: a single
sensor (node 21) and 16 sensors (nodes 6 to 21),
with σ=3.88 10-2 K.
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Figure 6: Reconstructed velocity and turbulent
diffusivity profiles for case 1 with σ=3.88 10-2 K.
“Exact” values: u (       ), αturb (       ). Estimations
with node 21: u (� ), αturb ( � ). Estimations with

nodes 6 to 21: u ( � ��� αturb ( � �	�

CONCLUSIONS
An inverse problem of turbulent forced

convection inside a parallel-plate duct has been
investigated in this numerical study. In order to
estimate a Reynolds number b+ based on the shear
stress velocity and characterising turbulent
velocity and effective diffusivity distributions, a
known heat flux density is applied on the upper
and lower plates of the duct and temperature
responses dependent on b+, are taken at the wall

external surface. A squared residues functional
built on these data and a heat transfer model has
been minimised to estimate the unknown. Results
have shown that such a procedure allows to
accurately estimate b+ even if the measurements
are altered with errors, provided that the number
of sensors may be sufficiently large. Future works
include cases in which no parametric laws
describe the unknown distributions. Efforts wil l
be done on hydrodynamically developing flows.
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���������� ������� ! :�:6 ��∆ = "� ��� �	������ ����
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���������� ������	���� ����� ������� �	� �� ����	����
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�����������
��������������	������

Test sample  
2��	������	������������������	�	�	��)��������

����������������������	 ��������������������


�����������������&� ����

!����	���&G����������	���"���������	������������

���	����!���	����"��

���� �����	��������� ��	�������� 	
� ���� ������

��������������������������������������������*���

�

�

������*�������	�����������	��������	
�����������

&������*�!�&� ����"� &������6�!���	����"�
 *  *0B; �D �� �F3 = �  *  **;: �D �� �F3 = �

3  ;  *=*: ��� �Fρ = � 3  ;  **�:0*: ��� �Fρ = �
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Results and discussion 
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��	�����������������	������������	���3::�����
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����	����� ���� ���
	��� ���� �	�����	������ �	� *-�

�	���������� ��	����	�� ���� ���� ������������
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��� 
�	�� ���� �����
���� ������� ����

������������6-���������	��!����6:�:4��	���6:�:B��
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�	�����������������������	�������������	
����������

�������	
����������������������������	����	��������
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ABSTRACT 

A numerical algorithm for determining local 
thermal boundary conditions at the external 
surface of the cross-section of a cylinder is 
developed to analyze steady-state phenomena of 
condensation or evaporation by solving an inverse 
heat conduction problem (IHCP). The iterative 
regularization method is used to solve the inverse 
problem under study. The unknown functions are 
approximated by cubic B-splines. The gradient is 
computed by using the adjoint equations. First, 
the numerical simulations with the heat flux 
distribution given a priori are curried out to verify 
the developed algorithm. The numerical solution 
of the direct problem is used to simulate 
temperature measurements. The cases without and 
with measured errors are considered. The 
influence of the number of approximation 
parameters is analyzed. Second, the heat transfer 
coefficient for the evaporation of a liquid film 
flowing on a cylinder is estimated and analyzed 
by the use experimental data. 
 
NOMENCLATURE 
 
f temperature function, K 
h heat transfer coefficient, W/m2K 
J residual functional, K 
N angular nodes number 
Q flux density, W/m2 
r radius, m 
R1 internal radius of cylinder, m 
R2 external radius of cylinder, m 
rn co-ordinate of measurement point 
T calculated temperature, K 
Tmeas measured temperature, K 
 
Greek symboles 
ϕ co-ordinate of calculated point, rad 
ϕn co-ordinate of measured point, rad 

λ thermal conductivity, W/m2K 
θ temperature variation 
Ψ lagrange multiplier 
γ descent parameter 
δ Dirac function 
 
Subscripts 
n measured points 
w wall 
it iteration number 
ϕ local value 
 
INTRODUCTION 

The study of single phase or two phase flows 
requires the knowledge of thermal boundary 
conditions such as local surface heat fluxes, 
temperatures or heat transfer coefficients. These 
parameters are important for understanding the 
physics of phenomena in the field of evaporation 
condensation and other complex flows. Recently 
the IHCP have been used for analyzing problems 
where direct measurements of surface 
temperatures are difficult or impossible to curry 
out. For this purpose various numerical 
algorithms have been proposed [1-7]. 

A large number of studies relating to 
experimental determination of heat exchange in 
condensation, evaporation and boiling exist in the 
literature (see, for example [8]). In the majority of 
cases the mean heat transfer coefficient is 
measured. Some authors determine the local heat 
transfer coefficients based on temperature profiles 
of the cooling liquid or the wall [9,10]. These 
measurements often neglect the circumferential 
heat conduction in the wall. 
 In the present article the IHCP is applied to 
the problem of a hollow cylinder heated at the 
internal surface. The iterative regularization 
method is used to solve the inverse problem under 
analysis. We use a numerical solution of different 
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boundary-value problems. This method was 
chosen because it can easily be extended for 
nonlinear inverse problems which we are going to 
implement in future to analyze boiling 
phenomena. It is not the case when using an 
analytical solution of the direct problem and the 
Tikhonov regularization method (see, for 
example, [6,7]). The method is based on the 
conjugate gradient method to minimize the 
residual functional and the residual principal as 
the regularizing stopping criterion [11]. Two 
dimensional steady-state heat conduction is 
considered and polar coordinates are used.  
 In this paper, first, the inverse problem 
formulation is presented. Second, the numerical 
algorithm developed to solve the inverse problem 
under study is described. Third, the results of 
numerical simulations are discussed. Then, the 
experimental set up developed to study 
condensation and evaporation processes is 
described. Finally, the results of estimating the 
local heat transfer coefficients for an evaporating 
liquid film by using experimental data are 
discussed. 
 
 
INVERSE PROBLEM FORMULATION 
 The physical model is presented in figure 1. 
An infinitely long cylinder of internal radius R1 
and external radius R2 is considered. The 
temperatures at the internal radius are treated as 
known. The problem is considered symmetrical 
and the resolution of the inverse problem is 
carried out on half of the cylinder. 
 
 

ϕ

r

Imposed temperatures

Measured temperatures

0
 

 
 Figure 1: Physical model 
 

The mathematical model of a heat conduction 
process in a hollow cylinder is given by the 
following system of equations: 
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In the model (1)-(5) the function )(Q w ϕ , which 
is the heat flux density at the external surface of 
the cylinder, is unknown, but temperatures 
measured at a number N inside the cylinder are 
available to be used as additional information on 
the temperature distribution in the cylinder to 
estimate the function )(Q w ϕ : 
 

nnnmeas f),r(T =ϕ , N,...,2,1n =  (6) 
 
The inverse problem under study consists in 
estimating the function )(Q w ϕ  from the 
conditions (1)-(6). 
 We use the variational formulation of the 
inverse problem under analysis. In such a case the 
solution of the inverse problem is based on the 
minimization of the residual functional defined by 
the following equation: 
 

[ ]∑
=

−ϕ=
N

1n

2
nwnnw f)Q;,r(T

2
1

)Q(J  (7) 

 
where )Q;,r(T wnn ϕ  are the temperatures 
computed at the sensor locations by solving the 
direct problem (1)-(5). Formally, the inverse 
problem the variational formulation consists in 
minimizing the residual functional (7) under 
constrains (1)-(5). 
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NUMERICAL ALGORITHM 
 The unknown function )(Q w ϕ  is 
approximated in the form of a cubic B-spline as 
follows: 
 

( ) ( )∑
=

ϕφ=ϕ
m

1i
iiw pQ  (8) 

 
where m is the number of approximation 
parameters, pi are unknown approximation 
parameters and φi are given basis cubic B-spline. 
As a results, the IHCP is reduced to the estimation 
of a vector of parameters [ ]m21 p...,,p,pp = . 
 To minimize the residual functional (7) the 
conjugate gradient method is used. The function 

)(Q w ϕ  is supposed to be an element of the 
],[L 212 ΦΦ  space. 

At each iteration, the successive 
improvements of desired parameters are built as 
follows : 
 

it
i

itit
i

1it
i dpp γ−=+ ,  i = 1, 2, …, m (9) 

 
where it is an iteration number. itγ  is the descent 
parameter and a positive scalar. dit is the descent 
direction determined from the vector 

[ ]m21 d...,,d,dd = . It is given by the following 
expression: 
 

1it
i

itit
i

it
i dgd −β+−= ,  i = 1, 2, …, m (10) 

 
where the parameter itβ  is computed as follows: 

00 =β  (11) 
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where ,  is the scalar product and ⋅  is the 

norm of the vector [ ]m21 g...,,g,gg =  in the 
space Rm of approximation parameters. 
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To implement the iterative minimization 
procedure, the vector g is determined by the 
following equation: 
 

( )p'JgG =  (14) 
 
where G is the Gram’s matrix for basis functions 
 

{ }m...,,2,1j,i,;GG jij,i =φφ==  (15) 

 

ji ; φφ  is the scalar product in the L2 space. 

The Gram’s matrix is symmetric and positive. Let 
J’(p) be the vector gradient of the functional J(p). 
The most effective method for calculating the 
gradient J’(p) in the Rm space is based on the 
adjoint problem [11].  
 
Adjoint problem 
 The adjoint problem is determined by the 
following boundary-value problem: 
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The gradient of the residual functional is 
determined by solving the adjoint problem. The 
symbol ),,r,r( nn ϕϕδ  represents the Dirac 
function. 
 
To compute the descent parameter we use a linear 
approximation of the descent parameter [11]: 
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where )Q;,r( wnn

it δϕθ  is the solution of the 
problem in variation at the it iteration, resulting 
from the variation of the unknown function wQδ . 

( )wnn
it Q;,r δϕθ  is defined at the sensor locations 

( )nn ,r ϕ . wQδ  is approximated from a cubic B-
spline as follows: 
 

( ) ( )∑
=
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m

1i
iiw pQ , i = 1, 2, …, m.  

 
Problem in variation 
 The problem in variations has the following 
form: 
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 The direct problem, the adjoint problem and 
the problem in variations are solved by using the 
Gauss Seidel procedure [12].  
 To obtain a stable solution of the inverse 
problem we use two approaches. The first one is 
the iterative regularization [11]. According to the 
method, the iterative improvements of the 
approximation parameters is terminated with the 
use of the residual criteria : 
 

2it
w )Q(J δ≈  (27) 

 
2δ  is the total measurement error defined as 

follows : 
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),r( nn

2 ϕσ  is an estimate of the standard 
deviation for the temperature measured at the nth 
point. 
If the number of measurement points N is 
relatively small, it is difficult to apply this method 
directly. The reason is that the sensitivity of the 
residual functional to variations of the 
approximation parameters decrease rapidly when 
N is decreased [13]. 
To increase the sensitivity we use the second 
approach based on smoothing the experimental 
data. The smoothing is realized by using B-
splines with the use of the residual criterion [14]. 
This approach allows to interpolate the 
experimental temperature profiles and to compute 
temperatures, after smoothing, at all of the nodes 
on two measurement lines of used the finite 
difference grid. 
 
 
RESULTS OF NUMERICAL SIMULATIONS 
 
Numerical verification of the solution 
procedure 
 A copper horizontal tube (λ=389W/m2K) 
having the radii R1 and R2 equal to 10 mm and 14 
mm respectively is considered. A known heat flux 
(given a priori) is imposed at the external surface 
of the tube. The internal surface is maintained at 
the constant temperature 60°C. The direct 
problem is solved to determine the temperature at 
the measurement locations (figure 2). 
 In order to validate the estimation procedure 
we have assumed that the temperatures calculated 
from the direct problem solution at measurement 
points are the measured temperatures 
( nnnmeas f),r(T =ϕ ). The heat flux is then 
estimated from the ICHP solution using these 
measured values. Figure 3 shows that the 
estimated heat flux practically coincides with the 
exact heat flux used to solve the direct problem. 
This validation is carried out for the number of 
approximation parameters equal to 10, 20 and 30. 
 The grid of 30 nodes along the circumference 
and 15 nodes in the radial direction has been used 
for these calculations. 
 For different values of m figure 4 shows the 
evolution of the residual functional )Q(J w  as a 
function of the number of iterations. The 
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iterations are continued till the convergence 
criteria J<10-10  is satisfied. It is observed that the 
number of iterations increases when the number 
of approximation parameters is increased. 
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Figure 2: Comparison of calculated and measured 

temperatures 
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Figure 3: Comparison of the calculated and exact 

heat flux 
 
 
Influence of measurement errors 
 The temperature measurements are always 
associated with errors whose magnitude is 

variable according to the measurement method 
and the means employed. We have studied the 
influence of the measurement errors on the 
variation of the heat flux by introducing 
temperature variations with respect to exact 
values obtained from the solution of the direct 
problem (figure 5). 
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Figure 4: Evolution of the residual functional 
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 Figure 6 shows the variation of the local heat 
flux which results from these perturbations of the 
measured temperatures. It is observed that the 
error in the heat flux estimated from ICHP is ±4%  
With respect to the exact heat flux when the 
maximum error of the temperature measurement 
is ±6% (figure 7). 
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Figure 6: Evolution of calculated and measured 

heat flux ω 
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Figure 7 : Influence of temperature variations on 
heat flux 

 
EXPERIMENTAL SET UP 
 Figure 8a shows a scheme of an experimental 
set up in our laboratory to study the interaction 
between a flowing liquid film and downward flow 
of air. The installation consists of a vertical wind 
tunnel having a rectangular section of 90x500 
mm² and a centrifugal fan. In the experimental 
section a copper tube with a slit on the top is 
connected to a constant level overhead tank 
maintained at a controlled temperature. The 
experimental cylinder is placed below the liquid 
feed system to study different liquid flow 
patterns. A laser induced fluorescence technique 
is used to study the local liquid film thickness.  
 Figure 8b shows schematically the flow of a 
liquid film on a cylinder. Determination of the 
local heat flux in such a case when the surface is 
covered with liquid of variable thickness as is 
usually the case for condensation or evaporation 
process is a difficult problem. The thickness of 
the liquid film is generally less than 0.5 mm and it 
is difficult to measure directly the velocity and 
temperature distributions in the flowing film. 
Only the bulk temperatures at the inlet and outlet 
are easily accessible.  
 In order to treat such a problem we use the 
IHCP. The method of calculation developed 
above is proposed in order to determine the local 
heat flux and the surface temperature of the tube. 
In the present article the data of Bourouni [15] on 
natural convection evaporation of a liquid have 
been used. In his experiments the cylinder was 
placed directly below a rectangular liquid jet 
issuing from a liquid receiver. 
 
 
ESTIMATION OF THE LOCAL HEAT 
TRANSFER COEFFICIENTS FOR THE 
EVAPORATION OF A LIQUID FILM 
 Figure 9 shows the advantage of using IHCP 
to determine the local heat transfer coefficients 
when the measurement of local wall temperatures 
is difficult without perturbing the flow. We 
present the variation of the local heat transfer 
coefficients for the evaporation of a liquid film 
flowing on a cylinder. 
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Figure 8a: Experimental set up 
 

 
Figure 8b: Flow of a liquid film on a cylinder 

 
For this problem the temperature distribution 
measured by Bourouni [15] in an electrically 
heated brass cylinder of internal and external 
radii equal to 5 mm and 11 mm respectively is 
used. Figure 9 shows the values of hϕ results as 
reported by Bourouni for film Reynolds number 
varying  between 3000 and 5000. These values 
are based on the assumption that the heat flux is 
uniformly distributed on the inside surface of 
the cylinder and that the circumferential 
conduction is negligible.  
 We have evaluated the local heat transfer 
coefficients by solving the inverse problem 
using two temperatures distributions reported 
by Bourouni for the film Reynolds number 
equal to 4500. The computation is conducted by 
using the number of measurement points equal 
to the nodes number. The temperature profiles 

are measured at radius equal to 10.5 mm. 
Figure 9 shows the comparison of the values of 
hϕ obtained from the present model of inverse 
heat conduction. Figure 9 shows that the hϕ is 
maximum at the top of the tube (front 
stagnation point) and decreases continuously up 
to an angle of 143°. Then it increases at the base 
of the tube (near stagnation point). The local 
coefficient of heat transfer is obtained by 
dividing the local wall heat flux by the 
difference of local wall temperature and the 
constant saturation temperature of 80°C. The 
variation of the local  heat flux is similar to the 
variation of hϕ. The general trend is similar to 
that obtained by Han and Fletcher [16] for the 
case of evaporation on a cylinder. 
 
 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

hϕ [kW/m2K] 

0

5

10

15

20

25

0 1 2 3

Inverse results, Re = 4500

Bourouni [15], Re = 5000

Bourouni [15], Re = 3000

 
 ϕ [rad] 
  
Figure 9: Local heat transfer coefficients for an  
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CONCLUSIONS 
 This article shows the advantage of 
determining the surface conditions using the 
IHCP solution. The method of solution can be 
applied to other geometry and for steady-state  
or transient flows. The field of applications is 
vast. We have presented in this article the 
application of the solution of IHCP to a 
particular case of the evaporation of liquid film 
flowing on a cylinder where the measurements 
of precise local heat flux is difficult to obtain 
without perturbing the flow. 
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ABSTRACT 
 The problem studied in this work is the 
estimation of the heat flux density at the boundary 
of a specimen in the two dimensional case. To 
solve this inverse heat conduction problem, two 
the most popular methods are analyzed: the 
iterative regularization method (IRM) which is the 
whole time domain estimation, and the sequential 
function specification method (FSM).  
These two methods are first verified and then 
compared between them by using simulated 
numerically data. The influence of the time step 
(delta Fourier number) as well as the number of 
approximation parameters of the heat flux spline-
approximation is analyzed.  
A comparison of results obtained by using the 
two above methods are demonstrated.  
 
NOMENCLATURE 
C  specific heat  

ty M,M  number of approximation parameters 

tN   number of time steps 

N    number of temperature sensors 
T , aT , 0T temperature,ambient, initial temperature 

j
iQ  sensitivity coefficient at time jt and 

position iX  

b,a  dimensions of the specimen 

if  measured temperature at position iX  

h  heat transfer coefficient 
t , t f  time, final time 

)t,y(q  heat flux density 

ψ  adjoint variable 

ϑ  temperature variation 
ρ  density  

λ  thermal conductivity 
α  thermal diffusivity 
δ 2  estimated error or criterion 

∆t  time step 
Fo∆   delta Fourier number        
q∆  heat flux increment 

 
INTRODUCTION 

The ill-posed inverse problem of estimating the 
surface heat flux from transient temperature 
histories measured in a heat conducting solid is 
constantly of a great interest during three last 
decades. A literature review and a presentation of 
different methods is given, for examp le, in 
Tikhonov and Arsenin [1], Beck et al. [2,3,4], 
Hensel [5], Murio [6], Alifanov et al. [7,8]. 
Different applications of various methods are 
presented, in particular, in Zabaras et al. [9] et 
Delaunay et al. [10]. And Woodbury et al [11] 

In this paper, results of numerical analysis are 
reported, the goal of which is to estimate the heat 
flux absorbed by a flat specimen cooled at the 
back side and insulated at its lateral surface.  

We use the iterative regularization method 
(IRM) (Alivanov et al., [8]) and the function 
specification method (FSM) (Beck et al., [2]) to 
solve this inverse heat conduction problem. The 
first numerical algorithm is based on the 
minimization of the residual functional which is the 
integrated difference between temperature 
histories measured and those calculated at the 
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sensor locations by solving the direct problem. 
The conjugate gradient method is used to solve 
the inverse problem. The residual functional 
gradient is computed by solving the adjoint 
problem and the optimal descent parameter is 
calculated by solving the problem for temperature 
variations. The heat flux evolution is approximated 
by cubic B-splines (Alivanov et al [7]). The 
second numerical algorithm is based on the 
minimization of the discrete least squares criterion 
by taking into account a few future time steps. 
These two methods are first verified and compared 
between them by using simulated numerically 
data. The influence of the delta Fourier number is 
analyzed. 
 
INVERSE PROBLEM FORMULATION 

The specimen is heated by a heat flux of 
unknown density at the active surface and cooled 
by a forced convection flow at the opposite 
surface. 
The following hypotheses have been taken into 
account: 
- thermophysical properties are supposed to be  
constant, 
- heat transfer is two-dimensional. 
- heat transfer coefficient is constant at the cooled 
surface. 
Under these conditions, the heat transfer process 
in the specimen can be described by the following 
system of equations : 
 

)
y

T

x

T
(

t
T

2

2

2

2

∂

∂

∂

∂
α

∂
∂

+= , 

 ax0 << , by0 << , ftt0 ≤<   (1)  

)t,y(q
x

)t,y,0(T =−
∂
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[ ]aT)t,y,a(Th
x

)t,y,a(T
−=−

∂
∂
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y
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∂
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0
y

)t,b,x(T =−
∂

∂λ    (5) 

0T)0,y,x(T = , ax0 << , by0 <<    (6) 

 
In the model (1)-(6), the heat flux density )t,y(q  

is unknown. To get additional information about 

the temperature distribution in the specimen, 
temperature histories are measured in the 
specimen at a certain number of points N with 
coordinates )Y,X()y,x( nn= , N,...,2,1n = : 

)t(f)t,Y,,X(T nnnmeas = , N,...,2,1n =       (7) 

 
This information, together with the model (1)-(6), 
is used to solve the inverse problem. 
 
 
ITERATIVE REGULARIZATION METHOD 
(IRM) 
 To build a computational algorithm, we use the 
variational formulation of the inverse problem of 
interest. The problem is to find an unknown 
function )t,y(q  for which temperature histories 

computed from the mathematical model (1) to (6) at 
the sensor locations would be close to measured 
histories. That leads to the problem of minimizing 
the residual functional: 

[ ] dt)t(f)q;t,Y,X(T)q(J 2
nnn

t

0

N

1n

f

−= ∫∑
=

 (8) 

 
where )q;t,Y,X(T nn , N,...,2,1n = , are 

temperature histories computed at the sensor 
locations with a given heat flux density )t,y(q .  

 
The unknown function is parametrized in the form 
of a cubic B-spline : 
 

)t()y(p)t,y(q mn

M

1n

M

1m
nm

x t

ϕϕ∑∑
= =

=   (9) 

 
where m np , yM,...,2,1n = , tM,...,2,1m = , are 

unknown parameters, )(ynϕ , )(tmϕ , 

yM,...,2,1n = , tM,...,2,1m = ,  are given basis 

cubic B-splines. The numbers of approximation 
parameters yM and tM  are usually fixed a priori. 

As a result, the inverse problem is reduced to the 
estimation of a vector p of parameters 

m np , yM,...,2,1n = , tM,...,2,1m = . 

 The unknown function is considered as an 
element of the function space ])t,0[]b,0([L f2 ×  

of parametrized functions. We use the 
unconstrained conjugate gradient method of 
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optimization. The residual functional gradient as 
well as the descent direction in L2  space have 

the form : 
 

)t()y(g)t,y('J mn

M

1n

M

1m
nmq

y t

ϕϕ∑∑
= =

=  (10) 

)t()y(d)t,y(D mn

M

1n

M

1m
nm

y t

ϕϕ∑∑
= =

=   (11) 

 
So, the gradient is characterized by the vector 

)g(g nm=  and the descent direction by the 

vector )d(d nm= , yM,...,2,1n = , tM,...,2,1m = . 

It is easy to show that the residual functional 
minimization with respect to desired parametrized 
functions is reduced to those with respect to 
unknown parameters. The successive 
improvements of desired parameters are 
constructed as follows : 
 

sss1s dpp γ+=+ ,  ,...1,0s =  (12) 

 

where s is the iteration index, γ s  is the descent 

parameter, 0p  is an initial guess for the vector of 

unknowns parameters given a priori. The vector 

d s  is computed as follows : 
 
 

1−+−= ssss dgd β ,  ,...1,0s = , (13) (13) 

 

where 00 =β , 
2)s(

)s()1s()s(
)s(

g

)g,gg(

 

−−=β   

 
The realization of the iterative procedure (12) is 

based on computing the vector g at each iteration. 
This vector is determined by the relationship for 
the residual functional variation : 
 

2
M LqRp )q,J()p,J()q,q(J δδδδ ′=′=            (14) 

where pJ ′  is the residual functional gradient in 
MR  space of approximation parameters and qJ ′  is 

the gradient in 2L  space of parametrized 

functions, ( , )⋅ ⋅  is the scalar product.  

 
By using the parametric form (7), it can be shown 
that the vector g is computed as follows 
(Alivanov et al., [1]): 

 

GgJ p =′  (15) 

 
where G is the Gram's matrix for basis functions. 

The most effective method for calculating the 

gradient ′J p  in ty MM RR ×  space is based on 

introducing an adjoint problem. The following 
expression for the gradient components can be 
derived : 
 

tdyd)t()t()t,y,0(J
b
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mn

t

0
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f

nm ∫ ∫=′ ϕϕψ , 
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where )t,y,x(ψ  is the solution of the adjoint 

problem [2]). 
A linear approximation is used to estimate the 

parameter γ s :  

[ ]

[ ]∑∫

∑∫

=

=

−

−=
N

1n

t

0

2
nn

N

1n

t

0

n,nnnn
s

f

f

dt)t,X,X(

dt)t,Y,X()t(f)t,Y,X(T

ϑ

ϑ

γ  

    (17) 
where )t,y,x(ϑ  is the solution of the following 

boundary-value problem for temperature 
variations [2]: 

To obtain stable solutions of the inverse 
problem under consideration, the iterative 
regularization is used [2]. The main idea is to 
terminate the iterative procedure with the residual 
criterion : 
 

J(q s
*

) ≈δ 2  (18) 
 

where δ 2  is the total (integrated) measurement 
error defined by :  
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n
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=

=  (19)  

σ n t2 ( )  is an estimate of the time-dependent 

standard deviation for the nth measured 
temperature history. This procedure gives the 
most stable solution. The number s* of the last 
iteration is the regularization parameter of the 
method. 

It is necessary to note that the numbers of 
approximation parameters yM  and tM  should be 

correctly chosen for the desired function. These 
numbers have to be chosen so that the residual 
criterion would be verified.  

One iteration of the numerical algorithm 
includes the following steps : 
•  solution of the direct problem and computation 
of the residual functional, 
•  verification of the residual criterion, 
•  solution of the adjoint problem and computation 
of the residual functional gradient in L2 space, 

•  computation of the descent direction, 
• .solution of the problem for temperature 
variations and computation of the optimal descent 
parameter, 
•  calculation of the heat flux approximation. 
 
 
FUNCTION SPECIFICATION METHOD (FSM) 
 To estimate transient heat flux, the sum of 
squares function (Beck et al. [3]) is minimized with 
respect to q n+1 : 

)q;t,Y,X(T[)q(J 1n
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The first subscript refers to the space where N is 
the sensor number and the second to the time 
where r is the number of future time steps.  
 

]q   .... q q[q 1n
M

1n
2

1n
1

1n ++++ =  is the unknown  

heat flux. 
The space stabilization, for the function 

specification method, is obtained by the 

regularization term R  witch is a function of the 

regularization parameters 0r , 1r  and 2r  of the 

zeroth, first and second order respectively. The 
stabilization in time is obtained through the 
temporary assymption that flux is constant over 
the r  futures time steps: 
 
q n+1 = q n+2 = ... = qn+r = q n + ∆q n+1 (22) 
 
Then the minimization of the sum J(q n+1)  with 

respect to: 1n
lq +∆ ,  M2,..., ,1l = , 

leads to the following system: 
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where the coefficients of the matrix K are: 
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1 ,...,

, is the sensitivity 

coefficient at the time t n+ j  and the sensor 

locations Xi . 

the coefficients of the matrix RK and the vector 

RF  are function of the regularization parameters 

and the heat flux density at the nth time step 
[12,13].  

One iteration of the numerical algorithm 
includes the following steps : 
•  Computation of the sensitivity matrix K , 

•  Computation of the  temperature jn
iT + with the 

heat flux njn qq =+ , 

•  Computation of elements of the  matrix RK  and 

vectors F and RF .  

•  Computation of the heat flux increment nq∆ and 

the heat flux 1+nq . 
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•  Computation of the temperature 1n
iT + with the 

heat flux 1nn1n qqq ++ += ∆ , 

 
 
NUMERICAL SIMULATION AND 
COMPARISON OF THE TWO METHODS  

To simulate the numerical solution and to 
compare the two methods, we  supposed in the 
problem (1) to (6) that 1=λ W/(m.°C).)., 

1,0a = m, 1,0b = m, 10h = W/(m2.°C),  
0T0 = °C, 10Ta = °C,  

The simulated heat flux evolution is : 
)t(g)y(fq)t,y(q 0=  

where )/yexp()y(f 22 β−=  
and )texp())tsin(1(q)t(g 0 µω −+=  

by0 << , ftt0 ≤< , 0q =1000 W/m2, 

7.15=ω rd/s, 20=β m, 05.0=µ , t∆ = 0,01 s, 

ft =1 s.  

Cρ is computed from the delta Fourier number by 

the relation: 2
cLFo

t
C

 ∆
λ∆

ρ =  where CL  is the 

distance between the heated surface to the 

sensors locations. 
 

The measured temperature histories were 
simulated numerically on the line a 1.0x =  of the 
specimen, at nine uniformly distributed space 
nodes 10/jby j = , 9,...,2,1j = , with a random 

noise 4% of the maximal  temperature value. 
 For the IRM, we used 21M y =  parameters in 

the Oy direction and 51M t =  parameters in time 

to estimate the unknown heat flux evolution. 
For the FSM, the sensitivity coefficients are 
computed by solving the sensitivity boundary 
problem associated to the system (1) to (6). The 
number of the future time steps 10r =  is fixed 

and the regularization parameters 0r , 1r  and 2r  

are determined for each case. 
The alternative direction implicit (ADI) method is 
used for to solve different boundary problems.. 

In figures 1a, 1b and 1c, we show, respectively, 
the exact heat flux )t,y(qex and the exact 

temperature evolutions )t,x(T  at 2/by =  and 

)t,y(T  at 2/ax =   computed with the analyzed 

heat flux . 
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Figure 1a. Exact heat flux evolution. 
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Figure 1b. Exact temperature evolution )t,x(T  at 
2/by =  
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Figure 1c. Exact temperature evolution )t,y(T  at 

2/ax = . 
 
 For the test heat flux evolution studied in this 
work, the comparison between the two methods 
(IRM and FSM) show as in the case of the one-
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dimensional study [14], a good agreement 
between them for delta Fourier numbers higher 
than 0.5.  
 In what follows, we show results of the 
comparison between the two methods for three 
values of delta Fourier number Fo∆ =1; 0.1 and 
0.01. If Fo∆  is less than 0.01, to conclude on 
their performance, it is necessary to optimize the 
set of parameters for each method.  
 In figures 2a and 2b we present, for 

Fo∆ =0.1 , the results of estimating the heat flux 
)t,y(q  for IRM and FSM methods respectively. 

We note that the general form of these surfaces in 
function of space coordinate y and time t is in a 
good agreement with studied exact heat flux, 
figure 1a.  
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Figure 2a. Estimated heat flux evolution. 

 
 

0

20

40
60

80
100

Nt

0

5

10
15

20

Ny

0

400

800

1200

1600

2000

0

400

800

1200

1600

2000
q(y,t) FSM

 

Figure 2b. Estimated heat flux evolution. 

 
For the three studied delta Fourier numbers, we 
present a serie of curves in which, we compare the 
two methods through the results of the estimated 
heat flux, figures 3a, 3b and 3c but also through 
the temperature evolutions (at a fixed sensor 
location), figures 4a, 4b and 4c.  

 
 

0 0.2 0.4 0.6 0.8 1 1.2
time (s)

-500

-100

300

700

1100

1500

1900

2300

q 
(W

/m
2 )

  Fo = 1
FSM
Exact
IRM

 

Figure 3a. Estimated and exact heat flux evolution 
Fo∆ =1. 
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Figure 3b. Estimated and exact heat flux evolution 
Fo∆ =0.1. 

 
 

0 0.2 0.4 0.6 0.8 1
time (s)

0

500

1000

1500

2000

2500

q 
(W

/m
2 )

Fo=0.01
FSM
Exact
IRM

 

Figure 3c. Estimated and exact heat flux evolution 
Fo∆ =0.01. 
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Figure 3d. Estimated and exact heat flux evolution 

Fo∆ =0.1, -8
00 10 ar = . 

These curves show generally, the presence, for 
the two methods, of a difference between the 
estimated and exact results which tends to 
increase when the delta Fourier number decrease. 
This variation reaches its maximum value when 
one approaches the high values of exact heat flux. 
The two methods present different behaviors.  
For FSM method, we note the presence of 
fluctuations (or instabilities) around the exact 
value of the heat flux analyzed. The amplitude of 
these fluctuations increases when the delta 
Fourier number falls and decrease according to the 
regularization parameters of the method. 
Let as note that the choice of these parameters 
must correspond with a good conditioning of the 
matrix system (32); for a fixed small condition 
number, the interval domain of these parameters is 
very large [13].  
The numerical tests show that the estimated 
results are very sensitive to the parameter of order 

zero 0r  which, in addition, gives the best result of 

the estimate heat flux. In figure 4d, we present, for 

three values of 0r , a comparison between 

estimated (for 7
0 10r −= , 710  5 − and 610− ) and 

exact heat flux. We can notice that these 

fluctuations clearly decreased for 6
0 10r −=  but 

on the other hand, the difference between the 
estimated and exact results slightly increased.  

For the IRM method, the results are more 
stable and approach exact heat flux a little better 
than FSM method in particular for 01.0Fo =∆ . 
This is a direct consequence of the use of the 
regularizing residual criterion (19). For all 
considered cases, the residual values δ 2  were 

computed by using the formula (18). These values 
are: 

 
Fo∆  δ 2  
1 81.5817 

0.1 20.6836 
0.01 0.5476 

 
Lastly, we find these same remarks on the curves 
relating to the estimated temperatures at, for 
example, the point of measurement )02.0,05.0( , 

figures 4a and 4c. 
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Figure 4c. Estimated and exact temperatures 
evolution Fo∆ =0.01. 

 
We note that the comparis on results obtained 

in this paper differ from those presented for 
example, in Beck, [3]. An explanation is that we 
use another realization of the IRM method based 
on a spline-approximation of the unknown heat 
flux evolution. In particular, the residual functional 
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gradient is not equal to zero at the final time with 
this approximation. 
 
CONCLUSIONS 

To estimate a heat flux evolution from 
measured internal temperature histories, the IRM 
and FSM was studied. A comparison between 
these two methods was carried out for different 
dimensionless Fo∆ numbers. 

This comparative study between the two 
methods in two-dimensional linear heat 
conduction problem studied shows that there is a 
good agreement between the estimated and exact 
heat flux for delta Fourier numbers higher than  
approximately 0.5. 
 For smaller Fo∆ numbers a more detailed 
analysis of these two methods is necessary. 
Indeed, for IRM method, the iterative 
regularization criterion allows to improve a little 
better the estimated results by an analysis of the 
numbers of approximation parameters used in the 
relation (9).  

For SFM method, the estimated results become 
very sensitive to the various parameters of the 
methods: the sensor locations, the number of 
future time steps and the regularization 
parameters. An optimization of these parameters is 
needed.  

It should be underlined that the realized 
comparison of the two methods was rather 
restricted. It is necessary to continue this analysis 
to establish the domains where each of the 
methods is more effective. 
We note finally that the IRM method is more time 
consuming that the FSM method (about five to six 
time slower) . 
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ABSTRACT 

In the present work and inverse mass transfer 
problem involving biomolecules adsorption is 
solved. The mass transfer coefficients and the 
coefficients of the adsorption isotherm are 
estimated using an implicit formulation with the 
cost function of the squared residues, between 
calculated and measured concentrations, being 
minimized with a Genetic Algorithm. One 
configuration was considered: the transient 
experimental data on the solute concentration is 
obtained in a stirred-bath system. In the implicit 
formulation considered here, the direct problem is 
solved several times along the iterative procedure 
used for the solution of the inverse problem. The 
solution of the direct problem was obtained using 
a combination of finite volume method and 
difference finite method, and was validated with 
real experimental data of the concentration for the 
protein Bovine Serum Albumin (BSA) on Accell 

Plus QMA® macroporous adsorbent resin using 
Tris-HCL buffer solution. 

 
INTRODUCTION 

The solution of inverse problems has several 
relevant applications in engineering. As an 
example, a lot of attention has been devoted to the 
estimation of boundary and initial conditions in 
heat conduction problems as well as thermal 
properties and heat source intensities in such 
diffusive processes. On the other hand, despite its 
relevance in mechanical and chemical 
engineering, there is not a sufficient number of 

published results on inverse mass transfer or heat 
convection problems. Recently Denisov [1] has 
considered the estimation of an isotherm of 
absorption, and Lugon et alii [2] have 
investigated the determination of adsorption 
isotherms in a gas-liquid adsorption system with 
applications in the food and pharmaceutical 
industry. 

In this work the mass transfer coefficients and 
the coefficients of the adsorption isotherm are 
estimated using an implicit formulation for the 
inverse mass transfer problem, with the cost 
function of the squared residues, between 
calculated and measured concentrations, being 
minimized with a Genetic Algorithm. The 
analysis and solution of inverse mass transfer 
problems are used herein to estimate parameters 
in a rather important problem in the modern 
biotechnology industry: the protein adsorption in 
chromatography systems. Chromatography 
systems involve the movement of 
macromolecules from a liquid solution to the 
active sites located in the interior of the pores of 
the adsorbent. Therefore the phenomenon is 
controlled by mass transfer mechanisms. These 
mechanisms consist of external diffusion, the 
effective diffusion in the pores and the velocity of 
the adsorption on the active site of the adsorbent.  

Proteins can be separated by some form of 
chromatography or selective adsorption, and this 
process may be carried out in a packed column or 
a stirred tank using a specially chosen adsorbent 
[3]. To have a better understanding of the 
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processes involved, as well as to allow the design 
and scale up of adsorption equipment, it is 
necessary the determination of the 
physicochemical properties used in the 
mathematical and numerical models developed 
for the system analysis. In order to achieve this 
objective, inverse mass transfer problems may be 
used as important tools.  

A useful literature related to numerical and 
experimental studies on protein adsorption 
kinetics is available. Horstmann and Chase [4] 
developed a model describing the kinetics of 
adsorption of proteins to adsorbents. This model 
includes the effects of external film mass transfer 
and pore diffusion. Numerical solution of the 
governing differential equations was carried out 
using a finite difference method. Liapis and 
Rippin [5] described a multicomponent 
adsorption equation from a finite bath onto 
adsorbent particles. This model includes the 
external film resistance effect and diffusional 
resistance within the particle. Orthogonal 
collocation was used to solve the equations for 
two component adsorption. Estimates were made 
of pore and solid diffusion within carbon particles 
by using superposition of model prediction onto 
experimental results. Firouztale et alii [6] 
employed theoretical models and nonlinear 
regression analysis to determine the values of 
liquid film mass transfer and effective pore 
diffusion coefficient. These values seem to be 
consistent with values estimated from empirical 
relations. Conder and Hayek [3] used a two-
equation model to simulate the protein adsorption 
on a rigid, silica-based medium. The differential 
equations were solved using an approach 
equivalent to that employed by Horstmann and 
Chase [4]. The mass transfer coefficient and pore 
effective diffusivity were evaluated for Bovine 
Serum Albumin (BSA) adsorption on Accell Plus 

QMA® macroporous adsorbent resin by Silva et 
alii [7]. The model solution was obtained through 
the orthogonal collocation method. A nonlinear 
multivariable optimization method was used to fit 
the model to experimental results. 

The objectives of the present study are: (i) 
present the finite volume / finite difference 
formulation for a set of differential equations that 
models the mass transfer phenomena; (ii) 
compare the numerical results with experimental 
data; and (iii) use a global optimization method 
(Genetic Algorithm) with the finite volume / 
finite difference formulation and real 

experimental data to estimate parameters related 
to adsorption of biomolecules in a stirred bath. 

 
DIRECT PROBLEM FORMULATION  

A model that describes the protein adsorption 
on macro porous solids was presented by 
Horstmann and Chase [4]. This model includes 
the effects of external film mass transfer and pore 
diffusion as well as an expression for the rate of 
surface reaction. The assumptions used as the 
basis of the model can be seen in Horstmann and 
Chase [4] and will be briefly listed here to the 
completeness of the present work: (i) The 
adsorbent is made of a porous material, into 
which the solute must diffuse, in a manner 
described by an effective diffusivity, effD ; (ii) 

Mass transfer to the surface of the adsorbent is 
governed by a film model characterized by a mass 
transfer coefficient, sk  ; (iii) The bed is 

homogeneous, i. e., adsorbent particles are 
spherical, with uniform size, i. e., radius R, and 
density ρ; (iv) The protein is distributed evenly 
throughout the interior of the particle; (v) 
Adsorption is isothermal and its equilibrium 
behavior can be represented by the Langmuir 
equation; and (vi) Axial dispersion is negligible in 
this simulation. 

We now present the mathematical model 
developed. The mass balance over a solid particle 
leads to the differential equation that describes the 
solute (protein) diffusion in the particle’s pores 
(adsorbent resin) [8] 
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where iC  is the protein concentration in the 

liquid phase in the interior of the particles pores, 

effD  is the effective diffusion coefficient, ρ is the 

density of the adsorbent particles, pε  is the 

particle porosity, mq  is the Langmuir isotherm 

equilibrium constant and dk  is the maximum 

binding capacity of adsorbent and t and r are the 
temporal and spatial (radial) variables 
respectively. 

The initial condition is the following 
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( ) 00 ==t,rCi  for Rr ≤≤0    (2) 

 
and the boundary conditions are 
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where bC  is the bulk concentration of protein in 

the liquid phase, R is the particle radius and sk  is 

the external mass transfer coefficient.  
The mass balance in the bulk liquid phase 

with respect to the protein concentration can be 
written as [8] 
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where bε  is the bed porosity. Eq. (5) is subjected 

to the following initial condition 
 

0CCb =  when t = 0   (6) 

 
When the geometry, physicochemical 

properties, process parameters and initial and 
boundary conditions are known, the solute 
concentration in both liquid and solid phases can 
be calculated. This is the direct problem. In the 
next section we show the solution of the direct 
mass transfer problem under consideration using a 
finite volume approximation for the solid phase, 
and a finite difference approximation for the 
liquid phase. 

 
FINITE VOLUME FORMULATION  

The complexity of the analysis of adsorption 
systems depends markedly on the type of 
isotherm involved and on the degree of mass-
transfer resistance encountered. Analytical 
solutions can be obtained in the case of negligible 
mass transfer combined with rapid equilibrium 
[8]. However, these conditions are not commonly 
found in practical situations. In this work, the 
coupling of equations (1) and (5), with respective 
initial and boundary conditions precludes the 
determination of an analytical solution. Therefore, 
the finite volume method is used to solve the 
problem in the solid phase governed by Eq. (1) 

while the finite difference method is used to solve 
the problem in the liquid phase governed by Eq. 
(5). The simplicity of Eq. (5), with no spatical 
dependence, was the main reason to use the finite 
difference method to solve this equation. 

To the best of the authors’ knowledge, no 
previous studies of adsorption in a stirred bath 
using finite volume method have been reported by 
other authors. Finite difference method was used 
to solve all differential equations in Refs. [2-4] 
while orthogonal collocation method on finite 
difference method was used in Refs. [5-7]. 

 
SOLID PHASE EQUATIONS 

The basic step in the derivation of a finite 
volume method is to integrate the conservation 
equation in divergence form over the control 
volume represented in Fig. 1.  
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Figure 1 - Elemental control volume used to 
integrate Eq. (1). 

 
The integration of the transient term in Eq. (1) 

both in time as well as over the control volumes 
yields 
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where the superscript “o” means quantities 
evaluated at the previous time level. Integration of 
the right-hand side term of Eq. (1) gives 
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where  
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Introducing the results of these integrations 
into Eq. (1), we obtain 

 
o
PiPWiWEiEPiP CSCACACA ++=  (10) 

 
where 

r

r
A e

PE ∆
Ψ=

2

 ,    
r

r
A w

PW ∆
Ψ=

2

           (11a,b) 

     

( )33

3

1
weP rr

t
S −

∆
= , PWEP SAAA ++=   (11c,d) 

 
For each interior volume there will be a 

corresponding discretized equation as represented 
by Eqs. (10) and (11). For a near-boundary 
control volume, the discretization equation should 
contain the boundary condition. Therefore, two 
new equations must be written, one for the first 
volume, where Eq. (3) should be satisfied, and the 
other for the last volume, where Eq. (4) should be 
satisfied. 

The integration of the transient term in Eq. (1) 
remains unchanged for the first and the last 
volume, but the integration of the right-hand side 
term of Eq. (1) gives for the first volume 
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Introducing the results of these integrations 

into Eq. (1), it can be written in a form equivalent 
to Eq. (10) with 
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The integration of the right-hand side term of 

Eq. (1) gives the finite volume equation for the 
last volume 
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Introducing the results of integration into Eq. 
(1), leads to 
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Special care is required to obtain an 

approximation for 
Rr

i

r

C

=∆
∆

in Eq. (16b). Using 

Eq. (4) this term can be evaluated as 
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Since the values for iC are stored at the center 

of each volume, as represented in Fig. 1, the value 
of 

RriC =  is not available to be used in Eq. (17). 

This value needs to be carefully determined or the 
solution will change appreciably. In this work a 
Taylor series expansion is used to determine the 

value of 
Rr

i

r
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With Eqs. (10) and (15) a system of algebraic 

linear equations is assembled for a given time 
level for the unknowns ijC  with j=1,2,...,N. In 

the present work this system is solved using the 
GMRES method [9] with a preconditioning 
procedure based on a incomplete LU factorization 
[10]. We have used the routines developed by 
Balay et alii [11]. 
 
LIQUID PHASE EQUATION 

 For the solution of the mass transfer problem 
in the liquid phase, a numerical approximation to 
Eq. (5) is constructed based on the following 
third-order accurate finite difference in time [12]: 
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where the superscripts t and t + ∆t indicate, 
respectively, evaluation at the old and new time 
level in the numerical solution. Using bC  in place 

of f in Eq. (19) gives 
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In order to simplify Eq. (20), we assume that 

the rate of change of the bulk liquid concentration 
is equal to the rate of change of the concentration 
in the pore liquid at the surface of the particle, i. 
e., 
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Therefore, it can be proved that the second 

derivative of concentration with respect to time is 
negligible. This simplification gives the equation 
used to calculate the bulk liquid concentration 
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Inspecting Eq. (22) one recognizes that the 

protein concentration in the liquid phase in the 
interior of particles pores, iC  at r = R, is also 

required to calculate the protein concentration in 
the liquid. Inspecting Eq. (18) one recognizes that 
the protein concentration 

RriC =  is a function of 

bC  and iC  in the interior of the particle. 

Therefore, an iterative procedure must be used in 
order to update the values of bC  and iC  in Eqs. 

(18) and (22).  
The solution procedure for the determination 

of bC  and iC  is as following: 

1) Set the initial values for bC  and ijC  with 

j=1,2,...,N; 

2) Calculate 
RriC =  using Eq. (18) with the 

most recent values for bC  and iC ; 

3) Calculate 
Rr

i

r

C

=∆
∆

 using Eq. (17); 

4) Calculate bC  using Eq. (22); 

5) Assemble the system of linear algebraic 
equations using Eqs. (10), (11), (13), (15) and 
(16); 

6) Solve the system of linear algebraic 
equations for the determination of ijC  with 

j=1,2,...,N; 
7) Return to step 2 until a prescribed 

convergence criteria is achieved; and 
8) Return to step 2 for the next time step. 

 
GENETIC ALGORITHM 

We use here an implicit formulation in which 
the inverse problem is written as an optimization 
problem[13]. Genetic Algorithms belong to the 
general category of stochastic global optimization 
methods. They have their philosophical basis in a 
process found in nature related to the evolution of 
the different species. Darwin’s theory of survival 
of the fittest gives the main idea of the method. A 
set of feasible designs constitutes a generation 
that has a fixed number of individuals. A set of 
better designs is derived from the previous 
generation where the individuals are allowed to 
reproduce and cross among themselves with bias 
allocated to the fittest members. Combinations of 
the most favorable characteristics of the mating 
members of the population results in a new 
generation that is more fit than the previous one. 
In a genetic algorithm, a binary string represents 
each set of variables. Its natural counterpart is the 
chromosomal string of an individual in a 
biological population. This chromosomal 
structure represents the memory of a generation 
which is changed when the members of the 
population reproduce. 

A fitness function is created indicating how 
“good” a member is in his generation. For an 
unconstrained maximization problem, the cost 
function can be used as the fitness function. For a 
minimization problem, the cost function has to be 
altered. The inverse of the cost function, or the 
difference between a large number and the cost 
function for each member of the population, can 
be used as the fitness function in a minimization 
problem. For constrained problems, an exterior 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

penalty function approach can be used to 
transform the problem into an unconstrained one. 

Based on the ideas described above a genetic 
algorithm is implemented with three basic 
operations: reproduction, crossover and mutation. 
In the reproduction process individuals are 
selected based on their fitness. One simplistic way 
to selecting members from an initial population is 
to assign a probability of selection fi/Σ fi  to the ith 
member where fi  is the fitness. A new population 
of the same size as the original is created with a 
higher average fitness value. After reproduction, 
more copies of the dominant or fit designs are 
present in the population. The crossover allows 
for an exchange of characteristics among 
members of the population with the intent to 
improve the fitness of the next generation. 
Crossover is executed by selecting two mating 
parents, randomly choosing sites on the genetic 
strings and swapping strings of 0’s and 1’s 
between these chosen sites. In the present work 
the uniform type of crossover was used. In this 
case, a mask of 0’s and 1’s is randomly generated 
to indicate the positions in the chromosome 
strings where the parents’ bits will be exchanged. 
For example, a mask 00101 indicates that the 
digits in the third and in the fifth positions will be 
swapped between the mating parents. The 
remaining digits will be kept unchanged. The 
crossover operation will be performed with a user 
defined probability pc. Mutation is a safeguard 
against losses of useful genetic material during 
reproduction and crossover. The process of 
mutation is simply to choose few members from 
the population based on a probability of mutation 
pm and switch a 0 to 1 and vice-versa at a 
randomly selected site on the selected member. 

The genetic algorithm code used in this work 
was developed by Wall [13]. 

 
RESULTS AND DISCUSSION 

 
VALIDATION OF THE DIRECT PROBLEM 

All the solutions shown herein were 
performed for Bovine Serum Albumin (BSA, 
molecular weight = 67,000) on Accell Plus 

QMA®macroporous adsorbent resin using Tris-
HCL buffer solution (0.02 M pH 7.0). This resin 
has a global specific mass of 1.16 g/cm3, an 
average diameter of 46 µm, an average particle 
porosity of 0.60, and a bed porosity of 0.992 [7]. 

Values of effD  and sk  were obtained by Silva 

et alii [7] using a nonlinear regression for a given 

initial concentration of adsorbate. They also 
obtained the equilibrium isotherm of BSA using 
the measurement technique briefly described in 
that work. The values obtained in their work 
were: 66302.qm =  mg/g and 00510.kd =  

mg/ml. These values were used in most of the 
simulations performed in this work. 

 The same experimental data and parameter 
values presented in Ref. [7] were used in the 
present work to check how the numerical model 
compares with the experimental results. This 
comparison is presented in Fig. 2 and it can be 
seen that the finite volume / finite difference 
model fits fairly well the experimental data. 
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Figure 2 - Experimental and calculated 

 kinetic curves. 
 

SENSITIVITY ANALYSIS 
An important requirement in parameter 

estimation is that the sensitivity coefficients 
should not be of small magnitude, and when more 
than one parameter are estimated simultaneously, 
their sensitivity coefficients must be linearly 
independent over the experimental time domain 
[14]. Similar shapes (time dependence) of 
sensitivity coefficients for two different 
parameters indicate that their effects on the model 
response are similar, being impossible therefore 
to tell them apart. Larger sensitivity coefficients 
are related to better chances of obtaining a good 
estimate.  

In the present work we analyzed the scaled 
sensitivity coefficients which are defined as 
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where sβ are the unknowns, that in the present 

work may be one of these parameters: 
{ }pdmseff ,k,q,k,D ε . As it can be observed in Eq. 

(23) the scaled sensitivity coefficients have all the 
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same units of protein concentration, and a direct 
comparison is then possible.  
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Figure 3 - Sensitivity coefficients  
for Co = 2.0  [mg/ml]. 

 
In order to calculate the normalized sensitivity 

coefficients, approximate values of sβ  are 

needed. For five initial BSA concentration values,  

0C = 1.5, 2.0, 3.0, 3.5, 4.0 mg/ml, and using 

parameters available in [7], we plotted the scaled 
sensitivity coefficients. Fig. 3 displays the scaled 
sensitivity coefficients for 0C  = 2.0 mg/ml. It is 

shown in this figure that only { }meff qD ,  can be 

simultaneously estimated because the sensitivity 
coefficients for { }ds k,k  are of small magnitude 

and nearly equal, therefore both parameters 
cannot be accurately estimated. Also mq and 

pε are correlated. 

 
ESTIMATION OF THE BSA PROPERTIES 

Three tables are shown with the estimation of 
the BSA properties for three different values for 
the initial concentration, because as observed by 
Silva et alii [7] some of the properties depend on 
BSA initial concentration. On these tables are 
shown three different test cases. Tests 1 were 
performed just to determine the value of the 
residual cost function, using parameters provided 
by Silva et alii [7]. In this test, we did not 
estimate any property. Properties were determined 
in test-case 2, effD , and in test-case 3, meff q,D .  

The residual cost function was also calculated for 
these cases. 
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where lY  are the experimental data. 

Tables 2 to 4 summarize the estimated 
coefficients for 510 .C = , 020 .C =  and 

030 .C =  mg/ml, respectively. As previously 

mentioned sk  and dk  cannot be estimated 

because of the small magnitude of the sensitivity 
coefficients. Therefore, we have used the values 
for sk shown in Table 1 and for all test cases, 

00510.kd =  mg/ml [7]. 

  
Table 1 - Values of  for different initial 

concentration [7]. 
 

Initial BSA 
Concentration 

[mg/ml]
k s  x 102 [cm/s]

1,50 20,17
2,00 6,88
3,00 4,05  

 
As can be seen in tables 2 to 4, values of the 

residual cost function are lower using the 
estimated coefficients calculated by the 
formulation presented herein than that estimated 
by Silva et alii [7].  

 
Table 2 - Estimated parameters for 510 .C =  mg/ml 

Test Case Fixed Parameters Estimated Parameters
Cost Function 

Q[mg/ml]2   

D eff  = 15.37 x 10-7

q m  = 302.66  

2 q m  = 302.66 D eff  = 25.37 x 10-7
5.4720 x 10-4

 D eff  = 25.10 x 10-7

q m  = 296.65
5.4459 x 10-4

4.5247 x 10-31

3
 

 
Table 3 - Estimated parameters for 020 .C =  mg/ml 

Test Case Fixed Parameters Estimated Parameters
Cost Function 

Q[mg/ml]
2   

D eff  = 6.79 x 10
-7

q m  = 302.66  

2 q m  = 302.66 D eff  = 6.80 x 10
-7

8.7909 x 10
-3

 D eff  = 6.79 x 10
-7

q m  = 302.69
8.7495 x 10

-3

8.8426 x 10
-31

3
 

  
 

CONCLUSION 
The agreement between the experimental 

observations and the numerical results suggests 
that the method of finite volume / finite difference 
was used successfully to solve the coupled non-
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linear equations associated with adsorption of 
BSA in a stirred bath. The method of Genetic 
Algorithm was also used successfully to 
determine parameters of these non-linear 
equations. It was possible to obtain, using the 
combination of these methods and experimental 
data, the pore effective diffusivity, effD , and the 

Langmuir isotherm equilibrium constant, mq . 
 

Table 4 - Estimated parameters for 030 .C =  mg/ml 

Test Case Fixed Parameters Estimated Parameters
Cost Function 

Q[mg/ml]
2   

D eff  = 3.72 x 10
-7

q m  = 302.66  

2 q m  = 302.66 D eff  = 3.70 x 10
-7

9.0883 x 10
-3

 D eff  = 4.06 x 10
-7

q m  = 275.79
7.7862 x 10

-3

9.8418 x 10
-31

3
 

 
ACKNOWLEDGMENTS 

The authors acknowledge the financial support 
provided by CNPq - Conselho Nacional de 
Desenvolvimento Científico e Tecnológico, 
FAPERJ- Fundação Carlos Chagas Filho de 
Amparo à Pesquisa do Estado do Rio de Janeiro, 
and FAPESP – Fundação de Amparo à Pesquisa 
do Estado de São Paulo. 
 
REFERENCES 

 [1] Denisov, A M., “Inverse problems of 
absorption dynamics”, Minisymposium on 
Inverse Problems In Medicine, Engineering and 
Geophysics, Proc. XXIII Brazilian Congress on 
Applied and Computational Mathematics, Invited 
Lecture, Santos, Brazil, pp. 24-32, 2000. 

[2] Lugon Jr., J., Silva Neto, A. J. and 
Santana, C. S., “An inverse mass transfer problem 
in gas-liquid adsorption in columns of bubble and 
foam”, Inverse Problems in Engineering 
Symposium, College Station, Texas, USA, 2001. 

[3] Conder, J. R. and Hayek, B. O., 
“Adsorption kinetics and equilibria of bovine 
serum albumin on rigid ion-exchange and 
hydrophobic interaction chromatography matrices 
in a stirred cell”, Biochemical Engineering 
Journal, Vol. 6, pp. 215-223, 2000. 

[4] Horstmann, B. J. and Chase, H. A., 
“Modelling the affinity adsorption of 

immunoglobulin G to Protein A Immobilized to 
Agarose Matrices”, Chem. Eng. Res. Des., Vol. 
67, 1989. 

[5] Liapis, A. I. and Rippin, D. W. T., “A 
general model for the simulation of 
multicomponent adsorption from a finite bath”, 
Chemical Engineering Science, Vol. 32, pp. 619-
627, 1977. 

[6] Firouztale, E., Scott, A. P., Dalvie, S. K. 
and von Blohn, G. M., “Experimental and 
theoretical study of key parameters of adsorption 
on reverse phase macroporous resins”, AIChE 

Symposium Series, Vol. 88, no 290, pp.191, 
1992. 

[7] Silva, F. R. C., Pereira, J. A. M., Araújo, 
M. O. D. and Santana, C. C., “Mass transfer 
parameters evaluation in protein adsorption on 
macroporous resin”, Hungarian Journal of 
Industrial Chemistry, Vol. 27, pp. 183-187, 1999. 

[8] Blanch, H. W. and Clark, D. S., 
Biochemical Engineering, Marcel Dekker Inc., 
1997. 

[9] Saad, Y. and Schultz, M. H., “GMRES: A 
generalized minimal residual algorithm for 
solving nonsymmetric linear systems”, SIAM J. 
Sci. Stat. Comput., Vol. 3, pp. 856-869, 1986. 

[10] Venkatakrishnan, V., “Preconditioned 
conjugate gradient methods for the compressible 
Navier-Stokes Equations”, AIAA Journal, Vol. 

29, no 7, pp. 1092-2000, 1991. 
[11] Balay, S., Buschelman, K., Gropp, W. D., 

Kaushik, D., McInnes, L. C. and Smith, B. F., 
”PETSc homepage”, 
“http://www.mcs.anl.gov/petsc”, 2001. 

[12] van Genuchten, M. T. and Gray, W. 
G.,”Analysis of some dispersion corrected 
numerical schemes for solution of the transport 
equation”, International Journal for Numerical 
Methods in Engineering, Vol. 12, pp. 387-404, 
1978. 

[13] Wall, Matthew., ”GAlib: A C++ Library 
of Genethic Algorithm Components”, 
Documentation Revision B, 1996. 

[14] Beck, J. V., Blackwell, B. and St. Clair 
Jr., C. R., Inverse Heat Conduction, Wiley, New 
York, 1985. 
 
 

 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

A ONE-DIMENSIONAL INVERSE RADIATIVE TRANSFER PROBLEM WITH TIME-
DEPENDENT BOUNDARY CONDITIONS 

 
 

Nancy I. Alvarez Acevedo 
Nilson C. Roberty 

Antônio J. Silva Neto2,1 
1 Nuclear Engineering Program, COPPE, 
Universidade Federal de Rio de Janeiro, 

P.O. Box 68509, 21945-470 
Rio de Janeiro, RJ, Brazil 

nancy@lmn.con.ufrj.br,nilson@lmn.con.ufrj.br,ajsneto@
lmn.con.ufrj 

2Department of Mechanical Engineering and Energy 
Instituto Politécnico,IPRJ, Universidade do 

Estado do Rio de Janeiro, UERJ, 
P.O. Box 97282, 28601-970, Nova Friburgo, 

RJ, Brazil 
ajsneto@iprj.uerj.br 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

ABSTRACT  
In the present work we present the formulation 

and the solution of three inverse radiative transfer 
problems in one-dimensional homogeneous 
participating media with time-dependente 
boundary conditions.  In the first one a energy 
balance for the incoming and exit radiation allows 
the direct determination of the absorption 
coefficient.  The second and third inverse 
problems consider the simultaneous estimation of 
the total extinction and scattering coefficients 
using the source-detector  and Levenberg-
Marquardt methods respectively.  Test case 
results are presented.  
 
INTRODUCTION 

The analysis of inverse problems involving 
the interaction of particles or radiation, such as 
neutrons, gamma rays or photons, with a 
participating medium, in which absorption, 
emission and scattering takes place, has been used 
in engineering for non destructive testing and in 
medicine for diagnosis and therapy. 

The mathematical modelling of radiative 
transfer, in which the phenomena of absorption, 
emission and scattering are taken into account is 
usually made using the linearized Boltzmann 
equation, that is also known as the transport 
equation.  The corresponding inverse problems 
are called inverse radiative transfer problems. 

These inverse problems are basically devoted 
to the estimation of radiative properties or sources 
using experimental data related to the radiation 
intensity at the boundaries and/or the interior of 
the medium under investigation.  Carita Montero 

et al. [ ]2,1 estimated the absorption coefficient in 
heterogeneous two dimensional absorbing media 
using the so called q-ART algorithm.  Kauati et 
al. [ ]2  estimated the scattering and total extinction 
coefficients in homogeneous one dimensional 
media using the source-detector methodology.  In 
a recente conference McCormick [ ]9  presented a 
review of different approaches for solving inverse 
problems involving particles transport. 

Inverse problems are formulated either 
explicity [ ]2 , sometimes not requiring the solution 
of the direct problem, [ ]6  or implicity [ , usually 
involving the solution of an optimization 
problem.  One fundamental result in the context 
of the explicit methods was published by Siewert 

]4

[ ]7 . 
Most of the work published so far considers 

the steady-state transport equation, but as an 
example of time dependent problems, Duracz and 
McCormick [ ]8  investigated an inverse radiative 
transfer problem with collimated pulsed 
illumination of a slab target. 

In the present work we tackle the inverse 
radiative transfer problem in a one-dimensional 
homogeneous media whose boundary surfaces are 
subjected to the incidence of external time 
dependent radiation. 

We first consider the determination of the 
absorption coefficient using an energy balance for 
the incoming and exit radiation.  Then we present 
one explicit formulation for the simultaneous 
estimation of the total extinction and the 
scattering coefficients. 
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The explicit method is the source-detector 
methodology . [ ]2

 
MATHEMATICAL FORMULATION OF THE 
DIRECT PROBLEM 

 THE 
DIRECT PROBLEM 

A plane-parallel anisotropically scattering slab 
of thickness , with transparent boundaries, is 
subjected to an external time dependent 
irradiation (see Fig.1). 

A plane-parallel anisotropically scattering slab 
of thickness , with transparent boundaries, is 
subjected to an external time dependent 
irradiation (see Fig.1). 

LL

  
  

Figure 1. Plane-parallel participating medium 
subjected to external time dependent irradiation. 
Figure 1. Plane-parallel participating medium 

subjected to external time dependent irradiation. 
  

  
The mathematical formulation of the direct 

radiation problem is given by the linearized 
Boltzmann equation [  

The mathematical formulation of the direct 
radiation problem is given by the linearized 
Boltzmann equation [  ]9]9
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where  is the velocity of propagation of the 
radiation, 

c
φ  is the transient radiation intensity, z  

is the spatial variable, µ  is the direction cosine of 
the radiation beam with the positive z  axis,  
is the total extinction coefficient,  is the 
scattering coefficient, and  is an internal 
radiation source. 

tσ

sσ
S

The boundary condition (1b) implies on a 
short pulse of energy released at time , and 
angular direction correspondent to 

0tt =

0µ . 
When the geometry, the initial and boundary 

conditions, the source term, and the radiative 
properties are known, the radiative transfer 
problem(1) can be solved for the determination of 

the radiation intensity at any location  
2
Lz

2
L

≤≤- , 

for any angular direction  1 1- ≤≤µ , and at any 
time, .  This is the direct problem. 0t〉

0〈µ 0〉µ

 
SOLUTION OF THE DIRECT PROBLEM 

Applying the Laplace transform 
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In Eq. (3b) aσ  is the absorption coefficient. 

The Laplace transform of the boundary 
conditions (1b-c) yields 
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For the solution of problem (3) we use the 
discrete ordinates method in which the integral 
term on the right hand side of Eq. (3a) is replaced 
by a numerical quadrature.  The integro-
differential equation (3a) is then replaced by a set 
of coupled ordinary differential equations (ODE).  
For each direction of the now discretized angular 
domain (see Fig. 2b) there is one ODE.  To deal 
wih the spatial dependence of the radiation 
intensity, the spatial physical domain is replaced 
by a computational grid, as shown in Fig. 2a, and 
the derivative on the left hand side of Eq. (3a) is 
replaced by a finite difference approximation. 

∫
−
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1
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where and  are respectively the indices of the 
nodes of the spatial and angular grids, with 

 and m
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Figura 2. Computational grid 
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                                        for mN,...,2,1m=           (10) 
where the phase function of anisotropic scattering 
is usually represented in terms of a series of 
Legendre polynomials as 

To obtain the solution of problem (3) we start 
at the left boundary of the domain, i.e. 

2
L

−=z , 

using boundary condition (3d).  Then we make a 
sweep forward from 

2
z −=

L  towards 
2
Lz =  using 

Eq. (10) written as  
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numerical quadrature for the integral term on the 
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Note that in the forward sweep we calculate 
the radiation intensity only for 0〉µ . 

When the forward sweep is completed we 
capture the information given by the boundary 
condition (3e) and we make a backward sweep, 
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After each cycle of one forward and one 
backward sweep is completed the value of , 
with z , and , is updated.  
The forward and backward sweeps are continued 
until a convergence criteria is satisfied such as 
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where is the iteration counter and k ε  is a 
tolerance. 
 
FORMULATION AND SOLUTION OF THE 
INVERSE RADIATIVE TRANSFER 
PROBLEMS 
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Knowing that We consider here the different formulations 

for inverse radiative transfer problems.  In the 
first one we determine the absorption coefficient 
by integrating the original equation in the spatial 
and angular domains, and by choosing properly 
the Laplace transform parameter s .  The second 
one is the source-detector formulation [ . ]2
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we obtain from Eq. (16), for a homogeneus 
medium 

First Inverse Problem – Absorption 
Coefficient Determination 

 To keep the presentation simple let’s consider 
Eq. (3a) without the internal source, and then we 
integrate in the spatial and angular domains, 
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Introducing Eqs. (15) and (20) into Eq. (14), 
and considering that the medium is homogeneous, 
i.e. the radiative properties are constant, results 
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The first and the fourth term on the right hand 

side of Eq. (21) correspond to the incoming heat 
radiative flux that is considered given as 
boundary condition, and the second and third 
terms correspond to the exit radiative heat flux 
than can be measured. 

If we choose properly the Laplace transform 
parameter, i.e 
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we obtain from Eq. (21)  
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Therefore, to obtain one estimate for the 

absorption coefficient aσ  we have just to solve 
the transformed radiative transfer problem (3) 
using different values for the Laplace transform 
parameter s , and we calculate the exit radiative 
heat flux.  When the exit radiative heat flux 
becomes equal to the incoming radiative heat 
fllux as show in Eq. (23) it means that the relation 
(22) is valid, and as s  and  are known, an 
estimate for 

c
aσ  is obtained. 

 
Second Inverse Problem - Explicit 
Formulation 

Here we use the source-detector 
methodology originally proposed by Roberty [ ]3  
which consists on using the original transport 
equation and an adjoint equation, using reference 
values for the unknowns we want to determine, in 

order to assemble a system of nonlinear equations 
with the unknowns explicitily represented. 

In this section we will also focus on the 
estimation of the total extinction and scattering 
coefficients. 

 
The Source Problem. To keep the 

presentation simple we consider the radiative 
transfer problem (3) without the internal source 
term, and a homogeneous medium.  The source 
problem is then written as 
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where )(f µ  represents the boundary condition at 

2
Lz −= , for example )()(f 0µµδµ −= .  Therefore 

a external collimated source can be located 
around the boundary surface in different 
positions. 

Detectors can also be placed in different 
positions around the boundary surface. 

 
The Detector Problem. For each location 

where a detector is positioned, an adjoint problem 
is formulated.  This formulation is obtained from 
the source problem by reversing the direction of 
radiative transfer, i.e. by replacing µ  by µ− , 
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where  and  are reference values for the 

unknowns and , respectively. 
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By imposing the coincidence of the location of 
the detector, with those for the source, function 

)(g µ  represents the measurement that would be 
obtained by the detector for the strength of the 
source located at that position, 
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 Equation (29) is actually a system of nonlinear 
equations in which the unknowns  and t

~σ slσ  
appear explicitily.  For each pair source-detector 
there is one equation. 

where η  is the efficiency of the detector. 
 

The Auxiliary Problem. Reversing 
again the direction of radiation transfer, and 
defining an auxiliary function 

On the right hand side of Eq. (29) the 
boundary conditions come into place, as well as 
the measured values for the exit radiation 
intensity (Laplace transformed). 
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The system of nonlinear equations (29) can be 
solved using a Gauss-Newton linearization 
scheme or a more robust algorithm such as the 
MART (Multiplicative Algebraic Reconstruction 
Technique) that was developed for tomographic 
image reconstruction. 

 
we obtain from the detector problem the 
following auxiliary problem 
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RESULTS 

We present in this section results for the two 
inverse problems described in the previous 
section.  

)(f)s,,
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First Inverse Problems.- Absorption 
Coefficient Estimation 0)s,,

2
L(~ 0 =µφ                                              (28c) According to Eqs. (22) and (23) we look for the 

value of the Laplace parameter for which the 
incoming radiative heat flux is equal to the exit 
radiative heat flux.  Knowing then the value of 

c
s  we obtain from  Eq. (22) the value of the 

absorption coefficiente.  Observe that c  is given. 

 
The Inverse Transport Equation.  In the 

first step on the ITE construction we multiply Eq. 
(24a) by the adjoint function , and 
integrate over the spatial and angular domains, 

)s,,z(*~ µφ
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Integrating by parts the resulting equation, 
introducing Eq. (25a), and replacing the adjoint 
function )s,,z(*~ µφ

)s,,z(

 by the auxiliary function 
~ 0 µφ , we get 

In Fig. 3 we show two test case results.  
Several runs were made considering the radiative 
properties in the range 0 , 

, and slabs with thickness 
a

1m05, σ≤−

1
s m95,0 −≤σ

5,0Lm1,0 m≤≤ , but due to space limitations we 
are presenting the results for just on case.  Here 
we have a slab of thickness .  The 
exact value of the absorption coefficient is 

 ifor the case presented Fig. 3a and 

 in Fig. 3b. 
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Plotting the incoming and exit radiative heat 
fluxes, and finding the value for which they equal 
each other, the exact values for aσ  are recovered.  
Observe that here we are considering only 
noiseless data. 
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Second Inverse Problem. Results for the 
source-detector methodology 

To demonstrate the feasibility of the solution 
of the inverse problem with the source-detector 
methodology, we present in Table 1 the results 
obtained for the simultaneous estimation of the 
total extinction and scattering coefficients.  The 
reference values are , and the exact 
values are  and .  
The initial guess values are taken equal to the 
reference values, i.e. .and  
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As reported by Kauati et al.  when the 
reference values are far from the exact values it is 
necessary to restart the algotihm using the 
reference values taken as the estimated values 
obtained in the previous cycle of iterations, i.e. 

 is  and , where  is the 
counter of the cycles of iterations.  As shown in 

Table 1, at the end of the first cycle of iterations 
one gets  11

t m5150,6~ −=σ

1m−

 and .  
These values are then used as the reference 
values, being obtained with the souce-detector 
methodology the estimates  and 

.  The procedure of sequentially 
obtaining new estimates by updating the reference 
values is continued until no change, within a 
tolerance, is observed. 
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The results shown in Table 1 were obtained 
for .  

 
Table 1. Estimated values for  and  at 

each iteration c  

Cycle 
k  

Reference     
values Iter. σ ] 

1 R
tσ = 0 
R
sσ = 0 

1 
2 

1,9508
6,5150

1,3248 
6,8004 

2 
R
tσ =6,5150 
R
sσ =6,8004 1 10,6586 10,3904 

3 
R
tσ =10,658 
R
sσ =10,390 1 13,4931 10,9328 

9 
R
tσ =14,999 
R
sσ =10,000

1 
2 

15,0004
15,0004

10,0005 
9,9999 

10 R
tσ =15,000 
R
sσ =10,000

1 
2 

14,9999
14,9999
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Figura 3.  Absorption coefficient determination.

 and  

s/c 
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In Fig. 5 are shown the results for  

. 1m1 −

 In the test cases presented here we have 
considered synthetic experimental data without 
noise.  In fact there is some level noise present in 
the data due to the numerial approximation used 
for the solution of the direct problem and round-
off errors. 
 
 
CONCLUSIONS 

The test case results presented demonstrate the 
feasibility of the three techniques used for solving 
inverse radiative transfer problems in a one-
dimensional homogeneous participating medium 
using time dependent boundary conditions. 

The next step on this research consists on 
considering noise in the experimental data. 
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ABSTRACT 
      
This paper describes a methodology for using 
neural networks in an inverse heat conduction 
problem. Three neural network (NN) models are 
used to determine the initial temperature profile 
on a slab with adiabatic boundary condition, 
given a transient temperature distribution at a 
given time. This is an ill-posed 1D parabolic 
inverse problem, where the initial condition has to 
be estimated. Three neural network models 
addressed the problem: a feedforward network 
with backpropagation, radial basis functions 
(RBF), and cascade correlation. The input for the 
NN is the temperature profile obtained from a set 
of probes equally spaced in the one-dimensional 
domain. The NNs were trainned considering a 5% 
of noise in the experimental data. The training 
was performed considering 500 similar test-
functions and 500 different test-functions. Good 
reconstructions have been obtained with the 
proposed methodology. 
 
NOMENCLATURE 
ASE Average square error 
bk Bias employed in the NNs 
CasCor Cascate correlation NN 
f(x) Unknown nitial condition 
g(x) Activation function 
wji Conection weight of a NN 
N(βm) Norm of the eigenfunction 
NN Neural network 
RBF Radial base function NN 
T(x,t) Temperature calculate 

),(~ τxT  Experimental temperature 

X(βmx) eigenfunction 
α Regularization parameter 
βm Eigenvalue in Eq. (2) 
η Learning rate 
µ Random variable 
σ Standard deviation 

Ω  Space domain 
+ℜ  Positive real number set 

 
INTRODUCTION 

Neural networks have emerged as a new 
technique to solve inverse problems. This approch 
was used to identify initial conditions in inverse 
heat conduction problem on a slab with adiabatic 
boundary conditions, from transient temperature 
distribution, obtained at a given time. Three 
neural networks architectures have been proposed 
to address the problem: the multilayer perceptron 
with backpropagation, radial basis functions 
(RBF), both trained with the whole temperature 
history mapping, and cascade correlation.  

The results are compared with those obtained 
with non-linear least square approach and 
standard regularization schemes [1, 2]. 

Preliminar results using backpropagation and 
radial basis function neural networks were 
obtained using whole time history, but with only 
three different test functions for the learning 
process [3, 4]. The reconstructions obtained were 
worse than those identified with regularization 
techniques. In that strategy two NNs were 
coupled: the first NN was used for determining 
the time-period to get the observational data, and 
another one to find the initial condition itself. 
That strategy constituted in a novelty in the field, 
but propably the poor set of test functions for 
learning step did not permit a good 
reconstruction. In order to overcome this 
constrain, 500 functions were used for the 
learning process in this work. In addition, two 
groups of test functions were used. In the first 
group 500 completly different test functions were 
used, while for the second group 500 similar test-
functions were used. 

Numerical experiments were carried out with 
synthetic data with 5% of noise was used to 
simulate experimental data. 
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DIRECT HEAT TRANSFER PROBLEM 

The direct problem under consideration 
consists of a transient heat conduction problem in 
a slab with adiabatic boundary condition, with an 
initial temperature profile denoted by f(x). 
Mathematically, the problem can be modeled by 
the following heat equation 
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where x represents space (the distance between a 
point in the slab and one of its endpoints), t is the 
time, f(x) is the initial condition, T(x,t) represents 
the temporal evolution of the temperature at each 
point of the slab, and ∂Ω  represents the 
boundaries of domain Ω . All of these terms are 
dimensionless quantities and Ω  = (0,1) is the 1D 
space domain. 

The direct problem solution, for a given initial 
condition f(x) is explicitly obtained using 
separation of variables, for (x,t) ∈ Ω  × R+:  
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where X(βm,x) = cos(βmx) are the eigenfunctions 
associated to the problem, βm = mπ  are the 
eigenvalues and N(βm)= ∫Ω

′′′ xdxfxX m )(),(β  

represents the integral normalization (or the 
norm) [5]. 

 The inverse problem consists in 
estimating the initial temperature profile f(x) for a 
given transient temperature distribution T(x,t) at a 
time t [1]. 

 
NEURAL NETWORK ARCHITECTURES 

Artificial neural networks (ANN) are made 
of arrangements of processing elements 
(neurons). The artificial neuron model basically 
consists of a linear combiner followed by an 
activation function. Arrangements of such units 
form the ANNs that are characterized by: 
1. Very simple neuron-like processing elements; 
2. Weighted connections between the processing 

elements (where knowledge is stored);  

3. Highly parallel processing and distributed 
control; 

4. Automatic learning of internal representations. 
ANNs aim to explore the massively parallel 

network of simple elements in order to yield a 
result in a very short time slice and, at the same 
time, with insensitivity to loss and failure of some 
of the elements of the network. These properties 
make artificial neural networks appropriate for 
application in pattern recognition, signal 
processing, image processing, financing, 
computer vision, engineering, etc. [6-9]. 

The simplest ANN model is the single-layer 
Perceptron with a hard limiter activation function, 
which is appropriate for solving linear problems. 
This fact prevented neural networks of being 
massively used in the 1970s [6]. In the 1980s they 
reemerged due to Hopfield´s paper on recurrent 
networks and the publication of the two volumes 
on parallel distributed processing (PDP) by 
Rumelhart and McClelland [6]. 

There exist ANN different architectures that 
are dependent upon the learning strategy adopted. 
This paper briefly describes the three ANNs used 
in our simulations: the multilayer Perceptron with 
backpropagation learning, radial basis functions 
(RBF), and cacade correlation. Detailed 
introduction on ANNs can be found in [6] and [9]. 

Multilayer perceptrons with backpropagation 
learning algorithm, commonly referred to as 
backpropagation neural networks are feedforward 
networks composed of an input layer, an output 
layer, and a number of hidden layers, whose aim 
is to extract high order statistics from the input 
data [4]. Figure 2 depicts a backpropagation 
neural network with a hidden layer. Functions g 
and f provide the activation for the hidden layer 
and the output layer neurons, respectively. Neural 
networks will solve nonlinear problems, if 
nonlinear activation functions are used for the 
hidden and/or the output layers.  Figure 1 shows 
examples of such functions. 

A feedforward network can input vectors of 
real values onto output vector of real values. The 
connections among the several neurons (Figure 2) 
have associated weights that are adjusted during 
the learning process, thus changing the 
performance of the network. Two distinct phases 
can be devised while using an ANN: the training 
phase (learning process) and the run phase 
(activation of the network). The training phase 
consists of adjusting the weights for the best 
performance of the network in establishing the 
mapping of many input/output vector pairs. Once 
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trained, the weights are fixed and the network 
can be presented to new inputs for which it 
calculates the corresponding outputs, based on 
what it has learned. 
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Figure 1: Two activation functions: (a) sigmoid 
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The backpropagation training is a supervised 
learning algorithm that requires both input and 
output (desired) data. Such pairs permit the 
calculation of the error of the network as the 
difference between the calculated output and the 
desired vector. The weight adjustments are 
conducted by backpropagating such error to the 
network, governed by a change rule. The weights 
are changed by an amount proportional to the 
error at that unit, times the output of the unit 
feeding into the weight. Equation 3 shows the 
general weight correction according to the so-
called the delta rule 

 

ijji yw ηδ=∆        (3) 

 
where, δj is the local gradient, yi is the input signal 
of neuron j, and η is the learning rate parameter 
that controls the strength of change. 
 

 
Figure2: The backpropagation neural network 
with one hidden layer. 
 

Radial basis function networks are 
feedforward networks with only one hidden layer. 
They have been developed for data interpolation 
in multidimensional space. RBF nets can also 
learn arbitrary mappings. The primary difference 
between a backpropagation with one hidden layer 
and an RBF network is in the hidden layer units. 
RBF hidden layer units have a receptive field, 
which has a center, that is, a particular input value 
at which they have a maximal output. Their 
output tails off as the input moves away from this 
point. The most used function in an RBF network 
is a Gaussian (Figure 3). 
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Figure 3: Gaussian for three differents variances. 

 
RBF networks require the determination of the 

number of hidden units, the centers, and the 
sharpness (standard deviation) of their Gaussians. 
Generally, the centers and standard deviations are 
decided on first by examining the vectors in the 
training data. The output layer weights are then 
trained using the Delta rule.  

The training of RBF networks can be 
conducted: (1) on classification data (each output 
representing one class), and then used directly as 
classifiers of new data; and (2) on pair of points 
(x, f(x)) of an unknown function f, and then used 
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to interpolate. The main advantage of RBF 
networks relies on the fact that one can add extra 
units with centers near elements of the set of input 
data, which are difficult to classify.  

Like Backpropagation networks, RBF 
networks can be used for processing time-varying 
data and many other applications. 

The third ANN used in the present paper is the 
cascade correlation. This NN permits dynamically 
to find out the appropriated number of neurons, 
begining with just the input and output layers, 
with all the neurons fully interconnected (there is 
no hidden layer). The weights on these 
connections are determined using a conventional 
learning. Next, new neurons are considered 
sequentially, and weights between the candidate 
units and the inputs are selected to maximize the 
correlation between the activation of the 
neuron(s) and the residual error of the net. Once a 
neuron is selected, its weights on the inputs are 
frozen, and are not subsequently changed when 
considering new neurons. Additional neurons are 
applied until a specified small error is reached.  

 

 
Figure 4: Casccade correlation network with 2 
hidden layers. The symbol        denotes a neuron. 

 
Figure 4 shows a cascate correlation (CasCor) 

network into which two candidate neurons have 
been implemented. These neurons use a 
conventional activation function, as shown in 
Figure 2. Each open box in the figure represents a 
weight that is trained only once (when the neuron 
is a candidate) and then is frozen. But the cross 
marks represent weights that are repeatedly 
changed as the network evolves. Note that the 
structure of the network is such that the inputs 
remain directly connected to the outputs, but also 
some information is filtered through the neurons. 
The direct input to output connection can handle 
the linear portion of the mapping, while the non-
linearities are addressed by the neurons. 
 

NEURAL NETWORK FOR DETERMINING 
THE INITIAL CONDITION  

Artificial neural networks have two stages in 
their application, firstly the learning and 
activation steps. During the learning step, the 
weights and bias corresponding at each 
connection are adjusted to some reference 
examples. For activation, the output is obtained 
based on the weights and bias computed in the 
learning phase. A supervised learning was used 
for all NN architectures. 

The numerical experiment for inverse problem 
is based on two test functions, the triangular 
function 
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The experimental data (measured 

temperatures at a time τ>0), which intrinsically 
contains errors in the real world, is obtained by 
adding a random perturbation to the exact 
solution of the direct problem, such that 

 
σµ+= exact

~ TT        (8) 
 

where σ  is the standard deviation of the errors 
and µ  is a random variable taken from a Gaussian 
distribution, with zero mean and unitary variance. 
Twin numerical experiments were performed. In 
the first one, a noiseless observational data were 
employed (σ=0). For the second numerical  
experiment was carried out using 5% of noise 
(σ=0.05). 

For the NNs, the training sets are constituted 
by synthetic data obtained from the forward 
model, i.e., profile of a measure points from 
probes spread in the space domain. Two different 
data sets were used. The first data set is the 
profiles obtained from 500 similar functions (see 
examples in Figure 5a). The second one is that 
obtained with 500 no-similar functions (Figure 
5b). Similar functions are those belonging to the 
same class (linear function class, trigonometric 
function class, such as sine functions with 

+
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different amplitude and/or phase, and so on). No-
similar functions are those complete different, in 
which each one belonging a distinct class. 

Figure 5 shows a set of functions used in the 
leraning stage, appling non-similar (Fig. 5a) and 
similar functions (Fig. 5b). 
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Figure 5: Sample of test functions for training: (a) 
non-similar functions; (b) similar functions. 
 

The activaction is a regular test used for 
checking out the NN performance, where a 
function belonging to the test function set is 
applied to activate (to run) the NN. Good 
activations were obtained for all three NNs for 
observational data with noise and noiseless data, 
for similar and non-similar test function sets  (not 
shown). In the activation test the NN trainned 
with similar data were systematicaly better than 
the training with non-similar functions (not shown 
too), with and without noise in the data. A 
summary of the training results for three NNs is 
presented in Table 1. 

 
Table 1: Training results for the neural networks 
used for initial condition reconstruction. 
  

Multi -layer perceptron 

Data Noise Hidden 
Neurons  

Training 
Epochs ASE 

Non-similar 0% 25 150000 0,0487 
Similar 0% 20 50000 0,0127 
Non-similar 5% 20 300000 0,0694 
Similar 5% 20 50000 0,0144 

Radial base functi on 

Data Noise Hidden 
Neurons  

Training 
Epochs 

ASE 

Non-similar 0% 20 50000 0,0576 
Similar 0% 20 50000 0,0095 
Non-similar 5% 20 300000 0,0873 
Similar 5% 20 50000 0,0123 

Cascate correlation 

Data Noise Hidden 
Neurons  

Training 
Epochs ASE 

Non-similar 0% 10 300000 0,0746 
Similar 0% 05 63000 0,0230 
Non-similar 5% 02 2000 0,1389 
Similar 5% 05 63000 0,0318 

Nevertheless, the activation test is an 
important procedure, indicating the permormance 
of a NN, the effective test is defined using a 
function (initial condition) that did not belong to 
the training function set. This action is called the 
generalization of the NN. Functions as expressed 
by Eqs. (6) and (7) did not belong to the function 
set in the traning step. 

Figures 6, 7, and 8 show the initial condition 
reconstruction for noiseless experimental data, 
and Table 2 presents the Average Square Error 
(ASE) for three NNs used in this paper. 
Differently from the results for the activation test, 
reconstruction using non-similar functions were 
better than estimation with similar functions. 

 
 

Table 2: Activation results for the noiseless 
experimental data. 
  

Multi-layer perceptron 
f(x) Data ASE 

Triangular Non-similar 0.0136 
Triangular Similar 0.0139 
Semi-triangular Non-similar 0.0246 
Semi-triangular Similar 0.1599 

Radial base function 
f(x) Data ASE 

Triangular Non-similar 0.0065 
Triangular Similar 0.0079 
Semi-triangular Non-similar 0.0275 
Semi-triangular Similar 0.0498 

Cascate correlation 
f(x) Data ASE 

Triangular Non-similar 0.0253 
Triangular Similar 0.0845 
Semi-triangular Non-similar 0.0471 
Semi-triangular Similar 0.1462 
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Figure 6: Reconstruction using multi-layer 
perceptron NN with noiseless data.  
 

The worse reconstructions for noiseless data 
were obtained using CasCor-NN (see table 2 and 
Figures 6, 7, and 8), and the best identifications 
were  obtained using RBF-NN. However, good 
initial condition identifications were gotten with 
three NN architectures. 
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Figure 7: Reconstruction using radial base 
function NN with noiseless data. 
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Figure 8: Reconstruction using cascate 

correlation NN with noiseless data. 
 

Table 3: Activation results for the experimental 
data with 5% of noise. 
  

Multi-layer perceptron 
f(x) Data ASE 

Triangular Non-similar 0.0227 
Triangular Similar 0.0210 
Semi-triangular Non-similar 0.0621 
Semi-triangular Similar 0.0786 

Radial base function 
f(x) Data ASE 

Triangular Non-similar 0.0308 
Triangular Similar 0.0331 
Semi-triangular Non-similar 0.0563 
Semi-triangular Similar 0.0396 

Cascate correlation 
f(x) Data ASE 

Triangular Non-similar 0.0384 
Triangular Similar 0.0947 
Semi-triangular Non-similar 0.0486 
Semi-triangular Similar 0.1294 
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Real tests for inverse problems must be 
performed using some level of noise in the 
synthetic experimental data. As it was mentioned, 
the real experimental data were simulated 
corrupting the output data from direct problem 
with Gaussian white noise,  see Eq. (8). 

As with our numerical experiment with 
noiseless data, the identification of the initial 
condition was effective for all NNs used here.  
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Figure 9: Reconstruction using multi-layer 
perceptron NN with 5% of noise. 
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Figure 10: Reconstruction using radial base 
function NN with 5% of noise. 
 

Figures 9, 10 and 11 show the reconstructions 
for multi-layer perceptron, RBF and CaCor NNs. 
Table 3 presents the ASE for two test function in 
the generalization. As expected the reconstruction 
with data contamined with noise was worse than 
noiseless data. But, the NNs were robust in the 
identification with noise in the experimental data. 
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Figure 11: Reconstruction using cascate 
correlation NN with 5% of noise. 
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FINAL REMARKS 
Three architectures of neural networks were 

studied in the reconstruction of the initial 
condition of a heat conduction problem. All of 
NNs were effective for solving this inverse 
problem. Different from previous results [3, 10], 
reconstructions are comparable with those 
obtained with regularization methods [2], even for 
data containing noise. However, the NN do not 
remove the inherent ill-posedness of the inverse 
problem. 

The initial condition estimation problem is a 
harder inverse problem than the identification of 
boundary condition in heat transfer [11-13].  

An interesting remark is the result for the 
activation test, where the training with similar 
functions produced better identification than non-
similar function. However, reconstructions using 
non-similar functions were systematicly better for 
the generalization, except in only one case: the 
estimation of semi-triangular function by RBF-
NN with 5% of noise (Table 3). 

The worse estimation was obtained with 
CasCor-NN. A future work could be done using 
the strategy adopted by Hidalgo and Gómez-
Treviño [14]. To accommodate large amounts of 
noise, they added a regularization term to the least 
squares objective function of the neural network. 

Processing with NNs is a two step process: 
training and activation. After the training phase, 
the inversion with NNs is much faster than the 
regularization methods, and the NNs do not need 
a mathematical model to simulate the forward 
model. In addition, NNs is an intrinsicly parallel 
algorithm. Finally, NNs can be implemented in 
hardware devices, the neurocomputers, becoming 
the inversion processing faster than NNs emulated 
by software. 
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ABSTRACT 
     Tsallis’ non-extensive entropy is used as a 
regularization operator. The parameter “q” has a 
central role in Tsallis’ thermostatiscs formalism. 
Here, several values of q are investigated in an 
inverse problem, using q<1 and q>1 (q=1 is the 
standard Boltzmann-Gibbs-Shannon formulation). 
Estimation of initial condition in heat conduction 
problem is employed as the inverse test problem. 
Two methods are studied for determining the 
regularization parameter, the maximum curvature 
for the L-curve, and the Morozov's discrepancy 
principle. 
 
NOMENCLATURE 
E(.) Square error in L2-norm 
f(x) Unknown nitial condition 

],
~

[ fTJα  Objective function 

q Non-extensivity parameter 
R(.) Residue in L2-norm 
Sq Non-extensive entropy 
T(x,t) Temperature calculate 

),(~ τxT  Experimental temperature 

α Regularization parameter 
µ Random variable 
σ Standard deviation 
Λ Space domain 
Ω(f) Regularization function 

+ℜ  Positive real number set 

 
INTRODUCTION 

Inverse problems belongs the class of ill-
posed problems. In these type of problems 
existence, uniqueness and stability of their 
solutions cannot be ensured. 

The regularization theory appeared in the 60’s 
as a general method for solving inverse problems 
[1]. In this approach, the non-linear least square 

problem is associated with a regularization term 
(a priori or additional information), in order to 
obtain a well-posed problem. A well-known 
regularization technique was proposed by 
Tikhonov [1], where smoothness of the unknown 
function is searched. Similarly to Tikhonov's 
regularization, the maximum entropy formalism 
searchs for global regularity and yields the 
smoothest reconstructions which are consistent 
with the available data. The maximum entropy 
principle was first proposed as a general inference 
procedure by Jaynes [2] on the basis of Shannon's 
axiomatic characterization of the amount of 
information [3]. This principle has successfully 
been applied to a variety of fields [4]. 

A non-extensive statistics has been proposed 
for entropy [5, 6]. Recently, the non-extensive 
entropic form (Sq) was used as a new 
regularization operator [7], using only q=0.5. The 
q parameter plays a central role in the Tsallis' 
thermostatistics, in which q=1 the Boltzmann-
Gibbs-Shannon’s entropy is recovered.  In the 
present study several values for q  were used for 
the non-extensive entropic regularization term.  

This new regularization operator was tested 
for estimating initial condition in heat conduction 
problem [8, 9]. Synthetic data with Gaussian 
white noise corruption were used to simulate 
experimental data. 

Two methods were investigated for 
determining the regularization parameter: the 
Morozov's discrepancy principle [10], and the 
maximum curvature scheme of the curve relating 
smoothness versus fidelity, inspired in Hansen’s 
geometrical criterion  [11].  
 
NON-EXTENSIVE ENTROPY AS A NEW 
REGULARIZATION OPERATOR 

A non-extensive form of entropy has been 
proposed by Tsallis [5] by the expression 
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where pi is a probability, and q is a free 
parameter. In thermodynamics the parameter k  is 
known as the Boltzmann’s constant. Similarly as 
in the mathematical theory of information, k=1  is 
considered in the regularization theory. Tsallis’ 
entropy reduces to the the usual Boltzmann-
Gibbs-Shanon formula 
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in the limit q→1. 

As for extensive form of entropy, the 
equiprobability condition produces the maximum 
for the non-extensive entropy function, and this 
condition is expressed as  

 

( ) ( )1
1

1 1
max

−
−

= −q
pq N

q
S      (Np ≥ 1)  (3) 

 
where, in the limit Np→∞, Sq diverges if q ≤ 1, 
and saturates at 1/(q-1) if q>1 [6]. 

The equiprobability condition leads the 
regularization function defined by the operator 
Sq(p), given by Eq. (1), to  search the smoothest 
solution for the of the unknown vector  p.  

The parameter q has a central role in Tsallis’ 
thermostatiscs, and it is called the non-extensivity 
parameter – see Eqs. (A.5) and (A.6) in the 
Appendix. For q<5/3, the standard central limit 
theorem applies, implying that if pi is written as a 
sum of M random independent variables, in the 
limit case M→∞, the probability density function 
for pi in the distribution space is the normal 
(Gaussian) distribution [6]. However, for 5/3<q<3 
the Levy-Gnedenko’s  central limit theorem 
applies, resulting for M→∞ the Levy distribution 
as the probability density function for the random 
variable pi . The index in such Levy distribution is 
γ=(3-q)/(q-1) [6]. 

The non-extensive approach has been used in 
many different applications, such as in a certain 
type of anomalous diffusion process [6], as well 
as the statistical model for data from turbulent 
flow [12, 13]  and from financial market [12]. 
According to Plastino and Plastino [14], the first 
experimental confirmation of Tsallis’ non-

extensive formalism is the Boghosian’s approach 
of the two dimensional pure electron plasma [15]. 
Some properties of the thermostatistics formalism 
are described in the Appendix. 

In the present study the maximum non-
extensive entropy principle of zeroth-order is 
applied as a regularization function for estimating 
the initial condition in conductive heat transfer. 
The forward problem is presented in the next 
Section. 
 
FORWARD HEAT CONDUCTION 
PROBLEM 

The direct (forward) problem consists of a 
transient heat conduction problem in a slab with 
adiabatic boundary condition and initially at a 
temperature denoted by f(x). The mathematical 
formulation of this problem is given by the 
following heat equation 
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txxfxT
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x

txT

tx
x

txT
t

txT

 (4) 

 
where T(x,t) (temperature), f(x)  (initial 
condition), x (spatial variable) and t (time 
variable) are dimensionless quantities and 
Λ=[0,1]. The set of partial differential equations is 
solved by using a central finite difference 
approximation for space variable O(∆x2), and 
explit Euler method for numerical time 
integration O(∆t) [14]. 

This problem has been used for testing 
different methodologies in inverse problems [8, 9, 
17-19], and it is badly conditioned problem [8]. 
 
INVERSE ANALYSIS  

Typically, for (inverse) ill-posed problems, 
that existence, uniqueness and stability of their 
solutions cannot be ensured. In some sense, a 
solution can be formulated in such a way that 
existence and uniqueness can be relaxed, but this 
solution can still be unstable under the presence 
of noise in the experimental data. Hence, it 
requires some regularization technique, i.e., the 
incorporation in the inversion procedure of some 
available information  about the true solution. 
Following the Tikhonov’s approach [1], a 
regularized solution is obtained by choosing the 
function f* that minimizes the following 
functional 
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where ),(

~~
τxTT =  is the experimental data (t=τ), 

T(f) is the temperature computed from the 
forward model at time τ, Ω[f] denotes the 
regularization term given by expression (1) with 
k=1, α  is the regularization parameter, and 

2
⋅  is  

the 2-norm. 
The regularization parameter α is chosen  by 

two methods: numerically, assuming that a bound 
δ (or the 'statistics') of the measurement error is 
known, i.e., δ≤−

2exact

~
TT  - this numerical 

procedure is based on Morozov's discrepancy 
principle [10]; graphically, finding out the point 
of maximum curvature in the curve 

2

2
)(

~
][ αα fTTf −×Ω  , a type of L-curve [11, 20]. 

 
Optimization Algorithm  

The optimization problem is iteratively solved 
by the quasinewtonian optimizer routine from the 
NAG Fortran Library [21], with variable metrics. 
This algorithm is designed to minimize an 
arbitrary smooth function subject to constraints 
(simple bound, linear or nonlinear constraints), 
using a sequential programming method.  

This routine has been successfully used in 
several previous works: in geophysics, hydrologic 
optics, and meteorology. 
 
ESTIMATING INITIAL CONDITION BY THE 
NON-EXTENSIVE ENTROPY 

The numerical experiment with the non-
extensive entropy is based on two test functions, 
the triangular function 
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and semi-triangular function 
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The experimental data (measured 

temperatures at a time τ>0), which intrinsically 
contains errors, is obtained by adding a random 
perturbation to the exact solution of the direct 
problem, such that 

 

σµ+= exact

~ TT        (8) 
 

where σ  is the standard deviation of the errors 
and µ  is a random variable taken from a Gaussian 
distribution, with zero mean and unitary variance. 
All tests were carried out using 5% of noise 
(σ=0.05). 

It is important to observe that the spatial grid 
consists of 101 points (Nx=101), and the time-
integration is performed up to τ=0.01. The residue 
R(fα) and the error E(fα) are defined by 
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If we effectively want to apply some kind of 
regularization, which means α>0 in Eq. (5), then  
the discrepancy principle - an a-posteriori 
parameter choice rule - implies  that a suitable 
regularized solution can be obtained. Since the 
spatial resolution is Nx=101, the optimum α is 
reached for R(f*) ≅ Nxσ

2 = 0.2525. Table 1 shows 
the square diference term R(f*) obtained for 
different values of α, and the optimum value is 
pointed out for each case in bold font. 

A set of tables (Tables 1, 2, 3 and 4) presents 
the least squares (or residual) term R(fα) and the 
error E(fα) between the approximated (or 
calculated) solution  fα and the exact solution fexact 
obtained for two values of q=0.5 and 2.0, from a 
family of regularization non-extensive entropy 
functions Sq,  for different values of α. The value 
of α satisfying the discrepancy principle is 
pointed out for each test functions by bold font. 
Regularized solutions are presented in Figures 1 
and 2.  

The parameter vector was always subjected to 
the following simple bounds: 1.2 ≥ fk ≥ -0.2 for 
the triangular test function, and 1.2 ≥ fk ≥ 0 for the 
semi-triangular test function, with k = 1, 2, …, Nx. 
 
Table 1: Determining α by Morozov’s criterion: 
q=0.5, for triangular test function. 
 

α )( αfR  )( αfE  

0.0001 0.1853 2.7298 
0.0003 0.1856 0.5388 
0.0010 0.1861 0.3443 
0.0285  0.2525 0.3994 
0.0999 0.7728 0.8684 
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Table 2: Determining α by Morozov’s criterion: 
q=0.5, for semi-triangular test function. 
 

α )( αfR  )( αfE  

0.0001 0.1851 4.9359 
0.0003 0.1854 0.6740 
0.0010 0.1856 0.2113 
0.0346 0.2525 0.2400 
0.0999 0.6687 0.7207 

 
 
Table 3: Determining α by Morozov’s criterion: 
q=2.0, for triangular test function. 
 

α )( αfR  )( αfE  

0.0001 0.1852 2.3979 
0.0003 0.1854 0.3578 
0.0010 0.1856 0.1383 
0.0414 0.2525 0.2370 
0.0999 0.5174 0.5977 

 
 
Table 4: Determining α by Morozov’s criterion: 
q=2.0, for semi-triangular test function. 
 

α )( αfR  )( αfE  

0.0001 0.1851 4.0920 
0.0003 0.1854 0.4455 
0.0010 0.1856 0.1807 
0.0419 0.2525 0.4379 
0.0999 0.5131 0.8651 

 
 
Figures 1a-1d show the estimation of four q-

values for triangular initial condition, where the 
regularization parameter was computed by 
Morozov’s principle. The best reconstruction was 
found by q=2.5, but good reconstructions were 
obtained for other values of q too. Figures 2a-2d 
depict the reconstructions for the semi-triangular 
test function, showing good reconstructions for all 
values of q. 

Another criterion for finding the regularization 
parameter was also investigated, and it is based 
on the maximum curvature in the L-curve [11]. 
Figures 3a-3b show the L-curve for triangular test 
function using q=0.5 and 2.0, respectively. The L-
curve for semi-triangular test function is 
displayed in Figures 4a-4b. The regularization 
parameter α is chosen at the corner of the L-
curve. 
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Figure 1: Reconstructions with 5% of noise, with 
α determined by Morozov’s principle: (a) q=0.5; 
(b) q=1.5; (c) q=2.0; (d) q=2.5. 
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Figure 2: Reconstructions with 5% of noise, with 
α determined by Morozov’s principle: (a) q=0.5; 
(b) q=1.5; (c) q=2.0; (d) q=2.5. 
 
 

Reconstructions using α as computed by 
Hansen’s criterion [11] are shown in Figures 5a-
5d for triangular test function, and Figures 6a-6d 
for semi-triangular test function. The best 
reconstruction was obtained using q=2.5, and the 
worst for q=0.5. 
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Figures 3: L-curve for triangular test function.  
(a) q=1.5; (b) q=2.5. 
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Figures 4: L-curve for semi-triangular test 
function. (a) q=1.5; (b) q=2.5. 
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Figure 5: Reconstructions for triangular test 
function, with α determined by Hansen’s 
criterion: (a) q=0.5; (b) q=1.5; (c) q=2.0; (d) 
q=2.5. 
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Figure 6: Reconstructions for semi-triangular test 
function, with α determined by Hansen’s 
criterion: (a) q=0.5; (b) q=1.5; (c) q=2.0; (d) 
q=2.5. 
 
 
CONCLUSION 

The implict strategy and the regularization 
techniques adopted in this work yield good results 
in reconstructing the initial condition of the heat 
equation. The Morozov's discrepancy principle 
was efficient to estimate the regularization 
parameter in the analyzed cases. The Hansen’s 
criterion also produced good estimates for the 
Lagrange multiplier α. According to the Tables 1-
4, the value of regularization parameter calculated 
by the  Morozov’s principle tends to over-
estimate the value of α. However, looking at 
Table 5, it is possible to realize that the α 
computed by the Hansen’s criterion is closer to 
the αoptimum. Nevertheless, sometimes is hard to 
obtain the L-curve. One case specially difficult 
was found to q=2.5, for some values of α was not 
possible to obtain a solution (no convergence). A 
possible solution to convergence would be to 
change the deterministic optimizer by a stochastic 
one. 

The new  regularization technique used in this 
work, namely the maximum non-extensive 
entropy of zeroth order, worked very well for the 
backwards heat equation for all parameter q 
tested. The choice q=0.5 made by Rebollo-Neira 
et al. [7] was linked to a previous result of 
physical relevance related to the  relaxation of 
two-dimensional turbulence [15]. There is no 
reason to restrict the regularization operator Sq at 
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q=0.5. Actually, the worse reconstructions for the 
triangular test function were obtained using S0.5! 

 
Table 5: Regularization parameter computed by 
test functions using Morozov’s principle and 
Hansen’s criterion. 
 

Triangular Test Function 
 q=0.5 q=1.5 q=2.0 q=2.5 

αMorozov 0.0285 0.0231 0.0414 0.0579 
αHansen 0.0011 0.0008 0.0040 0.0040 

 
Semi-triangular Test Function 

 q=0.5 q=1.5 q=2.0 q=2.5 
αMorozov 0.0346 0.0231 0.0419 0.0583 
αHansen 0.0040 0.0010 0.0040 0.0050 

 
Table 6 shows that an appropriated choice of 

the non-extentive parameter q can improve the 
reconstruction. The worked example is a linear 
model. However, the regularization theory can 
also be applied to a non-linear problems [1].  

Hence, one can say that the  regularization  
technique worked effectively for this extremly ill-
posed problem and, in this sense, the exploration 
of new entropy-based methodologies seems to be 
necessary and promising. Higher order of the 
maximum non-extensive entropy deserves to be 
examinated [22-24] too, as well as other criteria 
for determining the regularization parameter [25]. 

 
Table 6: Estimation error computed with the 
regularization parameter found by Morozov’s 
principle and Hansen’s criterion. 
 

Triangular Test Function 
 )( Morozov−αfE  )( Hansen−αfE  

q=0.5 0.3994 0.3490 
q=1.0 0.3151 0.1959 
q=1.5 0.2599 0.1697 
q=2.0 0.2370 0.1530 
q=2.5 0.2561 0.1302 

 
Semi-triangular Test Function 
 )( Morozov−αfE  )( Hansen−αfE  

q=0.5 0.2400 0.1676 
q=1.0 0.4056 0.1958 
q=1.5 0.3205 0.1745 
q=2.0 0.4379 0.1800 
q=2.5 0.5959 0.2041 
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APPENDIX – SOME PROPERTIES FOR 
NON-EXTENSIVE THERMOSTATISCS 

For Np micro-states with propabilities pi ≥ 0, 
i=1, … , Np: 

A1: Non-extensive entropy:  
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A2: q-expectation of an observable:  
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Properties 
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2. Non-extensive entropy is positive: Sq ≥ 0. 
 
3. Non-extensivity 
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4. Max Sq under constrain Oq = ∑i pi

q εi (canonical 
ensemble): 
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where the εi is the energy of state i, Oq=Uq is the 
non-extensive form to the internal energy, and the 
normalization factor Zq (partition function), for 
1<q<3, is given by 
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For q = 1 yields 
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ABSTRACT 
    In the present work inverse radiative transfer 
problems in two-dimensional heterogeneous 
participating media are considered. An implicit 
formulation is used in which the cost functional of 
the squared residues between calculated and 
measured exit radiation intensities is minimized. 
The Levenberg - Marquardt method, a gradient-
based minimization algorithm, is used, and 
therefore at every iteration of the iterative 
procedure the solution of the direct problem is 
required. For the solution of the direct problem, 
which is modeled by the linearized Boltzmann 
equation, the discrete ordinates method with a 
finite difference approximation for the spatial 
derivatives is used. The inverse problems 
considered are related to the estimation of the 
absorption and anisotropic scattering coefficients, 
as well as the estimation of source terms. 
 
INTRODUCTION 
    The analysis of inverse radiative transfer 
problems has attracted the attention of many 
researchers due to several relevant applications in 
different areas such as oil industry [1], 
computerized tomography [2], biomedical 
engineering [3], and ocean optics [4] among 
others. 
    Most of the work published on inverse 
radiative transfer problems involves the 
determination of radiative properties [5,6], or 
intensity and/or location of internally distributed 
sources [7], and are usually related to one 
dimensional Cartesian geometry.  
    These inverse problems are either formulated 
explicitly [6], sometimes not requiring the 
solution of the direct problem, or implicitly, 

usually involving the solution of an optimization 
problem [5]. 
     The mathematical modeling of the interaction 
of radiation with participating media is usually 
done with the linearized Boltzmann equation, also 
known as transport equation. Several methods 
have been developed for the solution of the 
transport equation [8], and in recent years an 
increasing interest has been observed towards the 
discrete ordinates method [9], that was originally 
proposed by Chandrasekhar [10], and has been 
intensively applied in radiative heat transfer by 
Fiveland [11] and Truelove [12]. 
    In the present work we consider inverse 
radiative transfer problems in two-dimensional 
participating media. An implicit formulation is 
used, and the inverse problem is solved as an 
optimization one, in which the standard squared 
residues functional is minimized with a gradient 
based method. The direct problem of radiative 
transfer is solved with the discrete ordinates 
methods to deal with the angular dependence of 
the radiation intensity, and a finite difference 
approximation for the spatial derivatives. 
    Test case results are presented for 
homogeneous and heterogeneous two-
dimensional media. The estimation of a constant 
internal source, asymmetry factor, as well as total 
extinction and scattering coefficients are 
considered. Synthetic experimental noisy, and 
noiseless data were used in the simulations. A 
sensitivity analysis is made, and then it is shown 
that better estimates are obtained when only 
detectors located at the region of highest 
sensitivity are used. 
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MATHEMATICAL FORMULATION OF THE 
DIRECT PROBLEM    
    The linearized Boltzmann equation whichthat 
is used in the mathematical modeling of the 
interaction of radiation with a participating 
medium, i.e a medium in which absorption, 
emission and scattering takes place, is written for 
a gray medium, in the steady state, and no 
spectral dependency case as  
 

=Ω+Ω∇⋅Ω ),()(),( rIrrI tσ
 

       ),(')',()',(
2

Ω+ΩΩΩ⋅Ω∫ rSdrIr
S

sσ           (1) 

 

where I  it is the intensity of the radiation, r  

represents a point in the domain,
 Ω  is the 

direction of  propagation of the radiation, tσ  is 

the coefficient of total extinction (absorption  + 
out scattering), aσ  is the absorption coefficient, 

sσ  is the scattering coefficient, 'Ω  is the 

direction of incident radiation that is scattered at 
point r  in the direction Ω , and  S   is the source 

term. The integral term on the right hand side of 
Eq. (1) is known as the in scattering term. In the 
discrete ordinates method the integral in the in 
scattering term is replaced by a numerical 
quadrature, and the integro - differential equation 
(1) is replaced by a set of coupled ordinary 
differential equations (ODE). For each direction 
of the now discretized angular domain there is 
one ODE. 
    In a two-dimensional cartesian domain 
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where l=1,2…Lo  represents the directions in the 
discretized angular domain, and lµ  and lξ  are 

direction cosines with respect to the axis 
represented by the unit vectors xê  and yê , 

respectively. In a rectangular domain, Lxx ≤≤0 , 
Lyy ≤≤0 an approximation for Eq. (1) obtained 

with the discrete ordinates method can be written 
as [8] 
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for  l= 1,2,..,Lo,  11 ≤≤− µ  11 ≤≤− ξ         (5) 
 
where mw  are the weights of the quadrature, and 

lmφ  represents the phase function of anisotropic 

scattering. In the present work we consider only 
isotropic scattering or the linear anisotropic 
scattering in which cases the phase function can 
be represented by [11] 
 

][1 1 mlmllm A ξξµµφ ++=                    (6) 

 
where 

1A  is the asymmetry factor, and it varies in 

the range; 11 1 ≤≤− A . Isotropic scattering is 

modeled by 
1A =0, and forward and backward 

scattering are given by positive and negative 
values respectively.  
    Several sets of boundary conditions can be 
used for the two-dimensional rectangular domain 
considered here, but in the present work we will 
focus only on the two cases represented in Fig. 1.  
 
 
            0== nnorth II  

 
 
  0== wwest II                              0== eeast II  

 
 
 
                      0≠== bssouth III   

(a) Configuration 1 
 

            0== nnorth II  

 
                                                source  
  0== wwest II                              0== eeast II  

 
 
 
        0=== bssouth III   
                                 

(b) Configuration 2 
Figure 1. Boundary Conditions. 
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    In configuration 1, Fig 1a, the lower surface of 
the medium, y = 0, is subjected to external 
isotropic incident radiation. In configuration 2, 
Fig 1b , there is no incidence of external radiation 
on any of the boundaries of the domain, but there 
is a radiation source inside the domain. When the 
geometry, boundary conditions, intensity and 
location of internal sources, and radiative 
properties are known the radiative transfer 
problem (5) can be solved and the radiation 
intensity can be determined for any point (x,y) 
and direction 

lΩ ,  l= 1,2,..,Lo. This is known as 

the direct problem.      
 
SOLUTION OF THE DIRECT PROBLEM   
    In order to solve problem (5) with the boundary 
conditions represented in Fig. 1 we have 
considered a finite difference method in which the 
spatial physical domain is replaced by a 
computational grid, Fig. 2, and the derivatives on 
the left hand side of Eq. (5) are replaced by finite 
differences, 
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                              l = 1,2,..,Lo ,                         (7) 
 
with 
         xjilI ),(∆ = Iel(i,j) –Iwl(i,,j)                             (8a) 

             
         yjilI ),(∆ = Inl(i,j) –Isl(i,j)                               (8b) 

 
where e,w,n, and s represent respectively the east, 
west, north, and south boundaries, of the 
computational cell represented by the grid node 
(i,j). The values of ),( jilI can be approximated by, 

[8] 
 
Il(i,j) = γ  Inl(i,j) + (1- γ )Isl(i,j)  
       = γ Iel(i,j) + (1- γ )Iwl(i,j)                  (9) 
being usually used γ = 0,5. 
Following the signs of the direction cosines, the 
angular domain can be divided in four quadrants 
as follows: (I) lµ >0 and lξ >0; (II) lµ <0 and 

lξ >0; (III) lµ >0 and lξ <0; and (IV) lµ <0 and 

lξ <0. 

  Ly= ⋅∆y maxj    

          E(1,jmax) 
 
 
 

    j                                                                   E(i,j)  
 
 
 
 
⋅∆y  

                                                                     E(imax,1) 

          x∆                                  i          Lx= ⋅∆x maxi  

Figure 2 Computational grid with a regular 
spacing, x∆  = y∆ . 

 
 
    To obtain the solution for the radiative transfer 
problem in the rectangular domain sweeps across 
the grid nodes are made. First if we consider a 
sweep from x = 0 to x = Lx and y = 0 to y = Ly, we 
are able to capture the values of the boundary 
conditions at x = 0 and y = 0, and propagate them 
inside the domain. This is made considering the 
first quadrant (see Fig. 3). A second sweep is 
made from x = Lx to x = 0 and y = 0 to y = Ly, 
capturing the boundary conditions at x = Lx and y 
= 0, and propagating them inside the domain. This 
is related to the second quadrant A similar 
procedure is then used for the third and fourth 
quadrants. In summary, to complete once cycle 
four sweeps are necessary in order to capture the 
boundary conditions at the four boundary surfaces 
and cover the four quadrants.  
   For the first quadrant, lµ >0 and lξ >0, it is 

convenient to write from Eq. (9), 
 

Inl(i,j) = 
γ
1 [Il(i,j)  - (1- γ )Isl(i,j)  ]                      (10a) 

Iel(i,j) =
γ
1  [ Il(i,j) - (1- γ )Iwl(i,j)]                      (10b) 

 
From Eqs. (7), (8) and (10) one obtains 
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with  i=1,2,..,i max ,   j= 1,2,..,jmax.                   (12) 

 
For the second quadrant lµ <0 and lξ >0. In this 

case it is convenient to write from Eq. (9) 
 

Iwl(i,j) =
)1(

1
γ−

[Il(i,j) -  γ Iel(i,j)]                       (13) 

 
and use also Eq. (10a) for Inl(i,j). From Eqs. (7), 
(8), (10a) and (13) one obtains 
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with     i=imax,imax-1,..,1;  and   j= 1,2,.. ,jmax   (14) 
where Ql(i,j) is given by Eq. (12). 
 
    The equations to be used for the other two 
sweeps, considering quadrants 3 and 4, can be 
derived in a similar way, yielding 
 

Quadrant III :  lµ >0  and lξ <0                     
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Quadrant IV: lµ <0  and lξ <0 
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     quadrant  (II)                      quadrant  (I) 
    lµ <0 and lξ >0          y     lµ >0 and lξ >0 

 
 
                                                                  x 
  lµ <0 and lξ <0                  lµ >0 and lξ <0 

      quadrant  (IV)                   quadrant (III) 
Figure 3. Four quadrants of angular domain. 

 
 
MATHEMATICAL FORMULATION AND 
SOLUTION OF THE INVERSE PROBLEM    
    When the geometry, the boundary conditions 
the intensity and/or location of internal sources, or 
radiative properties, are unknown, but 
experimental data related to the radiation intensity 

inside and/or at the boundary of the domain are 
available one can attempt to obtain an estimate for 
the unknown quantities. This is known as the 
inverse problem. 
    In the present work we consider the inverse 
problem of radiative properties and internal 
source intensity estimation, using measurements 
of the radiative heat flux as shown schematically 
in Fig.4. Detectors D1k in system 1, Fig. 4a, are 
therefore able to measure the positive half range 
heat flux  

=+
max),( jkq  D1k =

    ljil

Lo

l
l Inw ξ

ξ

⋅⋅∑
>
=

max),(

0
1

                     

                                              k=1,2,..,imax      (17a) 
 
and detectors D2k in system 2, Fig 4b, are able to 
measure the negative half range heat flux 
 

k
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                                                 k=1,2,..,imax    (17b) 
 
  Detectors  D1k                   

 
 
 
 
 
 
 

     Ib =1                                   Detectors D2 
        
                                                    Detectors  D2k 

 (a) system 1 north               (b) system 2, south  
     boundary                               boundary

 Figure 4. Location of detectors. 
 
    For the solution of the inverse radiative transfer 
problems under analysis here we use an implicit 
formulation that consists on the minimization of 
the squared residues functional 
 

2

1

])([ k
meas

k
cal

K

k

qzqR −= ∑
=

  FF
rr

T=               (18) 

where k
calq  and k

measq  are respectively the 

calculated and measured values of the radiative 
heat flux, z  is the vector of unknowns, K is the 

total number of experimental data available, k  
indicates the position of the detectors and the 
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relationship of parity of the solution k
calq  and 

k
measq , and  

 

)(zF k = )(zq k
cal - k

measq                                   (19) 

 
    Due to space limits we will not make 
presentation of the formulation of the Levenberg 
Marquardt method. Details can be found in [5]. 
 
RESULTS 
Validation of the Direct Problem Solution 
    The algorithm developed for the computation 
of the radiation intensities was validated making a 
comparison of the results obtained with those 
published for a radiative transfer problem [8,11].  
    Consider a two-dimensional absorbing and 
emitting square medium whose inferior (south) 
boundary is kept at temperature wT , and the other 

boundaries are kept at T =0. In Fig. 5 are 
represented the calculated values of heat transfer 
from inferior boundary, )/( 4

wBy Tq σ , for 

different values of the absorption coefficient, 
where Bσ  is the Stefan - Boltzmann Constant, 

−−= )1,(kbwy qIq π  and 
−

)1,(kq  is given by Eq. (17b). 

    The solid and dashed lines represent, 
respectively, the results for S2 and S4 quadratures. 
The crosses represent the solution for an S6 
quadrature. The circles represent the values 
calculated by Razzaque et al. [13] using a finite 
element method. 
   There for all test cases used for the analysis of 
the inverse problem are have used S8 and S10 
quadratures. 
 
Inverse Problem Test Case Results 
    Considering the configuration 1 shown in Fig 
1, we have observed that the solution of the direct 
problem for the values of +

max),( jkq , Eq. (17a), 

that could he measured using the detectors shown 
in Fig. 4a, was affected by the ray effect. The 
solutions for −

)1,(kq , given by Eq. (17b), that could 

be measured using the detectors shown in Fig. 4b 
where much smoother. In Fig. 6 are shown the 
results obtained for +

max),( jkq  and −
)1,(kq  for a 

computational grid with, imax=jmax=80, and using 
different quadratures: LSN S8 (Level Symmetric 
N), LSH S10 (Level Symmetric Hybrid) and EWO 
S10  (Equal Weight Odd) [11,12].  

 
 
  )/( 4

wBy Tq σ  

 
 
 
 
 
 
 
                                   (a) aσ = 0,1 

 
 
  )/( 4

wBy Tq σ  

 
 
 
 
 
 
 
                             (b) aσ = 1,0 

 
 
 
  )/( 4

wBy Tq σ  

 
 
 
 
 
 
                             (c) aσ = 2,0 

Figure 5. Validation of the direct problem 
solution.  

 
    Even though the intensities for the −

)1,(kq  

(reflected by the medium) where smaller than the 
intensities for +

max),( jkq
 
(transmitted through the 

medium) we decided to use only the detectors 
according to system 2 (located at the south 
boundary of the domain), as shown in Fig. 4b. 
 
Homogeneous Media without Internal Sources 
    Using “exact data” we have solved the inverse 
problem for the estimation of aσ  and sσ  in the 

range [0,1.0] using as init ial guesses 
o

aσ =
o

sσ = 
oA1 =0,0. Convergence was obtained without 

regularization in almost all cases with exception  
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                       (a) +

max),( jkq   

 
 
 
 
 
 
 
 
 
 
 
                       (b)   −

)1,( kq  
        LSN                    LSH                      EWO              

Figure 7. Calculated values of the radiative heat 
fluxes +

),( maxjiq  and −
)1,(iq . =aσ =sσ  =1A 0.1 

 
for 0,9 ≤≤ sσ 1 and 0,5 ≤≤ aσ 0,8. Using 

regularization (a nonzero damping factor in the 
Levenber-Marquardt algorithm), convergence was 
obtained for all cases. 
 
Homogeneous Media with Internal Sources 
    Using also “exact data” we estimated aσ , sσ  

and 
1A  for a medium with an internal source of 

known constant strength S=1. The square domain 
has a side of length 1, i.e. Lx = Ly = 1 and the 
source occupies a square region inside it with 
0,35 ≤≤ yx, 0,65. We considered the test case 

of =aσ =sσ =1A 0.1 and initial guesses 
o

aσ = o
sσ = oA1

=0. Convergence was obtained 

within 6 iterations with a convergence criterion of 

| aσ∆ |+| sσ∆ |+| 1A∆ | < 610− . 

    We then solved the inverse problem 
considering known =aσ =sσ =1A 0.1 and 

looking for the estimation of the intensity of the 

source S = 1, using the initial guess S = 0. 
Convergence was obtained in one iteration. 
 
Heterogeneous Media 
    In Fig 7 are shown the shapes of the 
heterogeneous media considered. They are 
composed of two different materials, referred to 
as 1 and 2. 
    First we consider known 1aσ , 1sσ  and 

11A , 

and we estimate 2aσ , 2sσ  and 
12A . Then we 

consider known 2aσ , 2sσ  and 
12A , and we 

estimate 1aσ , 1sσ  and 
11A . Following that we 

considered the simultaneous estimation of 

1aσ , 1sσ , 
11A , 2aσ , 2sσ  and 

12A . Several test 

cases were run but we selected just two examples.  
    In Table 1 are shown the results for the 
estimation of aσ , sσ and 

1A in a homogeneous 

medium, with an internal source of constant 
strength and external detectors, as shown in Fig 8. 
The simulation considered a computational grid 
of 20x20 nodes. As expected deviations are 
observed when the number of detectors is too 
small. Later we present a simulation where the 
results improve even when a reduced number of 
detectors is used. In Table 2 are shown the results 
for a heterogeneous medium without internal 
sources. Here we have also considered only 
external detectors. 
    In all test cases zero values are used as initial 
guesses for the unknowns.   
  
                1                                             1 
     S                               2                                                 
 
 

              (a)                           (b)                              
Figure 7. Heterogeneous media composed of two 

different materials  
 
 
 
 
 
 
 
 
 
     (a)  external detectors     (b) reduced number of 
                                                           detectors 

Figure 8. Location of the detectors used for the 
solution of the inverse problem 
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Table 1. Estimates of the properties in the 
homogeneous medium with source. S = 1  

Exact values  
aσ =0,1 

sσ =0,1 
1A =0,1 

# Detectors  20 8 6 
Estimates 

aσ  0,100 0,1000 0,1002 

 
sσ  0,100 0,1000 0,9977 

 
1'A  0,100 0,1000 0,8082 

 S 1,000 1,0000 1,0001 
  

Table 2. Estimate of the properties in a 
heterogeneous medium (see fig. 7b) 

Unknowns  
1aσ =0,1 

1sσ =1,0 
11'A =0,1 

  
2aσ =2,0 

2sσ =0,1 
12'A =0,0 

# Detectors  20 8 6 
Estimates 1aσ  0,100 0,100 0,10579 
 

1sσ  0,999 0,999 0,87577 

 
11A  0,100 0,100 -0,2149 

 2aσ  1,999 1,999 1,958 
 

2sσ  0,100 0,100 0,16487 

 
12A  1,32e -12 -1,0e-09 -0,1211 

 
Experimental Data with Noise 
    In all cases presented before we considered 
noiseless data. As real data was not available, we 
consider synthetic data by adding pseudo random 
noise generated by the computer to the exact 
calculated values of the radiative heat flux 
 
         

kexatokk rqq += −−
)1,(exp)1,(

σ                 (29) 

where kr  is a random number and σ  simulates 

the standard deviation of measurement errors. 
    In Fig. 9 are presented the estimates obtained 
for the exact values aσ = sσ = 1'A = 0,5 in a 

homogeneous media, considering an error of 
1,25% in the maximum value measured for −

)1,(kq . 

For smaller values of −
)1,(kq  the errors are larger. 

In Fig 9 the different runs are related to different 
sets of random noise, simulating different 
experiments. 
 
Sensitivity Coefficients 
    In Fig. 10 are presented the sensitivity 

coefficients for aσ , sσ and 1'A  in a homogeneous 

media, considering the detector system shown in 
Fig. 4b. We observe that higher values are 

obtained for the detectors located close to the 
center of the south boundary of the domain. Using 
the detectors located in the position for which the 
sensitivity is higher we obtained better estimates 
for the unknowns as shown in Fig. 11. Compare 
the results shown in Figs. 9 and 11. In both cases 
we have 1,25% error in the synthetic experimental 
data. We stress that in the former all detectors 
were considered, while in the latter just a smaller 
number located close to the center of the south 
boundary with higher sensitivity 
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Figure 9. Estimates for aσ , sσ and 1'A in a 

homogeneous medium considering synthetic data 
with 1,25% error. 

 
Figure 10. Sensitivity coefficients for 

=aσ  =sσ =1A 0.1 

sσ  

aσ
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Fig 11. Estimates for 

aσ , 
sσ  and 

1'A  in a 

homogeneous medium considering synthetic data 
with 1.25% error. Only the detectors located at 
positions of higher sensitivity were considered 

 
CONCLUSIONS  
    The test case results presented demonstrate the 
feasibility of solving inverse radiative transfer 
problems in two-dimensional media using 
external detectors, measures the radiative heat 
flux. Both homogeneous and heterogeneous 
media are considered, and the estimates are 
related to radiative properties and internal 
sources. Following the results of the sensitivity 
analysis results of the inverse problems improved 
when detectors located only at the regions of 
higher sensitivity were used.  
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ABSTRACT 

In the present work the absorption and 
scattering coefficients in heterogeneous two-
dimensional media are estimated using the 
source-detector methodology and a discrete 
ordinates method whose directions of radiation 
propagation are taken in a way consistent with the 
source-detector system for parallel beams of 
radiation. 

The domain partition, the solution of the direct 
problem and the source detector methodology are 
briefly described, and preliminary test case results 
are presented. 
 
INTRODUCTION 

The well known transmission tomography is 
based on a simplification of the linearized 
Boltzmann equation in which the scattering 
phenomenon is not taken into account [1-3]. But, 
in some practical applications scattering cannot be 
neglected [4]. In such cases the mathematical 
model for the radiation propagation may be made 
with an approximation for the transport equation 
based on discrete ordinates, being therefore given 
by a set of first order partial differential equations 
[5]. 

In the present work the domain partition is 
constructed to be consistent with the directions of 
propagation of the parallel beams of radiation. 
These directions are therefore used for the 

discrete ordinates scheme, allowing the solution 
of the direct problem with a discontinuous 
Galerkin method, marching along each of the 
discrete ordinates directions. The formulation of 
the inverse problem with the source-detector 
methodology [4, 6] leads to a system of non-
linear integral equations. The solution of the 
inverse problem is done with q-ART type 
algorithms [1], based on the method of projection 
into convex sets. 

Test case results are presented for isotropic 
scattering media without internal source and 
transparent boundaries. Refractive index are 
neglected. 
 
MATHEMATICAL FORMULATION OF THE 
DIRECT PROBLEM  

Consider an absorbing and scattering two-
dimensional medium with no internal radiation 
sources, subjected to externally generated parallel 
beams of radiation. 

For the steady-state situation, with no spectral 
dependency, the following mathematical 
formulation is obtained from the linearized 
Boltzmann equation [7] which is used for the 
modeling of the interaction of the radiation with 
the participating medium 
 
      =Ω+Ω∇⋅Ω ),()(),( xxx t φσφ  
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       ∫ ΩΩΩ⋅Ω=
π

φσ
2

')',()',( dxxs  

in domain D             (1a) 
 

where φ  is the intensity of the radiation, x  

represents a point in the domain, Ω  is the 
direction of propagation of the radiation, tσ  is 

the total extinction coefficient (absorption + out 
scattering), 

sσ  is the scattering coefficient, and 

'Ω  is the direction of incident radiation that is 

scattered at point x  to the direction Ω . 
In order to complete the mathematical 

formulation of the direct problem of radiative 
transfer represented by Eq. (1) boundary 
conditions are necessary. Considering that the 
intensity of the externally incident radiation 

source is known, inφ , we write 
 
         )()( Ù,xÙ,x inφφ =  

  at    0for  −∂∈<⋅ Dx)x(nÙ           (1b) 
 
where −∂D  is the boundary of domain D through 
which the external radiation comes into the 
medium, and )(xn  is the outward normal at point 

x  of the boundary. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1- Domain partition consis tent with 
parallel beams of radiation 

 
Using a domain partition consistent with the 

parallel beams of radiation as shown in Fig. 1, 
and considering a particular direction jΩ  with a 
coordinate system given by (sj,tj) that is rotated in 
accordance to the particular direction jΩ , Eq. 

(1a) can be written for each strip 
jnjR ,  in the 

following way 

 

               =+∇⋅Ω )()()( xxx jtjj φσφ  

      ∑
=

Ω⋅ΩΩ⋅Ω=
J

k
kjksjk xxw

2

1

)(),()( φσ  

for j=1,…,2J; and DRx
jnj ⊂∈ ,

 , nj=1,…,2M (2a) 

where 2M is the total number of parallel strips 
that compose the domain partition for each set of 
parallel beams of radiation that propagates along 
the direction jΩ , 

jnjR , represents each strip, w 

are the corresponding weights due to the 
quadrature and kφ  is the intensity of the radiation 

incident along direction kΩ  that is scattered at 

position 
jnjRx ,∈  into direction jΩ . 

The boundary condition (1b) is written as 
 

  0)(for    )()( <⋅Ω= xnxx j
in
jj φφ   

−∂∈
jnjRx ,at         (2b) 

where −∂
jnjR ,  represents the boundary of the strip 

through which the external radiation comes into 
the strip. 
 
Rotated Discrete Ordinates 
Approximation 

The formulation of the radiative transfer 
problem given by Eqs. (2) consists on a discrete 
ordinates formulation with the discretization of 
the angular domain being made in a way that is 
consistent with parallel beams of radiation 
originated at external sources. 

Adopting the coordinate system that rotates in 
accordance to each particular direction jΩ , the 
first term in the left hand side of Eq. (2a) can be 
written as 

j

jjj
jj

s
xtxsd

x
∂

=∇Ω
))(),((

)(.
φ

φ                 (3) 

for 
jnjRx ,∈  j=1,…,2J,  n j1,…,2M 

Given the geometry, the radiative properties, 
and the boundary conditions, the values of jφ , 

j=1,…,2J, at each rectangle mj =1,…,2M of each 
strip

jnjR ,
 can be calculated. This is the direct 

problem. For each strip 
jnjR ,
there is an ordinary 

differential equation to be solved, therefore the 

)( xn  

jθ  
D 

t 

jΩ  
s 

tj sj 

Source f 

strip 
jnjR ,  
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2Jx2M equations form a system of coupled 
equations to the solved. 

Rearranging the summation terms in the right 
hand side of Eq. (2a), and using Eq. (3) , we obtain 
the following matric ial form 

  0))(),((
))(),(( 2

1

=+
∂ ∑

=

J

k
kkkj

j

jjj xtxs
s

xtxsd
φσ

φ
 

for j=1,…,2J      (4) 
where the matrix elements of σ  are given by the 
combination of the scattering and absorption 
coefficients 

,),(),()(),,(
1

∑
≠
=

Ω⋅ΩΩΩ+=
K

lk
k

lkslka xwxxll σσσ
     (5a) 

),,(),(),,( mlsml xwxml Ω⋅ΩΩΩ−= σσ     (5b) 

for   l,m=1,2,...,2J e l ≠ m. 
 

This configuration is similar to that employed 
in computerized transmission tomography, with 
exception of the position of the detectors where in 
the case considered here they measure not only 
the transmitted but also the scattered radiation. 

Considering the rotational symmetry of the 
system source-detector, the matrix σ  is 
symmetrical and cyclical, being written then in 
the form 
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σσσσσσσσ

σσσσσσσσ
σσσσσσσσ
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……
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……
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JJJJ

JJJJ

JJJJ

JJJJ
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  (6) 

 
One can observe that every row of the matrix σ  
can be obtained from the previous one by just 
making the shift of the coefficients.  
 

Shifting the incidence direction by an angle  

J
jj

π
θ )1( −=                                              (7) 

we can write without loss of generality that 
 

1,1, σσ =jj     , j=1,2,...,2J                          (8) 

 
and the terms out of the diagonal are taken 
symmetrically to the diagonal. 

For the solution of the problem given by Eqs. 
(4-8) we now march along the discrete 
directions jΩ , j=1,2... 2J, following each one of 
the strips, and for each direction the 
corresponding coordinate system is used. 

To the best of our knowledge this is a new 
procedure in the context of the discrete ordinates 
method [8]. 
 
Domain Partition 

We have 2J regular square meshes, called here 
pixel meshes, each one compatible with one 
angular flux transport direction. In each of these 
rotated coordinate systems  the transport problem 
can be written as  a one dimensional problem. The 
complete intersection of all pixel meshes are 
taken into account for the domain partition in the 
polygons pe with e=1,…,E, where E is the total 
number of polygons. 

First, the intersections of all lines are 
calculated (observe that each strip has two 
limiting lines). The points where the intersections 
take place are the vertices of the polygons pe. 

Now a major task has to be performed, that is, 
from a set of vertices (x1,  y1), (x2,  y2),…, (xL,  yL) 
where L is the total number of intersection points, 
we have to identify those that form a polygon. An 
algorithm has been developed, in which for each 
rectangular pixel, we sequentially investigate for 
all intersection points contained in the interior or 
at the boundary of the pixel, all possible elements 
that can be created around each intersection point. 
Obviously each intersection point has to be a 
vertex of all polygons created around it. The 
polygons constructed in this way are 
characterized by the indices that relate the 
intersection points with the indices of all strips 
that gave origin to them. Afterwards, in the 
polygons numbering step, if a polygon is created 
identical to the polygon created by another of its 
vertices, the element counter is not increased by 
one. In this way multiplicity is avoided in the 
process of polygons numbering, and at the same 
time the vertices that belong to each polygon are 
determined. 

The output of the computer code written for 
the construction of the natural base of simple 
Lebesgue functions consists on the ordered listing 
of all polygons, their areas, optionally their 
vertices, and its pertinence matrix (incidence 
matrix) for its localization in each one of the 
oriented pixel. The pertinence matrix is defined 
by two sets of indices, i.e. n(e,j) and m(e,j) that 
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locates each particular element e with respect to 
the rotated coordinate system (sj,tj), j=1,…,2J. 

A computer code for the automatic mesh 
generation was written in the MATLAB 
environment. More information about this kind of 
mesh generation can be found in Reis and 
Roberty [8] and Carita, Roberty and Silva Neto 
[1-3]. The set characterization of the oriented 
pixels are J

Mjj VjmnK ∈),,(  where 

 
=),,( jmnK jj

 

1cossin),({ 2 +<+<=ℜ∈= jjjj nyxnyxx θθ  

}1sincos  and +<+−< jjjj myxm θθ     (9) 

and J
MV  is the domain partition composed by the 

polygons e=1,..,E. 
 
SOLUTION OF THE DIRECT PROBLEM 

We have solved the direct problem and 
formulated the source detector methodology 
equations, to be used in the inverse problem 
solution [4, 6], within the context of the Galerkin 
discontinuous method formulated by Lesaint and 
Raviart [9-11]. The combination of the 
discontinuous finite element  formulation with a 
domain partition constructed according to the 
discrete ordinate oriented pixel meshes, produces 
a simplified and robust algorithm for solving the 
discrete problem, and to formulate the respective 
reconstruction inverse problem. 

The system (4) can be written for each strip 

jnjR ,
 as 
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fin
njj

f
nj jj

n ,
,, ),1( φφ =  for j=1,…,2J;  n j=1,…,2M  (10b) 

 
where superscript f indicates a specific source for 
the direct problem.  

We have adopted the following representation 
for the angular flux 
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and )),,(()( jmnKPsp jjrj ∈  where Pr is the 

set of polynomials of order r. 
For the combination of absorption and 

scattering coefficients we have used 
 

)(),,(),,(
E

1e

xejkxjk e∑
=

= χσσ            (12) 

 
where the characteristic function eχ  assumes the 
following values 
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The approximation space for this 

discontinuous flux representation is  
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                                                       j=1,...,2J   (14) 
 

The variational formulation for Eqs.(10) is: 

for J
Mjjj VjmnKK ∈≡ ),,(  , given −J
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M
J
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where  ][ ,
J

jMφ = 
+J

jM ,φ - 
−J

jM ,φ is the jump at the 

influx boundary and g corresponds to the last term 
in the right hand side of Eq. (10a). If we adopt a 
constant polynomial inside the rotated pixel i.e. 
p(sj)=constant we obtain the following  
discretized equation 
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∀  j=1,...,2J,  nj=1,…,2M , and mj=1…,,2M  (16a) 
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jΩ  
n  

 
where a(e) is the area of element e, and 
 

),1,(),1,(),,( jmnjmnjmn jjjjjj +=+= −+ φφφ   (16b) 

 
as represented in Fig. 2. 

When f
nj j,φ  in Eq. (10a) assumes only non 

zero values, for j=1,…,2J,  nj=1,…,2M, and 
mj=1,…,2M, we can write a convenient equation 
for the logarithm of the flux 
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             fin
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 for j=1,…,2J; nj=1,…,2M               (17b) 
 

A discretized version of this equation can be 
derived in a similar way to that used to obtain Eq. 
(16a) from Eq. (10a). 
 
 
 
 
 
 
 
 
 
 

Figure 2.- Rotated pixel (nj,mj) in direction jΩ  
for discontinuous Galerkin finite element. 

 
 
MATHEMATICAL FORMULATION AND 
SOLUTION OF THE INVERSE PROBLEM  

Here we describe the formulation of the 
radiative transfer problem using the source-
detector methodology [4, 6]. In all previous works 
we have considered only applications in one-
dimensional media. In the present work we 
consider a two-dimensional absorbing and 
scattering media. 

The source-detector methodology consists on 
a explicit formulation for the inverse radiative 
transfer problem in participating media. For each 
source-detector pair a non-linear equation is 
derived using a convolution of the direct problem 
(source problem) with the solution of the adjoint 

problem (detector problem). In both problems the 
modeling of scattering, absorption and emission 
(when included in the formulation) is done with 
the linearized Boltzmann equation, but in the 
latter reference values are available for the 
unknowns that we want to determine, being 
therefore included in the formulation. This 
approach results in a system of non-linear 
equations with the unknowns explicitly 
represented. This system of equations is called 
Inverse Transport Equation (ITE). 

The basic steps of the source-detector 
methodology are therefore the formulation and 
solution of the following problems: (i) source 
problem; (ii) detector and auxiliary problems, and 
(iii) Inverse Transport Equation (ITE). 
 
The Source Problem 

The source problem is given by Eqs. (10a-b), 
or in the discretized version given by Eqs. (16a-
b). 
 
The Detector and Auxiliary Problems  

The detector problem is obtained with an 
adjoint problem formulated by reversing the 
direction of radiation transfer, i.e. by replacing 
µ by µ−  in Eq. (10a), 
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where dσ  represents a reference value for the 
unknown σ  that contains the primary unknowns 

aσ and sσ  as shown in Eqs. (5a-b). 

By reversing once more the direction of 
radiation propagation we obtain from problem 
(18) the following auxiliary problem 
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Deriving the product of the radiation intensities 
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we obtain 
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Due to the symmetric nature of the system of 

rotated equations, the adjoint detector problem is 
equivalent to an auxiliary problem with the same  
radiative properties of the detector problem. 

Observe that the auxiliary problem is 
equivalent to a source problem, but for the 
radiative properties reference values are used. 

In terms of the discrete values of the angular 
flux, this equivalence can be stated 
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The Discretized Inverse Transport Equation 
(DITE) 

To obtain the DITE we integrate the source 
detector equation (20) along a specified strip 
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where ),,( ejkσ   has been defined in Eq. (12) 

and ),,( jmn jjφ  are rotated pixel values for the 

discontinuous flux as shown in Eqs. (11a, 16a, 
16b). 
 
Alternative Formulation of the Inverse 
Problem 

When 0),(, ≠jj
f
nj ts

j
φ  an alternative 

formulation to DITE can be obtained using the 
logarithmic formulation of the radiative transfer 
problem, Eqs. (17a-b), yielding 
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SOLUTION OF THE INVERSE PROBLEM 

As mentioned before the solution of a direct 
problem, such as the source and auxiliary 
problems , is done by an algorithm that marches 
along each strip. The scattering term in the 
equation is calculated using the values for the 
fluxes in the previous iteration. 

For the solution of the inverse problem, Eqs. 
(22) or (23), we must distinguish two situations. 
When the system is consistent a solution can be 
obtained with the q-ART algorithm [1]. The 
special case q→ 0 yields the MART maximum 
entropy algorithm used in image reconstruction 
[1, 8]. Even with the use of noisy data good 
results may be obtained with this methodology 
when a natural base representation of the radiative 
properties is used. The other situation is when the 
system is inconsistent and it may occur because of 
the large number of equations derived from all 
pairs source-detectors. In this case two 
approaches can be used: (i) a Tikhonov 
regularization can be applied; or (ii) only the 
equations with highest sensitivity are considered. 
 
PRELIMINARY RESULTS 

To present the results of the inverse problem 
solution we have considered two test cases. For 
the domain D the radiative properties are 

aσ =2/(MJ) and sσ =1/ (4MJ). These values were 

used to allow that a significant part of the 
radiation goes through the medium, and 
measurements can be made at the point the 
radiation leaves the medium. 

In the first test case shown in Fig. 3 both the 
absorption and scattering coefficients in a 
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embedded rectangular region inside domain D 
were amplified by a factor of 10. 

In Fig. 5 are shown the reconstructed values of 
the radiative properties for test case 1. 

In the second test case shown in Fig. 4 there 
are two rectangular regions with different 
properties from domain D. The highest peak 
represents an amplification by the factor 10 of the 
absorption coefficient only, and the second peak 
represents an amplification by the same factor of 
the scattering coefficient. In Fig. 6 are shown the 
reconstructed values of the radiative properties for 
test case 2. 

The results presented here were obtained 
using the logarithmic formulation of the inverse 
problem given by Eq. (23) which has been 
intensively used for the transmission tomography, 
but here we consider a discrete ordinates domain 
partition consistent with the parallel beams of 
incident external radiation. 

Even though it is possible to simultaneously 
estimate the absorption and scattering 
coefficients, the results shown in Figs. 5 and 6 
take into account only the out-scattering term (see 
Eq. 5(a)), and the off-diagonal terms are 
neglected (in-scattering term). Therefore only the 
diagonal terms in matrix are estimated. 

A total number of Jx2M  exit radiation 
intensities were taken as simulated experimental 
data. The synthetic data was produced using the 
exact values of the radiative properties including 
the in-scattering term. As the inverse problem is 
solved neglecting this term, the in-scattering 
effect can be considering as noise in the data. 

We are now working in the full 
implementation of the inverse radiative transfer 
problem in which the DITE given by Eq. (22) is 
used for the scattered radiation and the 
logarithmic formulation is used for the strip 
related to the incoming and transmitted radiation. 
 
CONCLUSIONS 
The methodology proposed for the solution of the 
direct problem of the radiation transport, 
consistent with the source-detector system, is 
convenient for the computational implementation 
of the inverse problem solution for the estimation 
of the scattering and absorption coefficients, 
generalizing the results previously obtained by 
Carita Montero, Roberty and Silva Neto [1-3]. 
The marches along the space coordinate are made 
following radiation parallel beams, and the term 
of in-scattering is appro ximated by a quadrature 
where the quadrature points are determined by the 

partition of the domain consistent with the 
geometry of the source-detector system. 
Therefore this approach is expected to minimize 
the errors due to the spatial and angular domains 
discretization in the inverse problem solution 
considered here. 

With the use of sources and detectors located 
in different positions (as in the computerized 
tomography, CT), the method of Galerkin and the 
source detector methodology were able to locate 
the defect and to give an estimate for the 
extinction coefficient. 
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Figure 3- The extinction coefficient for 

configuration 1. 
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Figure 4- The extinction coefficient for 
configuration 2. 

 
 
 

 
 
Figure 5- The reconstructed extinction coefficient 

for configuration 1. 
 
 
 

 
 

Figure 10- The reconstructed extinction 
coefficient for configuration 2. 
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ABSTRACT
In the present work, the metal/mold heat

transfer coefficients (hi) are determined during
unidirectional solidification of Al-Cu and Sn-Pb
alloys. The effects of casting assembly (horizontal
and vertical), alloy composition, material and
thickness of the mold and melt superheat are
investigated. By using measured temperatures in
both casting and metal, together with numerical
solutions of the solidification problem,
metal/mold heat transfer coefficients are
quantified based on solution of the inverse heat
conduction problem. Experimental temperatures
are compared with simulations furnished by an
explicit finite difference numerical model, and an
automatic search selects the best theoretical-
experimental fitting from a range of values of
hi. Experiments were conducted to analyze
the evolution of hi during solidification
of Al-2,4.5,5,8,10,15,33 wt% Cu alloys and
Sn-5,10,15,20,30,39 wt% Pb in horizontal and
vertical steel chills. The results permitted the
establishment of expressions as a power function
of time, for different alloy compositions, casting
assembly material and thickness of the mold and
melt superheat.

NOMENCLATURE
A  : area   [m2]
c  : specific heat   [J/kg.K]
e  : mold wall thickness   [m]
hi : metal/mold heat transfer coefficient [W/m2.K]
ho: mold/environment heat transfer coefficient
hg : overall heat transfer coefficient
hw : mold/coolant heat transfer coefficient

k  : thermal conductivity   [W/m.K]
ko : partition coefficient
L : latent heat of fusion   [J/kg]
q  : heat flux   [W]
t  : time   [s]
T  : temperature   [oC]
TF : fusion temperature
TE : eutectic temperature
TL : liquidus temperature
TP : pouring temperature
To : cooling water temperature

Greek symbols
ε  : emissivity
ρ  : density [kg/m3]
α : thermal diffusivity [m2/s]

Subscripts
I  : interface IC  : casting surface
S  : solid IM : mold surface
L : liquid w  : water
M: mold

INTRODUCTION
For the purpose of accurate mathematical

modeling of solidification processes, it is essential
that correct boundary conditions be established.
The heat transfer at the metal/mold interface is
one of these boundary conditions, which is of
central importance when considering the
magnitude of heat transfer during the early stages
of solidification. The way heat flows across the
casting and the mold surfaces directly affects the
evolution of solidification and plays a notable role
in determine the freezing conditions within the
casting, mainly in foundry systems of high
thermal diffusivity like chill casting. Gravity or
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pressure die casting, continuous casting and
squeeze castings are some of the process where
product soundness is more directly affected by
heat transfer at the metal/mold interface. The loss
of heat when a metal first comes into contact with
the mold is regulated not only by the heat storage
capacity of the mold material, but also by the heat
transfer conditions within the metal itself and
particularly at the metal/mold interface. The solid
bodies are only in contact at isolated points and
the actual area of contact is only a small fraction
of the nominal area, as shown in Figure 1.

Figure 1. Heat flow across metal/mold interface.

Part of the heat flow follows the paths of
actual contact, but the remainder must pass
through the gaseous and non-gaseous interstitial
media between the surface peaks. The interstices
are limited in size, so that convection can be
neglected. If temperature differences are not
extreme, radiation does not play a significant role
and most of the energy passes by conduction
across the areas of actual physical contact.

The heat flow across a casting/massive mold
interface, as shown by the schematic
representation of Figure 1, can be characterized
by a macroscopic average metal/mold interfacial
heat transfer coefficient (hi), given by:

)TT(A

q
h

IMIC
i −

= , (1)

where q is the average heat flux across the
interface [W], TIC and TIM are, respectively
casting and mold surface temperatures [K] and A
is area. In water-cooled molds the overall heat
flow is affected by a series of thermal resistances,
as shown in Figure 2.

Figure 2. Thermal resistances (cooled mold).

The interfacial resistance between the casting
and the mold surface is generally the largest, and
the overall thermal resistance (1/hg) is given by:

(2)

where hg is the overall heat transfer coefficient
between casting surface and the coolant fluid, e is
the wall thickness of the bottom of the mold and
hw is the mold/coolant heat transfer coefficient.
The average heat flux from casting surface to the
cooling water is then given by:

)TT(hq oICg −= , (3)

where To is the temperature of the cooling water.
The present study describes a method for

obtaining interfacial heat transfer coefficients as a
function of time, from experimental data
concerning the solidification of Al-Cu and Sn-Pb
alloys in massive and cooled molds. Experimental
temperatures in the casting and in the mold are
compared with simulations furnished by a
numerical model, and an automatic search selects
the best fitting from a range of values of
interfacial heat transfer coefficients. The effects
of alloy composition, material and thickness of
the mold and melt superheat are also investigated.

HEAT TRANSFER COEFFICIENT
Several researches have attempted to quantify

the transient interfacial heat transfer during
solidification in terms of a heat transfer
coefficient [1-5]. These studies have highlighted the
different factors affecting heat flow across on
interface during solidification. These factors
include the thermophysical properties of the
contacting materials, the casting and mold
geometry, the roughness of the mold contacting
surface, mold coatings, contact pressure, mold
superheat, initial temperature of the mold, etc.
The heat transfer coefficient shows a high value
in the initial stage of solidification and then
decline to a low steady value because the casting
contracts from the mold surface, creating an
interfacial gap. Most of the methods of
calculation of hi existing in the literature are based
on temperature histories at interior points of the
casting or mold together with mathematical
models of heat transfer during solidification.
Among these methods, those based on the
solution of the inverse conduction problem have
been widely used in the quantification of the
transient interfacial heat transfer [6-9].

In the present work, a similar procedure
determines the values of hi, which minimizes an
objective function defined by:

∑
=

−=
n

1i

2
expest )TT()h(F , (4)

where Test and Texp are, respectively the estimated
and experimentally measured temperatures at
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various thermocouples locations and times, and n
is the iteration stage. The procedure has been
detailed by some of the present authors in a
previous publication [9].

EXPERIMENTAL PROCEDURE
The casting assemblies used in both

horizontal and vertical solidification experiments
are shown in Figure 3. Horizontal solidification
experiments were performed with Sn, Pb, Al and
Al-Cu alloys (4.5; 15; 33wt% Cu) and Sn-Pb
alloys (5; 10; 15 and 39wt% Pb), including short
and long freezing range alloys, as well as eutectic
compositions. The casting and chill materials
selected for experimentation, and the employed
thermophysical properties are summarized in
Table 1. The main design criteria were to ensure a
dominant unidirectional heat flow during
solidification. This objective was achieved by
adequate insulation of the chill and casting
chamber. Copper and low carbon steel chills were
used, with the heat-extracting surfaces being
polished. In order to investigate the influence of
chill thickness on heat flow, five different
thicknesses of chills were used (X = 6, 17, 28, 39
and 60 mm). Two chromel-alumel thermocouples
were introduced in the chill; one near the
chill/ casting interface and the other at the outer
surface, and a third one was placed in the casting
and located at 20 mm from the interface, as
indicated in Figure 3. Each alloy was melted in an
electric resistance-type furnace until the molten
metal reached a predetermined temperature. It
was then stirred until the temperature was brought
to a specified value and poured into the casting
chamber. The aluminum alloys were degassed

with hexachloroethane tablets before pouring. The
effect of liquid metal superheat on heat transfer
coefficient was also investigated, by using a Sn-
10 wt% Pb alloy, a 60 mm thick carbon steel chill
and different degrees of superheat: 20°C, 40°C,
70°C and 100°C above liquidus temperature. The
vertical solidification apparatus was designed in
such a way that the heat was extracted only
through the water-cooled bottom, promoting
upward directional solidification. The use of such
experimental configuration permits natural
convection to be minimized, as well as solute
convection due to buoyancy forces if the rejected
solute has a higher density than the alloy melt. A
stainless steel mold was used having an internal
diameter of 50mm, height 110mm and a wall
thickness of 5mm. The inner vertical surface was
covered with a layer of insulating alumina to
minimize radial heat losses, and a top cover made
of an insulating material was used to reduce heat
losses from the metal/air surface. The bottom part
of the mold was closed with a thin (3mm) disc of
carbon steel. The alloys were melted in situ and
the lateral electric heaters had their power
controlled in order to permit a desired superheat
to be achieved. To begin solidification, the
electric heaters were disconnected and at the same
time the water flow was initiated. Experiments
were carried out with Al-Cu alloys (2; 5; 8 and
10wt% Cu) and Sn-Pb alloys (5, 10, 15, 20 and
30wt% Pb) at various superheats. Temperatures in
the casting were monitored during solidification
via the output of a bank of type K thermocouples
(1.6 mm diameter) accurately positioned with
respect to the heat-extracting surface.

Figure 3. Casting arrangement and position of the thermocouples in mold wall and metal.
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Table 1. Casting and chill materials used for experimentation and the corresponding thermophysical
properties [9-12].

Al Al-
2%Cu

Al-
4.5%Cu

Al-
5%Cu

Al-
8%Cu

Al-
15%Cu

Al-
33%Cu

Steel
SAE
1010

Pb Sn-
39%Pb

Sn-
20%Pb

Sn-
10%Pb

Sn-
5%Pb

Sn Copper

kS 222 209 193 192.4 188.4 179 155 46 34.7 54.7 59 63 64 67 372

kL 92 90.7 85 89 87 80 71 29.7 31.7 32 33 33 33

cS 1123 1109 1092 1090 1088 1080 1070 527 129.8 186.2 200 209 221 221 419

cL 1086 1074 1059 1057 1039 999 895 138.2 212.9 231 243 259 259

ρS 2550 2588 2650 2667 2746 2910 3410 7860 11340 8840 8250 7840 7720 7300 8960

ρL 2380 2423 2480 2501 2580 2760 3240 10678 8400 7860 7480 7380 7000

αS

(10-5)
7.75 7.28 6.67 6.62 6.31 5.67 4.25 2.37 3.35 3.58 3.84 3.91 4.15

αL

(10-5)
3.36 3.49 3.24 3.36 3.24 2.90 2.45 2.04 1.79 1.76 1.81 1.82 1.82

L 385000 383566 381900 381415 379264 274270 35000
0

26205 47560 52580 56140 57120 60710

TF 660 660 660 660 660 660 660 327 232 232 232 232 232

TE 548 548 548 548 548 548 183 183 183 183

TL 654 645 643 633 618 202 216 220

ε 0.8 0.023

ko 0.17 0.17 0.17 0.17 0.17 0.0656 0.0656 0.0656

The thermocouples were calibrated at the
melting points of aluminum (for Al-Cu alloys) and
Tin (for Sn-Pb alloys), exhibiting fluctuations of
about 1.0 oC and 0.4 oC respectively. The
experimental profiles plotted are the averages of
three thermocouple reading at each location in chill
and casting. Results from repeated experiments
have shown differences not greater than 4oC. All of
the thermocouples were connected by coaxial
cables to a data logger interfaced with a computer,
and the temperature data were acquired
automaticall y. The temperature files were used in a
finite-difference heat flow program to estimate the
transient heat transfer coefficients.

RESULTS AND DICUSSION
Horizontal Casting:

Effect of Alloy Composition: solidification
simulation of each test casting was performed by
adopting two different approaches for the liberation
of the latent heat of fusion. For eutectic alloys and
pure metals, the latent heat (L) was transformed
into equivalent number of degrees by considering a
temperature accumulation factor (λ) related to L by
the specific heat (λ = L/c). For short or long
freezing range alloys, the latent heat evolution was
taken into account by using Scheil ’s equation until
the remaining liquid reached the eutectic
composition. Temperature was experimentally
measured in two locations: in the chill at 3 mm
from the metal/ mold interface and in the casting at
20 mm from this interface. In Figure 4 and Figure

5 typical experimental thermal responses are
compared to those numericall y simulated by using
the transient hi profile which provides the best
curve fitting for Al-Cu and Sn-Pb alloys.

Figure 4. Experimental and simulated temperatures
responses at two locations in casting and chill: 60
mm thick steel chill and a superheat ∆T = 0.1 TL

(10% of liquidus temperatures) Al-4.5wt% Cu

Figure 6 shows the metal/mold heat transfer
coefficients profiles as a function of time for the
case of Al-Cu alloys solidifying against a 60 mm
thick carbon steel chill.
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Figure 5. Experimental and simulated temperatures
responses at two locations in casting and chill: 60
mm thick steel chill and a superheat ∆T = 0.1 TL,

Sn-5wt% Pb.

The observed differences in the hi profiles
between the pure metals and the other alloys
examined, can be explained by the total shrinkage
accompanying solidification, the extent of the
solidification range and the wetting of the mold by
the melt. It can be seen that the hi profile increases
with increasing mushy zone length. For longer
mushy zones, the interdendritic liquid can feed
better the solidification contraction causing a
continued presence of liquid at the interface,
leading to higher values of hi . This can be taken as
a general trend, but care should be exercised when
applying this conclusion to the early beginning of
solidification. As can be seen in Figure 6, the Al-
15wt% Cu alloy exhibits initial hi values higher
than those corresponding to the Al 4.5wt% Cu
alloy, which has a longer mushy zone. At the initial
stage of solidification the wetting of the mold by
the melt seems to be the dominant factor
controlling heat transfer coefficient. Anyway a
more complex experimental set-up would be
necessary for an accurate characterization of initial
heat transfer coefficients, as fluid flow in the cast
alloys, with its associated heat transfer, would be at
its strongest.

Effects of Chill Material and Chill Thickness:
the effects of chill material and chill thickness on
heat transfer coefficient are shown in Figures 7 and
8, for the cases of a Sn 10wt % Pb alloy solidifying
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Figure 6. Evolution the metal/mold interfacial heat
transfer coefficients as a function of alloy

composition: Al-Cu system, 60 mm thick steel
chill and ∆T = 0.1 TL.

respectively against a carbon steel and copper
chills at a superheat of ∆T = 0.1 TL.
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Figure 7. Evolution of the metal/mold heat transfer
coefficients as a function of chill thickness: Sn-10

% wt Pb alloy, steel chill and ∆T = 0.1 TL.

As can be seen by comparing Figures 7 and 8,
the heat transfer coefficient profiles increase with
increasing thermal diffusivity of the chill material.
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Figure 8. Evolution of the metal/mold heat transfer
coefficients as a function of chill thickness: Sn-10

% wt Pb alloy, cooper chill and ∆T = 0.1 TL .

These results are in agreement with other
studies in the literature [3, 7]. It can also be seen that
the hi profiles increase with decreasing chill
thickness. The chill temperature rises more rapidly
from beginning of solidification with decreasing
chill thickness. As a consequence, mold expansion
favors the thermal contact between metal and chill
surface and as the solidified shell is not so thick as
for thicker chills, this translates to lower
contraction away from the chill. Both factors will
contribute to an increase in hi values.
Effect of Superheat: the heat transfer coefficient
increases with increasing values of superheat, as
can be seen in Figure 9 for a Sn 10wt% Pb alloy
solidifying against a 60 mm thick carbon steel
chill. The fluidity of molten alloys increase with
increasing superheat, favoring the wetting of the
chill by the melt [9,13]. Some results reported in the
literature indicate that the surface of solidified shell
becomes smoother as the superheat increases for
the same chill microgeometry, thus increasing the
interfacial contact [14]. Some differences can be
observed for values higher than 40° C (Figure 9).
This is not the case for Al, where fluidity plays a
more significant role. The initial value of hi rises
from about 1500 W/m2K to 6000 W/m2K if the
superheat is increased from 10% of the melting
point (Tf) to 20% of Tf  

[9].
Table 2 summarizes all the values of hi,

expressed as a power function of time,  determined
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Figure 9. Evolution of the metal/mold heat
transfer coefficients as a function of superheat: Sn

10 % wt Pb alloy, 60 mm thick steel chill.

during the present experimental investigation for
Al-Cu and Sn-Pb alloys under different conditions.

Table 2. Metal/mold heat transfer coefficients
during the horizontal directional solidification.

Alloy Pouring
Temperature

Mold condition hi (W/m2.K),
t (s)

Al Pure 726 oC
792 oC

1010 Steel mold 2000 (t)-0,17

12500 (t)-0,17

Al4.5wt%Cu 645  oC 1010 Steel mold 8650 (t)-0,17

Al15wt%Cu 618  oC 1010 Steel mold 17000 (t)-0,54

Al33wt%Cu 548  oC 1010 Steel mold 4900 (t)-0,54

Sn Pure 232  oC 1010 Steel mold 6800 (t)-0,47

Sn5wt%Pb 220  oC 1010 Steel mold 18000 (t)-0,47

Sn10wt%Pb 210  oC 1010 Steel mold 9600 (t)-0,47

thickness -

6 mm 20500 (t)-0,47

17 mm 18500 (t)-0,47

28 mm 15000 (t)-0,47

39 mm 11500 (t)-0,47

1010 Steel
mold

60 mm 9600 (t)-0,47

6 mm 14000 (t)-0,37

17 mm 12800 (t)-0,37

28 mm 10200 (t)-0,37

39 mm 8800 (t)-0,37

Sn10wt%Pb 231  oC

Copper mold

60 mm 8000 (t)-0,37

Sn10wt%Pb 230  oC
250  oC
280  oC
310  oC

1010 Steel mold

9600 (t)-0,47

9600 (t)-0,47

11500 (t)-0,47

14800 (t)-0,47

Sn20wt%Pb 202  oC 1010 Steel mold  8400 (t)-0,47

Sn39wt%Pb 183  oC 1010 Steel mold 7800 (t)-0,47
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Vertical Casting:
Figure 10 shows typical examples of the

evolution of thermal profiles during the course of
different experiments of upward directional
solidification of an Al-Cu alloy and a Sn-Pb alloy.
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Figure 10. Typical experimental temperatures
responses at three locations in casting: Al-Cu

alloys and Sn-Pb alloys (coated mold):
(A) Al-2wt% Cu, (B) Sn-30wt% Pb.

Figure 11 shows a typical example of the
evolution of metal/mold heat transfer coefficients

(hi) during the course of different experiments of
upward directional solidification of a Al-5wt%Cu
alloy.
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Figure 11. Evolution of the metal/mold heat
transfer coefficients as a function of superheat: Al-

5wt% Cu, water-cooled steel mold.

Table 3 summarizes all the values of hi,
expressed as a power function of time, determined
during the present experimental investigation for
Al-Cu and Sn-Pb alloys under different conditions.

Table 3. Metal/mold heat transfer coefficients
during the vertical directional solidification.

Alloy Pouring Temperature Tp (K)

and Mold Surface Condition

hi (W/m2K), t (s)

Al 2wt% Cu Tp = 660°C – polished mold

Tp = 674°C – polished mold

Tp = 689°C – polished mold

Tp = 709°C – polished mold

Tp = 689°C – coated mold

hi = 2600 (t)- 0.14

hi = 2100 (t)- 0.14

hi = 2000 (t)- 0.14

hi = 1850 (t)- 0.14

hi = 1900 (t)- 0.18

Al 5wt%Cu Tp = 655°C – polished mold

Tp = 663°C – polished mold

Tp = 680°C – polished mold

Tp = 709°C – polished mold

Tp = 709°C – coated mold

hi = 3500 (t)- 0.27

hi = 3200 (t)- 0.27

hi = 2450 (t)- 0.27

hi = 2400 (t)- 0.27

hi = 1500 (t)- 0.20

Al 8wt%Cu Tp = 640°C – polished mold

Tp = 652°C – polished mold

Tp = 690°C – polished mold

hi = 5100 (t)- 0.33

hi = 5100 (t)- 0.33

hi = 5100 (t)- 0.33

hi = 1000 (t)- 0.065
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Tp = 652°C – coated mold

Al 10wt%Cu Tp = 700°C – polished mold

Tp = 705°C – polished mold

Tp = 705°C – coated mold

hi = 5700 (t)- 0.33

hi = 5700 (t)- 0.33

hi = 1000 (t)- 0.075

Sn 10wt%Pb Tp = 220°C – coated mold hi = 1200 (t)- 0.01

Sn 15wt%Pb Tp = 234°C – coated mold hi = 1200 (t)- 0.1

Sn 30wt%Pb Tp = 224°C – coated mold hi = 1100 (t)- 0.01

Sn 5wt%Pb Tp = 225°C – inox mold hi = 650 (t)- 0.07

Sn 10wt%Pb Tp = 220°C – inox mold hi = 1300 (t)- 0.07

Sn 20wt%Pb Tp = 207°C – inox mold hi = 900 (t)- 0.07

Sn 30wt%Pb Tp = 197°C – inox mold hi = 400 (t)- 0.07

It can be seen both in Table 3 and Figure 11
that as expected, under the same condition of melt
superheat, the heat transfer coefficient decreases
when the mold surface is coated with an insulating
layer of alumina. It can also be observed that the
increase in melt superheat decreases the heat
transfer coefficient. This is, apparently, in
contradiction with results obtained in a previous
article concerning the horizontal directional
solidification of Al-Cu and Sn-Pb alloys [9] and can
be explained by the differences on the physical
configuration of the two experimental set-ups. In
both cases the superheat delays the solidification
evolution. In the horizontal solidification this will
translate to a higher hi profile for higher melt
superheats, since the contraction of metal from the
mold wall wil l also be delayed. In the upward
solidification the casting weight wil l contribute to a
better metal/mold thermal contact if lateral
contraction is effective (permitting the ingot to be
gradually detached from lateral walls). This will
happen sooner for solidification without superheat,
and as a consequence a higher hi profile will be
provided with decreasing melt superheat.

CONCLUSIONS
From the experimental work on horizontal and

vertical directional solidification of Al-Cu and Sn-
Pb alloys, the following conclusions can be made:
• for both the horizontal and vertical casting, a
rapid drop in interfacial heat transfer coefficient
occurs during the initial stages of solidification;
• the metal/mold (hi) or the overall heat transfer
coefficient (hg) can be expressed as a power
function of time, of the form h = C1.(t)

-m, where h
[W/m2.K], t [s] and C1 and m are constants, which
depend on alloy composition, chill material and
superheat.

• the transient heat transfer coefficients profiles
increase with increasing melt superheat for
horizontal directional solidification. A reverse
situation has been observed for vertical upward
directional solidification, where the hg profiles
decrease with increasing melt superheat.
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ABSTRACT

Estimating parameters in steady state, ho-
mogeneous systems is a well developed process,
usually involving the least squares technique
or the Bayesian statistical approach. When
the parameters vary with time or space, the
process is more difficult. The Forward Vari-
able method was developed to estimate time
varying surface fluxes for inverse heat conduc-
tion problems. Electrical and systems engi-
neers tend to utilize the Kalman filter approach
in such situations. The two approaches have
much in common and the Kalman filter can of-
ten be applied to conduction/convection prob-
lems. It is particularly useful when multiple
parameters vary with time. In addition, it lends
itself conveniently to situations in which the
measured data are noisy and/or correlated. This
paper describes the application of both meth-
ods to the problem of transient and steady state
free convection from a horizontal cylinder. The
problem involves noisy data and an exception-
ally strong early time variation of the heat trans-
fer coefficient. Because of the inherent smooth-
ing effect of the Kalman filter, it is possible to
estimate the heat flux with greater precision.
The paper discusses both approaches and com-
pares the resulting estimates of the parameters.

NOMENCLATURE

A Surface area
B Matrix
E[] Expected value
h Convective Coefficient
h̄ Mean value of h
hss Steady state h
k Thermal Conductivity of the air
Nu Nusselt Number (hD/k)
Q Heat supplied by heater

Ra Rayleigh Number
t time
Ta Ambient temperature
Ts Surface temperature
x Column vector
xT Transpose of x
y State variable vector
ŷ Estimated value of y
ŷi|i−1 Conditional expectation
σ() Standard deviation
W Covariance matrix of noise
Σ Covariance matrix of the errors

in the state variables

INTRODUCTION

The prediction of parameters in a model of
a real process by an inverse technique is not
complete unless some estimate of the preci-
sion of the estimated parameter can be pro-
vided. For parameters which are constants,
this is usually obtained through the classical
least squares approach. For time varying pa-
rameters the precision is usually assessed by
comparing the simulated response to the mea-
sured response. Unfortunately, frequently one
may find that a good agreement between the
responses does not imply an acceptable level of
precision in the estimated parameter. In addi-
tion, most tests of inverse techniques are based
upon a simulated noisy response obtained by
adding noise to the predicted response under
the assumption that the noise is stationary and
white. In reality, the measured response of-
ten contains non-stationary and colored noise.
These effects may be eliminated when estimat-
ing constant parameters, but they can cause se-
rious difficulty when treating time or spatially
varying parameters. This paper compares the



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

use of the forward variable approach [1] with
the extended Kalman filter method in the es-
timation of the convective heat transfer coeffi-
cient for free convection from a horizontal cylin-
der.

THE EXPERIMENT

Consider the transient convection from a
horizontal cylinder which has a substantial ther-
mal capacitance and whose surface flux thus
varies significantly with time. The experiment
takes place in a setting with varying air tem-
perature, local drafts, and a strong radiation
component. At steady state the heat trans-
fer will be a function of the Rayleigh number
(which is proportional to Ts −Ta) and the sur-
face emissivity. In addition to estimating the
steady state behavior, we are interested in how
well such correlations predict the time varying
convective flux when the cylinder is heating.
Experiments were performed at different heat-
ing levels to produce a range of steady state
surface temperatures, and thus Rayleigh num-
bers, to investigate the validity of the steady
state correlations reported in the literature [2,
3] and to determine if they were applicable to
transient heating.

Table 1
Experimental Conditions

Measurement Range σ
Heat Flux, Q/A 2100W/m2 3W/m2

Ts 295-417K 0.1K
Ts − Ta 2-120K 0.2K

The experiment consisted of measuring the
temperature history of a hollow copper cylin-
der, 33.5 mm OD, 9.33 mm ID and 33.6 cm
long. Twelve thermocouples were staked slightly
below the surface around and along the cylin-
der and an electrical heater inserted into the
center. The cylinder was suspended in room air
and surrounded by a wire mesh, located 30 cm
horizontally away from the cylinder to dampen
any air flow perturbations. Local air tempera-
ture was measured 6 cm horizontally from the
cylinder axis. The cylinder surface was covered
with a very thin dense layer of soot so that it
radiated as a black surface. After the cylin-
der was determined to be in equilibrium with
the ambient air, a constant heater power was
applied and the power and temperatures were

measured with a data acquisition system at 5
second with a data acquisition system at 5 sec-
ond intervals. A statistical analysis of the mea-
surements gave the ranges and standard devi-
ations (σ) shown in Table 1.

COMPARISON OF MEASURED AND
MODELED RESPONSES

Because a conjugate cfd simulation of the
system using FIDAP [4] showed that the tem-
perature in the cylinder was isothermal to within
0.1C, the cylinder was modeled as a lumped
parameter transient conduction problem with
a time varying convective heat transfer coeffi-
cient. Figure 1 compares the measured tem-
perature and surface flux histories for a typical
case.
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Figure 1a: Temperature History

While the figures suggest that there is good
agreement between the measured and the cfd
simulation, a closer examination reveals that
there are important differences, particularly at
early times. These effects are better illustrated
by comparing the values of the convective heat
transfer coefficient, given in terms of the Nus-
selt number Nu, as predicted by the forward
variable method with the cfd predictions as
shown in Figure 2.

We note that the steady state values are in
good agreement, but the transient values differ
substantially at early times. The good agree-
ment of the cfd results with those obtained
from the correlation Nu = 0.48Ra0.25 using
the measured temperatures suggests that the
flow was able to adapt within seconds to the
heating and that the correlation would ade-
quately predict the transient behavior except
at times less than a few seconds. The question
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is then what is the cause of the different be-
havior of the values obtained from the inverse
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Figure 2: Nusselt Numbers estimated by the
forward variable method and from

the cfd simulation

solution and whether these differences reflect a
basic fault in the model of the process.

WHITE AND COLORED NOISE

Before describing the inverse model in de-
tail, it is important to realize that in almost
all studies of the inverse method the noise is
assumed to be stationary and white. That is,
the mean and standard deviation of the noise
are constant with time and the errors are sta-
tistically independent. Rarely do the the stud-
ies examine the consequences of violating these
assumptions. Although the measurements of
heater power and temperature were noisy, the
most important and dominant noise was in the
measured ambient temperature. Figure 3a shows
a characteristic history. A spectral analysis [5,
6] of this history showed that the noise was
stationary, but decidedly not white. The effect
that this ’coloration’ of the noise has on the
estimated precision is quite dramatic.

We can appreciate this effect by consider-
ing how the precision of the heat transfer coef-
ficient at steady state is related to the noise in
the measured temperatures. Since h is defined
by

hss =
Qss/A

Ts − Ta
(1)

the precision of the average value hss is given
by the law for propagation of errors [7] by

σ2(hss) = (
∂h

∂Q
)2σ2(Qss) + (

∂h

∂Ts
)2σ2(T s)

+ (
∂h

∂Ta
)2σ2(T a) (2)

where we have assumed that the errors inQ, Ts,
and Ta are independent. Now using the usual
least squares approach to determine the mean
value of Ta we have

T a =
i=N∑
i=1

Ta(i) (3a)

σ2(T a) = OneTW−1One (3b)

where One is a vector of N ones, OneT is its
transpose, and W is the covariance matrix of
the noise. If the noise is white and station-
ary, W is a diagonal matrix with diagonal ele-
ments having the constant value of σ2

noise and
the standard deviation of the average ambient
temperature is given by the usual expression
[8]

σ2(T a) =
σ2

noise

N
(4)

However, if the noise is colored, then W is
a full matrix and the degrading effect of col-
oration is a significant increase in σ2(T a) from
that which would be computed by assuming
that the noise is white, i.e. W is diagonal.
Figure 3b shows autocorrelation coefficient of
the ambient temperature shown in Figure 3a.
Values of ρ less than 0.2 in absolute magnitude
are usually taken to mean that there is min-
imal autocorrelation [9]. From the figure, it
is apparent that a significant autocorrelation,
i.e., coloring, exists. An analysis of the infor-
mation content shows that it is equivalent to
that contained in white noise sampled at 1/5th

the rate. The lower curve in Figure 3b shows
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the effect of this lower sampling rate. Table
2 gives the respective values of the standard
deviations of T a computed using the full
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Figure 3b: Autocorrelation Coefficient for the
Ambient Temperature shown in Figure 3a

matrix W (i.e. correlated noise) and that com-
puted by assuming that the errors were uncor-
related (a diagonal W).

Table 2
Standard Deviation of the Average Ta

sampling full diagonal ratio
rate W W
Every point 0.1266 0.0567 2.23
1/5th 0.0520 0.0513 1.01

Assuming that the noise is white substan-
tially underestimates σ(T a) when every data
point is used because of the high degree of cor-
relation. On the other hand, when a reduced
sampling rate is used, the noise is essentially
uncorrelated. The consequence of ignoring the
effects of correlation is that σ(hss) would be
underestimated by over a factor of 2.

As described in the following section, the
least squares solution for h requires a knowl-
edge of W. Because it adds significantly to
the computational costs of the least squares
method and because it is neither easy nor con-
venient to evaluate [10, 11], every effort should
be made to made to ensure that the errors are
not correlated. Fortunately, reducing the sam-
pling rate is often an effective way to elimi-
nate the correlation as shown above. Of course
this means then that rapidly varying parame-
ters may not be well estimated.

STEADY STATE RESULTS

The history of Nu shown in Figure 2 was
determined with the forward variable method
which is designed to estimate time varying pa-
rameters. Instead of choosing h(ti) to match
the measured response at time ti to the model
solution, the value of h(ti) is chosen to mini-
mize the variance of the error in ĥ found by a
least squares solution using the responses mea-
sured at ti−rb

, ti−rb+1, ...ti, ti+1, ...ti+rf

Although the points used are usually at fu-
ture times, rb = 0, rf > 1, one could just as
easily use a combination of forward and back-
ward points. r is an adjustable parameter and
its optimal value often varies throughout the
entire history of h(t) but it is generally more
convenient to use a constant value [1]. Since
the noise is assumed to be stationary and white,
the procedure can be applied without a knowl-
edge of σ(noise), and in fact the solution is in-
dependent of the noise which only enters into
the final estimate of the standard deviation of
the estimated parameter. The method is a
form of data smoothing. The steady state val-
ues of Nu were best fit with Nu = 0.44Ra0.25

which differs from the published correlation by
≈ 10% and from the correlation of Chu and
Churchill [2] by less than 5%.

Figure 4 compares the standard deviations
of hss as a function of the number of points,
r, sampled in the forward variable approach.
Although the forward variable method was de-
signed for varying parameters, it proves to be
effective when there is noise and, in our case,
when the ambient temperature is constantly
changing throughout the experiment. Increas-
ing r reduces the uncertainty, but of course in-
creases the computational cost.
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The reduction in σ(hss) is dramatic. The
method as originally proposed assumes that
the noise is white, i.e., all points are equally
weighted, which we know from Figure 2b is not
the case. Using every 5th point as suggested
by Figure 2b, gives the results shown by the
lower curve on Figure 4 and the significant im-
provement in the precision of the estimate is
clearly seen. Not only is the uncertainty in hss

reduced, but the computational cost is much
less. Note that the reduction in σ(hss) is in
line with the results given in Table 2.

Every 5th point

Every data point
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Figure 4: σ(hss) as a function of the
forward variable parameter r

TRANSIENT RESULTS

Using either the values of h derived from
the cfd simulation or assuming a constant value
over a short time, it can be shown that the
sensitivity, ∂T/∂h, is zero at time zero and
slowly increases to a maximum at steady state.
Because of the very small sensitivity at short
times, the experiment is not suitable for esti-
mating h(t) at the start of heating. However,
by 100 seconds, the sensitivity has increased
to 0.1C/(watt − C/m2) which with the value
of σ(Ts −Ta) of 0.2C gives a value of σ(Nu) ≈
2, and increasingly smaller values as time in-
creases. The imprecision is of the order of the
oscillations shown in the time history of h in
Figure 2, giving a range of h not much differ-
ent than that shown in the figure. This being
so, one would conclude that the experimentally
determined values of h are statistically differ-
ent from the cfd simulation results. The ob-
vious question is why? A possible approach
to answering this is through the Kalman filter
method in which the history of σ(h) is tracked
and in which multiple parameters or other pos-
sible effects are easily incorporated. The idea

behind the Kalman filter is to estimate a value
of the parameter at time ti based upon all of
the data up to and including that at time tj . If
j < i the process is termed prediction, if j = i
filtering, and if j > i smoothing. In essence the
forward variable method is really the Kalman
smoothing filter approach in which the covari-
ance matrix is assumed to be diagonal with
constant elements and the past data are down-
graded in importance.

Consider the determination of a constant
parameter using the least squares approach with
N data points. Usually, the data is treated in a
batch mode, i.e., all N data points are consid-
ered at once. Assuming that the temperature
can be expressed as a function of the convective
coefficient, h, as

Ti = F (h) +
∂F

∂h
|h(h− h) (5)

ĥ = h+ (AT W−1A)−1AT W−1{T − F (h}(6a)
σ(ĥ) = (AT W−1A)−1 (6b)

where A is a N dimensional vector with compo-
nents of ∂F

∂h |h, {T −F (h} is the vector of mea-
sured temperatures and W is the covariance
matrix of the noise. While the solution of Eq.
6 gives the estimate of h and of σ(h) based on
all N data points, the solution involves substan-
tial computational expense when N is large and
it is not easy to monitor how the error behaves
as new data points are added. The recursive
least squares approach was designed to allow a
new datum point to be considered without in-
verting the entire matrix. It also permits one
to monitor the behavior of σ(h) as N increases.

The Kalman filter is an extension of the
usual recursive least squares approach based
upon state variables which has been found in
its usual formulation to handle slowing varying
parameters. Details are given in a number of
excellent texts [10, 11]. Let the state of the sys-
tem at time ti be defined as the m component
vector, yi. In this study, yT

i = [Ti, hi] where
Ti is the temperature and hi is the convective
heat transfer coefficient at time ti. yi is given
in terms of yi−1 by the equation

{yi+1} =
(
Ti+1

hi+1

)
=

(
Ti + dT

dt |i∆t
hi

)

= Ai{yi}+ Bifi + Ciwi (7a)
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where fi is a forcing function (in this case the
heater power) and wi is the process noise with
a covariance matrix of Qi. The measured re-
sponse, zi, is given by

zi = D yi + ni (7b)

where ni is the measurement noise which has
a covariance of Ri. Both noises are assumed
to be white i.e., Q and R are diagonal matri-
ces, and to be uncorrelated with each other.
Let ŷi|i−1 represent our estimate of the system
state at time i based upon measurements up to
time i-1. The procedure consists of the follow-
ing steps
a) a prediction of the response ŷi|i−1 based
upon ŷi−1|i−1.

ŷi|i−1 = Ai−1ŷi−1|i−1 + Bi−1fi−1

+ Ci−1wi−1 (8a)

b) and a correction

ŷi|i = ŷi|i−1 + Gi(zi − Dŷi|i−1) (8b)

The gain matrix, Gi is chosen to minimize the
mean square errors of the state variables and
is recursively computed from

Pi|i−1 = Ai−1Pi−1|i−1A
T
i−1 + Ci−1Qi−1CT

i−1

Gi = Pi|i−1DT
i (DiPi|i−1DT

i + Ri)−1 (9)
Pi|i = (I − GiDi)Pi|i−1

where Pi|i is the conditional covariance matrix
of the error in the estimated state variable

Pi|i = E({yi − ŷi|i}{yi − ŷi|i}T ) (10)

Figure 5a illustrates the histories of σ(T )
and σ(h) corresponding to the Nu shown in
Figure 2. Both the estimated temperatures
and the heat transfer coefficients show accept-
ably low standard deviations. Based upon these
results, one would conclude that the estimated
history of Nu was correct. However, this esti-
mated history is at variance with the cfd sim-
ulations and requires an explanation.

The most probable cause of the differences
in h is an inadequacy in the model to represent
the early time behavior. Even if the early time
value of h were of the order of 10 times the
steady state, the Biot number would still be of
the order of 0.01, validating the use of the

lumped capacitance model to estimate h. Since
the value of h(t) is directly proportional to the
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Figure 5a: Time history of σ(T )

The most probable cause of the differences
in h is an inadequacy in the model to repre-
sent the early time behavior. Even if the early
time value of h were of the order of 10 times
the steady state, the Biot number would still
be of the order of 0.01, validating the use of
the lumped capacitance model to estimate h.
Since the value of h(t) is directly proportional
to the surface flux which is the difference be-
tween the heat supplied to the cylinder by the
heater, Q, and that stored in the cylinder, an
error in estimating either quantity would give
erroneous values of h.
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Figure 5b: Time history of σ(h)

One of the convenient features of the Kalman
filter approach is the ease with with additional
state variables can be included. In our case, an
augmented state variable, yT

i = [Ti, hi, Li, Si],
where Li represents a heat loss and SI rep-
resents an error in the heat stored was used.
Figure 6 compares the estimated surface heat
flux based upon the original solution and that
including either L or S. We note how much
better the fluxes agree when a loss variable
is included, suggesting that the heat supplied
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to the cylinder was in error especially at early
times.

cfd

Original 
 Model       including

Capacitance  Error

    including
Q supplied Error

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 H
ea

t F
lu

x

0 200 400 600 800 1000 1200

Time (sec)

Figure 6: Estimated Surface Heat Flux
showing the effect of inaccuracies in the heat

supplied and stored

Since there is a contact resistance between
the heater and the cylinder, it is possible that
at early times the measured heater power does
not represent the heat into the cylinder. In-
stead, the heater may be significanlty hotter
than the cylinder, thus storing heat in itself
and losing heat out through the ends.

Both effects had been anticipated and hope-
fully mitigated by insulating the ends of the
cylinder and using a thermal grease at the in-
terface between the heater and cylinder. Ther-
mal grease usually contains metallic particles
(often copper) and is of very high viscosity,
thus making it difficult to insert the heater
when copiously used. A new cylinder was con-
structed and sufficient grease applied that a hy-
draulic press was required to insert the heater.
In addition, thermocouples were installed at
the heater/cylinder interface to more accurately
characterize the temperature associated with
the stored energy.

Figure 7 depicts the estimated heat flux and
the time history of σ(h) for the new system.
The experimental results are now in much bet-
ter agreement with the cfd simulation, compare
with Figure 2, except at very early times. Com-
parable results were found using the forward
variable method. As expected, the standard
deviations are reduced when the sampling rate
is reduced, but of course doing so reduces the
ability to represent the early transient effects.

Could better results be obtained at the ear-
lier times to validate the cfd simulations? The-
oretically yes, but realistically no. At very
early times the sensitivity to h is small and the

noise in the difference, Ts − Ta, is large com-
pared to the difference, leading to very high
values of σ(h). Furthermore, to get values of
h at times in the range of 10 seconds would
require a very high sampling rate, leading to
a high degree of correlation and a further in-
crease in the uncertainty.
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Figure 7a: History of h for the new system
computed using the Kalman Filter

The Kalman filter can account for colored
noise, but only with a high computational cost
for analyzing the noise and including it in such
a way that the filtering estimator yields a sta-
ble computation.

Furthermore, unless a strong fading mem-
ory is used, this approach reflects the total past
history leading to a transient response which
would be too slow for this specific problem. In
addition, one would be required to very accu-
rately measure the time history of the heater
power and to eliminate, or at least to accu-
rately determine, the heat losses associated with
the momentarily high heater temperatures.
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computed using the Kalman Filter
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CONCLUSIONS

The use of the Kalman filter made it possi-
ble to track the history of the uncertainties and
to determine the times when the heat transfer
coefficient was most poorly estimated. By then
expanding the state variables to include losses
and imprecision in the estimate of the stored
energy we were able to recognize that the dif-
ficulty was most probably due to interfacial
resistance. When the resistance was reduced,
substantially better results were obtained.

The Kalman filter approach is not a total
panacea for problems like this. While it al-
lows for the inclusion of fading memory, vari-
ations in how the terms in the alogrithm, Eq.
9, are evaluated, and including varying degrees
of smoothing, the method is very much ad-hoc
in nature. Since all of these are choices made
by the analyst, usually based upon a subjec-
tive interpretation of the results, there are no
well defined procedures or criteria for making
them.

In analyzing the results and predicting the
history of h, both the forward variable and
Kalman filter approaches estimated the tem-
perature history of the cylinder very well as
evidenced by the very small values of σT , being
in the order of 0.05C. Looking at the time his-
tory of σ(T ) and σ(h), one would conclude that
the inverse estimation of h was accurate un-
less a reason to suspect the results was known.
In this case, the results of the cfd simulation
and the correlation, makes it clear that the in-
verse estimation of the first experiment, and
even that of the second at early times, are sig-
nificnatly in error. Once again reinforcing the
idea that one must know much about the prob-
lem and must design the experiment carefully
before conducting it.
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ABSTRACT 

In this paper an inverse problem of 
simultaneous estimation of the thermophysical 
properties, together with the heat and mass 
transfer coefficients of a drying food sample is 
analyzed. The solution method is based on using 
only temperature measurements.  

The Levenberg-Marquardt procedure of 
minimization of the least-squares norm is applied 
for the solution of the presented parameter 
estimation problem. As a representative vegetable 
material, a potato has been chosen. Numerical 
experiments have been conducted to investigate 
applicability of the method to the foods. In order 
to simulate real measurements, a normally 
distributed error was added to the numerical 
temperature response. An analysis of the 
influence of the drying parameters needed for the 
design of the proper experiment is presented as 
well. In order to perform this analysis, the 
sensitivity coefficients and the sensitivity matrix 
determinant were examined. 

 
NOMENCLATURE 

a = water activity 
c = heat capacity (dry basis), J/K/kg db 
C = concentration of water vapor, kg/m3 

D = moisture diffusivity, m2/s 
D0 = Arhenius factor for m. diffusion, m2/s 
E0  =  activation energy for m. diff., kJ/mol 
h = heat transfer coefficient, W/m2/K 
hD = mass transfer coefficient, m/s 

   ∆H = latent heat of vaporization, J/kg 
I = identity matrix 

jm = mass flux, kg/m2/s 
jq = heat flux, W/m2  
J = sensitivity matrix 
κ = thermal conductivity, W/m/K 
L = flat plate thickness, m 
ps = saturation pressure , Pa 
P = vector of unknown parameters 
R  = ideal gas constant, kJ/mol/K 
t = time, s 
T = temperature, 0C 
Tk = absolute temperature, K 
T = vector of estimated temperatures, 0C 
v = velocity, m/s 
x = distance from the mid-plane, m 
X = moisture content (dry basis), kg/kg db 
Y = vector of measured temperatures, 0C 

      δ = thermo-gradient coefficient, 1/K 
ε = phase conversion factor 
ε = relative error 
σ = standard deviation 
µ = damping parameter 

      ρ = density, kg/m3 
ϕ = relative humidity 
 

Subscripts 
a = drying air 
s = dry solid 
w = water 

 
INTRODUCTION 

There are several methods for describing the 
direct problem of complex simultaneous heat and 
moisture transport processes within drying 
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material. In the approach proposed by Luikov [1] 
the moisture and temperature fields in the drying 
body are expressed by a system of two coupled 
partial differential equations. The system of 
equations incorporates coefficients that must be 
determined experimentally.  

For many drying processes, including the 
drying processes considered in this paper, the 
influence of the thermal diffusion is small and can 
be ignored. In this case, Luikov's moisture 
transport equation is the same as Fick's second 
law equation, where concentration has been 
converted to moisture content on a dry basis. The 
moisture diffusivity has the same meaning in both 
of these approaches. It accounts for various types 
of possible drying processes including molecular 
(liquid) diffusion, vapor diffusion, surface 
diffusion, hydrodynamic flow, Knudsen flow, and 
other considerations. An effective moisture 
diffusivity, which lumps all possible moisture 
transport mechanisms into a single measurable 
parameter, is often used to characterize the drying 
behavior regardless of the dominating 
mechanism. This moisture diffusivity depends on 
moisture content and temperature. This effect 
cannot be ignored in the drying process 
calculation for the majority of practical cases. 

All the coefficients except for the moisture 
diffusivity can be relatively easily determined by 
experiments [2, 3]. A number of methods for the 
experimental determination of the moisture 
diffusivity exist such as: sorption kinetics 
methods, permeation methods, concentration-
distance methods, drying methods, radiotracer 
methods, and methods based on the techniques of 
electron spin resonance and nuclear magnetic 
resonance. But, there is no standard method for 
the experimental determination of the moisture 
diffusivity. The adoption of a generalized method 
for moisture diffusivity estimation would be of 
great importance; however, this does not seem 
probable in the near future [4]. 

The application of the moisture diffusivity 
estimation methods based on the experimental 
drying curves in relation to the analytical solution 
of the differential diffusion equation seems to be 
the most popular experimental practice [5, 6]. 
Numerical solutions of the Fick's law differential 
diffusion equation with constant [7] or moisture 
and temperature dependent [5] diffusivity also 
have been used for the moisture diffusivity 
estimation.  

Kanevce, Kanevce and Dulikravich [8, 9, 10, 
11] and Dantas, Orlande and Cotta [12, 13, 14] 

recently analyzed a method of the moisture 
diffusivity estimation by temperature response of 
a drying body. The main idea of this method is to 
make use of the interrelation between the heat and 
mass (moisture) transport processes within the 
drying body and from its surface to the 
surroundings. Then, the moisture diffusivity can 
be estimated on the basis of an accurate and easy 
to perform single thermocouple temperature 
measurement by using an inverse approach.  

The objective of this paper is an analysis of 
the possibilities of simultaneous estimation of the 
moisture diffusivity together with other 
thermophysical properties of the vegetables as 
well as the heat and mass transfer coefficients. 
The method requires a single drying experiment 
and requires a single temperature measurement 
probe. As a representative drying vegetable 
product, a thin slice of a potato has been chosen. 

The present parameter estimation problem is 
solved by using the Levenberg-Marquardt method 
of minimization of the least-squares norm. Instead 
of actual temperature measurements, the 
temperature response during convective drying is 
obtained from the numerical solution of the non-
linear one-dimensional Luikov's equations. In 
order to simulate real measurements, a normally 
distributed error was added to the numerical 
temperature response. 

An analysis of the influence of the drying air 
velocity, temperature and relative humidity, 
drying body dimensions and drying time on the 
moisture diffusivity estimation that enables the 
design of the proper experiment is conducted as 
well. In order to realize this analysis, the 
sensitivity coefficients and the sensitivity matrix 
determinant were calculated for the characteristic 
drying regimes and drying body dimensions. 

 
A MATHEMATICAL MODEL OF DRYING 

In the case of an infinite flat plate of thickness 
2L, if the shrinkage of the material during drying 
can be neglected, the resulting system of 
equations for energy and moisture transport can 
be expressed as 
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where T(x, t) is the unsteady temperature field and 
X(x, t) is the moisture content field. 
 
 
 va, Ta 
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Fig. 1. Scheme of the drying experiment 
 

 
As initial conditions, uniform temperature and 

moisture content profiles are assumed 
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In the convective drying experiment (Fig. 1) 

the surfaces of the drying body are in contact with 
the drying air thus resulting in a convective 
boundary conditions for both the temperature and 
the moisture content  
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where the convective heat flux, jq(t), and mass 
flux, jm(t), on these surfaces are 
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The water vapor concentration in the drying 

air, Ca, is calculated by 
 

)273/(9.461/)( +ϕ= aasa TTpC  (6) 
 

The water vapor concentration of the air in 
equilibrium with the surface of the body exposed 
to convection is calculated by 
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The water activity, a, or the equilibrium 

relative humidity of the air in contact with the 

convection surface at temperature Tx=L and 
moisture content Xx=L is calculated from 
experimental water sorption isotherms. 

The problem is symmetrical, and boundary 
conditions on the mid-plane of the plate (x = 0) 
are 
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In order to approximate the solution of Eqs. 

(1, 2), an explicit procedure has been used [15]. 
 

ESTIMATION OF PARAMETERS 
The estimation methodology used is based on 

minimization of the ordinary least square norm 
 

)]([)]([)( T PTYPTYPE −−=  (9) 
 
Here, YT = [Y1,Y2, … ,Yimax] is the vector of 

measured temperatures, TT = [T1(P), T2(P), … 
Timax(P)] is the vector of estimated temperatures at 
time ti  (i = 1, 2, …, imax), PT = [P1,P2, … PN] is 
the vector of unknown parameters, imax is the 
total number of measurements, and N is the total 
number of unknown parameters (imax ≥ N). 

A version of Levenberg-Marquardt method 
was applied for the solution of the presented 
parameter estimation problem [16]. This method 
is quite stable, powerful, and straightforward and 
has been applied to a variety of inverse problems. 
It belongs to a general class of damped least 
square methods [17]. The solution for vector P is 
achieved using the following iterative procedure 
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Near the initial guess, the problem is generally 

ill-conditioned so that large damping parameter is 
chosen thus making term µI large as compared to 
term JTJ. The term µI damps instabilities due to 
ill-conditioned character of the problem. So, the 
matrix JTJ is not required to be non-singular at 
the beginning of iterations and the procedure 
tends towards a slow-convergent steepest descent 
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method. As the iteration process approaches the 
converged solution, the damping parameter 
decreases, and the Levenberg-Marquardt method 
tends towards Gauss method. In fact, this method 
compromises between the steepest descent and 
Gauss method by choosing µ so as to follow the 
Gauss method to as large an extent as possible, 
while retaining a bias towards the steepest descent 
direction to prevent instabilities. The presented 
iterative procedure stops if the norm of gradient 
of E(P) is sufficiently small, or if the ratio of the 
norm of gradient of E(P) to the E(P) is small 
enough, or if the changes in the vector of 
parameters are very small [18]. 

 
RESULTS AND DISCUSSION  

In this paper, application of the proposed 
method for the estimation of the thermophysical 
properties of vegetables has been analyzed. As a 
representative vegetable product, a single slice of 
a potato was chosen. 

The variation in water activity with change in 
moisture content of samples at a specified 
temperature is defined by sorption isotherms. 
Sorption isotherms of most vegetables are 
nonlinear and generally sigmoid in shape. There 
are many different models for describing the 
sorption isotherms of foods [3, p. 25]. In recent 
years, the most widely accepted and efficient 
model for sorption isotherms of foods has been 
the GAB (Guggenheim-Anderson-de Boer) 
model. It is a semi-theoretical model and has been 
considered the best-fit model for many food 
materials over a wide range of water activity. The 
GAB isotherm equation can be written as  
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where the water activity, a, represents the relative 
humidity of the air in equilibrium with the drying 
object at temperature, T, and moisture content, X. 
The monolayer moisture, Xm, and the adsorption 
constants C and K are related as Arrhenius type 
equations 
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GAB model parameters, C0, ∆HC, K0, ∆HK, 

Xm0, and ∆HK can be estimated by different 
regression procedures from experimental isotherm 
data. The Gane experimental results for potatoes 
(cited by [3], p. 45) were used in this paper 
 

C0 = 6.609·10-1 ; ∆Hc = 528.4 kJ/kg 
K0 = 0.606  ;   ∆Hk = 53.33 kJ/kg 
Xm0=2.489·10-2 ;   ∆Hx = 123.6 kJ/kg 
 
Heat capacity of food materials can be taken 

as equal to the sum of the heat capacity of solid 
matter and water absorbed by that solid 
 

c = cs + cw.X (16) 

 
Although the heat capacity of solid matter and 

water are functions of the temperature, constant 
values have been most widely used. The 
following values, proposed in [19] for potato, 
were used. 

 
cs = 1381 J/kg/K, and 
cw = 4187 J/kg/K. 
 
The shrinkage of the material during drying 

has been neglected in this paper. This leads to a 
constant dry material density. The value for dried 
potato [20] used in this paper was 

 
ρs = 1610 kg/m3. 
 
From the experimental and numerical 

examinations of the transient moisture and 
temperature profiles [15] it was concluded that for 
practical calculations, the influence of the 
thermodiffusion, δ, is small and can be ignored. 
Consequently,  

 
δ = 0 

 
was utilized in this paper. 

It was also concluded that the system of two 
simultaneous partial differential equations (1, 2) 
could be used by treating the thermal conductivity 
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as constant. A mean value from the results 
obtained in [21] for the potato was taken as 

 
k = 0.40 W/m/K. 
 
There is very little published data concerning 

the value of the ratio of water evaporation rate to 
the reduction rate of the moisture content during 
the drying of food. For this reason and because 
the influence of the phase conversion factor on 
the transient moisture content and temperature 
profiles is very small, a mean value was used as 

 
ε = 0.5 

 
Moisture diffusivity of foods is often 

considered as an Arrhenius-type temperature 
function 
 

D = D0  exp(-E0/RTk) (17) 

 
where, D0 is the Arrhenius factor, E0 is the 
activation energy for moisture diffusion, R is the 
ideal gas constant, and Tk is the absolute 
temperature. In this paper the values obtained in 
[5] for potato from the drying data were used  
  

D0 = 8.63·10-5 m2/s  ;   E0 = 30.6 kJ/mol. 
 

For the direct problem solution, the system of 
Equations (1) and (2) with the initial conditions, 
equation (3), and the boundary conditions, 
equations (4) and (8), have been solved 
numerically for a potato slice sample, with the 
above thermophysical properties. 

For the inverse problem investigated here, 
values of the moisture diffusivity, the heat 
capacity, the thermal conductivity, the phase 
conversion factor and the density of the potato as 
well as the heat and mass transfer coefficients 
were regarded as unknown. All other quantities 
appearing in the direct problem formulation were 
assumed to be known. Thus, the vector of the 
unknown parameters was 

 
PT = [D0 , E0 , ρs, cs, k, ε, h, hD] (18) 

 
For the estimation of these unknown 

parameters, the transient reading of a single 
temperature sensor located at the position x = 0, 
has been considered. 

Numerical experiments have been conducted 
to investigate applicability of the method to the 
food processing involving drying of thin flat 
samples. In order to simulate real measurements, 
a normally distributed error with zero mean and 
standard deviation, σ, was added to the numerical 
temperature responses. An analysis of the 
influence of the drying air parameters, drying 
time, and dimensions of the drying sample needed 
for the design of the proper experiment has been 
conducted as well. In order to perform this 
analysis, the sensitivity coefficients and the 
sensitivity matrix determinant have been 
examined. 
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Fig. 2. Relative sensitivity coefficients  

 
The sensitivity coefficients analysis has been 

carried out for an infinite flat plate model of a 
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slice of a potato with initial moisture content of X 
(x, 0) = 4.00 kg/kg and initial temperature T (x, 0) 
= 20.0 OC. The possibilities of simultaneous 
estimation of the temperature-dependent moisture 
diffusivity together with other thermophysical 
properties of the potato as well as the heat and 
mass transfer coefficients have been investigated 
for the variety of boundary conditions and 
dimensions of the drying sample. 

The drying air bulk temperature, Ta, was 
varied between 30 and 70 OC, the drying air 
velocity, va, between 1.0 and 4.0 m/s, the relative 
humidity of the drying air, ϕa,  between 0.02 and 
0.08 and the potato slice thickness 2L, between 2 
and 8 mm.  

The best combination of the relative 
temperature sensitivity coefficients with respect 
to all unknown parameters, was obtained with Ta 
= 70 OC, va = 3 m/s, ϕa = 0.05 and 2L = 4 mm. 
Figure 2 shows the relative sensitivity coefficients 
Pj∂Ti/∂Pj, i = 1, 2,…, imax, for temperature with 
respect to all unknown parameters, j = 1, 2,…,8.  

It can be seen that the relative sensitivity 
coefficients with respect to the phase conversion 
factor, ε, and the thermal conductivity, k, are very 
small. This indicates that ε and k cannot be 
estimated in this case. But, this also indicates that 
the influence of the phase conversion factor and 
the thermal conductivity on the transient moisture 
content and temperature profiles is very small in 
this case. This can be explained by the very small 
heat transfer Biot number (Bi = hL/k = 0.156) and 
consequently very small temperature gradients 
inside the body during the drying (Fig. 4).  Due to 
these reasons, the phase conversion factor and the 
thermal conductivity were taken as known 
quantities for the examination below. 

Heat capacity of wet potato was taken as equal 
of the sum of the heat capacity of solid matter and 
absorbed water. Since the heat capacity of the 
solid matter presents only a few percent of the 
overall heat capacity (Eq. 16) of the potato, the 
relative sensitivity coefficients with respect to the 
heat capacity of solid matter is also very small. 
Consequently, the value of the heat capacity of 
the solid matter was also taken as known. 

The relative sensitivity coefficients with 
respect to the dry matter density, ρs, and the 
convection heat transfer coefficient, h, are 
linearly-dependent except for the first period of 
drying, when the relative sensitivity coefficients 
with respect to the dry matter density is nearly 
equal to zero. This makes it possible to 

simultaneously estimate ρs and h with the “exact” 
(without noise) temperature data. But, with 
temperature data with an added simulated noise, 
local minimums were obtained that depended on 
the initial guesses. Due to these reasons and the 
fact that the density of the dry sample material 
can be relatively easily determined by a separate 
experiment, the density of the dry sample material 
was also considered as known. 

Thus, it appears to be possible to estimate 
simultaneously the moisture diffusivity 
parameters, D0 and E0, the convection heat 
transfer coefficient, h, and the mass transfer 
coefficient, hD. 

Figure 3 presents transient variation of the 
sensitivity determinant if five, (D0, E0, ρs, h, hD) 
and four (D0, E0, h, hD) parameters are 
simultaneously considered as unknown. Elements 
of this sensitivity determinant were defined [22] 
for a large, but fixed number of transient 
temperature measurements (501 in these cases). 
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Fig. 3. Sensitivity determinant 

 
 

The maximum sensitivity determinant value 
corresponds to the drying time when nearly 
equilibrium moisture content and temperature 
profiles have been reached (Fig. 4 and 5). 
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Table 1. Estimated parameters 

Estimated values Parameters Exact 
values σσσσ = 0 σσσσ = 0.3 OC σσσσ = 0.5 OC 

Relative errors 
  for σσσσ = 0.5 [%] 

D0⋅105 [m2/s] 8.63 8.6306 8.6648 8.7142 0.98 
E0 [kJ/mol] 30.6 30.600 30.611 30.626 0.09 
h [W/m 2 /K] 31.2 31.200 31.200 31.200 0.00 
hD⋅102 [m/s] 3.42 3.4200 3.4203 3.4205 0.01 
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Fig. 4. Transient moisture content and 

temperature profiles 
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Fig. 5. Volume-averaged moisture content and 

temperature changes during the drying 
 
 

Table 1 shows the computationally obtained 
parameters. For comparison, the values of exact 
parameters and the values estimated with "exact" 
(without noise) temperature data are also shown. 
The obtained results show good agreement 
between the evaluated and exact values of 
parameters. The moisture diffusivity and the 
boundary conditions parameters, (D0, E0, h, hD), 
can be simultaneously estimated with the relative 
errors within one percent even in the case of 
temperature measurement errors with σ = 0.5 OC. 
 
CONCLUSIONS 

The inverse problem of simultaneous 
estimation of thermophysical properties and the 
boundary conditions parameters of drying 
vegetables by using only temperature 
measurements has been analyzed. As a 
representative vegetable product, a slice of a 
potato has been chosen. 
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It can be concluded that in the convective 
drying experiment it is possible, based on a single 
thermocouple temperature response, to estimate 
simultaneously the two moisture diffusivity 
parameters, the convection heat transfer 
coefficient, and the mass transfer coefficient. 
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ABSTRACT
In the paper it is considered the algorithms of

search of optimum solutions and analogous
devices that realize them. In conclusion it is
proved the necessity of creation of hybrid
(analogous + digital) computing devices to solve
such a class of IHCPs.

INTRODUCTION
One of the most important applications of the

methodology of solving the inverse heat transfer
problem (IHTP) is investigating the thermal
regimes of electronic equipment (EE). Such
investigations involve the entire gamut of inverse
problems. When solving boundary IHTPs, the
boundary conditions of convective heat transfer
on the surfaces of boards and electronic units; and
contact heat transfer between the components of
units, and between the board and the add-on
components, etc. are identified. When solving the
internal IHTPs, the thermal and physical
characteristics of multilayer boards with
metallised interconnections, and of other
electronic units comprising composite structures
and/or a combination of heterogeneous
components are defined. When solving
retrospective IHTPs, one can determine the state
of electronic components in the initial or earlier
moment of time, whereas the temporal IHTP
allows to register the time when the object or its
individual components reach a preset (or critical)
temperature.

A special position is held by geometric IHTPs,
in which the known information about the
object’s temperature field allows to determine its
geometric parameters. Of the entire gamut of
IHTPs, such problems are the least studied and
infrequently solved ones. At the same time, in
many cases their solution is the necessary
condition for investigating the thermal state of

thermally loaded systems and structures (in
particular, electronic equipment), since the
geometric characteristics are part of the
uniqueness conditions. Without knowing these
conditions, it is impossible to define the object’s
temperature field.

Solving these problems makes it possible to
effectively arrange micro channels in the body of
the board being cooled to provide internal and
convective-conductance cooling [1], or resistive
elements in the heater’s body when optimising the
thermal regimes of EE [2]. Solving the geometric
IHTP allows to determine the domain of
permissible allocation of given heat sources (EE
components), the specified locations of sources of
different type with constraints on the temperature
and the temperature gradients in the board.

It is also necessary to solve geometric IHTPs
for optimising temperature fields in boards when
specifying the sites of electronic components, or
minimising the packaging surface (volume) of
EE, as well as when searching for sources, or
during their successive allocation.

The most effective methods of solving IHTPs
are those based on solving the conditional
optimisation problem, in particular, the method of
automated fitting [3]. In view of the fact that the
major share of computing time needed for solving
IHTPs by such methods on digital computers is
spent on simulating a succession of temperature
fields, using array analog processors in such cases
is far more effective in solving field theory
problems. These processors have a discrete
structure enabling the use of straightforward
stepping search algorithms, which are practical
for hardware implementation of the automated
fitting method.
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IDENTIFYING THE ZONES OF FEASIBLE
ALLOCATION OF THERMAL OBJECTS IN
THE PRESENCE OF INHIBITION ZONES

When designing EE, a problem frequently
encountered is to define the domain of feasible
allocation of thermal sources in an object, with a

constraint on the maximum temperature. To solve
such a problem, the device [4], whose schematic
is shown in Fig. 1, can be used.

The device comprises a source assignment
unit SAU based on flip-flops FF and delay
elements DE; current lead-in unit CLU, based on
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Fig 1. Simulator for allocation of thermal sources
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current lead-ins CL; switching unit SU; control
unit CU; OR1 gate; comparison unit COMP;
recording unit RU; counters Cnt1 and Cnt2; pulse
generator PG; AND1-AND3 gates and the OR2
gate. The device operates as follows. In the initial
state, all the SAU flip-flops are in the “0” state.
Gates AND1-AND3 are disabled and the current
lead-ins are in the state corresponding to I = 0,
where I is the controlled current-lead-in current.
The pulse counters are in the “0” state. Via the
CU, the digital computer DC program enables the
inputs of  the AND1 and AND2 gates. As a result,
the SAU starts receiving information from the DC
via AND2, and shift pulses from the PG via
AND1. In so doing, the assignment domain is set
in the SAU flip-flops via AND2 according to the
program in the DC. Having set the information in
the SAU, AND2 is disabled. According to the data
calculated in the DC, the control unit outputs
voltage to the COMP unit and a control signal to
the controlled current lead-ins. The CU sends a
coded signal to the counters to set therein
numbers proportional or equal to the co-ordinates
o# DQG#m#RI# WKH#centre of the assignment domain.
7KH#QXPEHU#FRUUHVSRQGLQJ#WR#FR0RUGLQDWH#o#LV#VHW
in Cnt2, and the number corresponding to the co-
RUGLQDWH#m#LV#VHW#LQ#Cnt1. This completes the phase
of setting up the device for solving the problem.

Problem solving is initiated by a command
from the DC, or by depressing a button. Clock
pulses from the PG are fed to the SAU, and the
assignment domain starts shifting from left to
right and from up to down. The voltage applied
from the CU to the control input of the current
lead-in determines the value of the current in the
current lead-ins. Thus, in shifting, the assignment
domain will “bypass” the SAU, and, hence, the
CLU. Therefore, the passive model PM,
connected to the CU, will receive current via the
current lead-ins, but only to points corresponding
to the places of allocation and to the shape of the
assignment domain.

The current flow time interval depends on the
repetition rate of the shifted pulses. The number
of pulses fed to SAU is controlled by the pulse
counters, resulting in that their content during the
entire period of problem solving is actually the
FR0RUGLQDWHV# o# DQG# m# RI# WKH# DVVLJQPHQW# GRPDLQ
centre.

Since all the points of the model connected to
the CU are connected to OR1 and to COMP, as
soon as the voltage in any point of the model
becomes greater than (or equal to) the admissible
voltage from COMP, the latter outputs a signal to

enable the recording unit, which registers the
domain co-ordinates.

These data can be input via the CU to the DC,
which will register those points of the assignment
domain centre where the COMP had triggered.

When the assignment domain has scanned all
the flip-flops and taken its initial state, Cnt1
outputs an end-of-solution pulse to the CU, and
the DC will receive a command to issue new, or
modified information.

Hence, the device described identifies the
domain of feasible allocation of the heat source
without violating the constraint on the object’s
maximum temperature.

In the general case, the problem can be stated
as follows. The temperature field is formed by not
only the boundary conditions and the source
being allocated, but also by the fixed discrete
sources found in the object. Different admissible
temperature values are specified for some points
in the domain. In addition, inhibition domains are
specified, i.e. domains wherein it is prohibited to
allocate sources due to design, technological and
other reasons. It is required to find such feasible
heat source allocation zones, which do not to
disturb the constraints on the temperatures in the
points being controlled. This problem is solved by
means of device [5].

SUCCESSIVE ALLOCATION OF HEAT
SOURCES

The problem of successive allocation of heat
sources in a given domain arises when it is
necessary to arrange these sources in such a
manner that the temperature field generated
therein minimises a functional (target function)
under given constraints on the maximum
(minimal) temperature.

The search consists in determining the
temperature when locating the heat source in all
points of the given neighbourhood of its initial
allocation. The value of the target function, when
locating a source in a successive point, is
compared to its value when the source was
located in the previous point. Analysing the
temperature functional in all points of the given
neighbourhood allows to determine the location
of a source with a better value of the target
function. The centre of the new neighbourhood
being investigated is relocated to this point, and
the values of the target function are determined in
this neighbourhood similar to that for the previous
neighbourhood. The search process is terminated
if the target function in the source location found
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satisfies the given system of constraints, or if
there exists no better value of the target function
in the source’s neighbourhood.

The schematic of device [6], which
implements the scheme of searching for a location
of a heat source just described, is shown in Fig. 2.
In this case, the objective is to maximise the
temperature, the constraint not exceeding the
given value.

The codes of the co-ordinates of the source’s
initial location are input to the control unit CU.

After the device has been enabled, these codes are
input to registers Rg1 and Rg2. Then the code
from these registers is applied to only one AND
gate of the network corresponding to these
registers. The signal from this AND gate is fed to
its respective gate G of the current lead-ins switch
SW, thus enabling a current flow from the current
source CS (which is an analog of the heat source)
to the respective gate of the passive model PM
node.

The current fed to the given PM node, in

COMP1

 SW AND

Rg1

Rg2

BCSU
PM

CS

ADC

 Rg3

COMP2 COMP3

  OR

  RU DC

 Rg4

 Rg5

  CU

Input data Start

Fig. 2. Device for solving heat transfer problems
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combination with the boundary conditions setting
unit BCSU, forms an electric field corresponding
to the temperature field being investigated. The
potentials from the controlled PM nodes are
applied to the input of the comparison unit
COMP1. This unit selects the maximum potential
and applies it to the input of the analog-to-digital
converter ADC, which converts it to a code
corresponding to the given potential. This code is
then applied to the comparison unit COMP2,
whose other input is at «0» level because register
Rg3 has not yet received a control signal to enable
information writing. COMP2 compares the code
corresponding to the maximum potential and the
«0» level to deliver a signal to registers Rg1 -
Rg5, thus enabling information writing (storage).
Register Rg3 stores a code corresponding to the
maximum potential of the source location being
analysed. Registers Rg4 and Rg5 store codes that
characterise its location. The code in Rg3 is
applied to the comparison unit COMP3, at whose
second input there is present a previously applied
code corresponding to the admissible temperature.
If this temperature value exceeds the value
obtained in the model, COMP3 will not output a
termination signal.

Further, a signal from the CU initiates a shift
of the “1’s” in registers Rg1 and Rg2 one bit “up”
and to the “left”, i.e. to a point, which is the first
one among the analysed points that are closest to
the initial location of the source. The temperature
field corresponding to this source location is
analysed similar to that as described above. If the
temperature corresponding to the new source
location is less than that obtained at the previous
step, information is not rewritten into registers
Rg3 to Rg5. Otherwise the information is
rewritten as described above.

By controlling the location of “1’s” in
registers Rg1 and Rg2, one can scan all the points
in the neighbourhood of the initial location of the
source. Having analysed the last point of the
neighbourhood being investigated, Rg3 and
decoder DC output signals to recording unit RU,
which registers the maximum potential and the
number of the respective PM node. Further, the
process runs in a similar manner for the new
location of the source, etc. until the maximum
temperature shall exceed the admissible value at a
successive step. In this case, COMP3 outputs a
signal to the OR gate, thus enabling RU to register
the given temperature value and the respective
source location (number of PM node). At the
same time, the COMP3 output is applied to the

input of the flip-flop to disable the flow of clock
pulses from the clock pulse generator. This
terminates the process of problem solving and
disables device operation when allocating one
heat source.

The approach described above is suitable for
allocating one source. If several sources are to be
allocated, then one of the sources is selected and
the problem for this source is solved as described
above. In so doing, the remaining sources retain
their initial positions. Then the same search
process is carried out for another source, etc. The
search process in this case is considered
terminated if neither source can be moved to other
points of its neighbourhoods with a
improvement on the target function.

ALLOCATING HEAT SOURCES OF
DIFFERENT TYPES TO FIXED POSITIONS

In designing engineering systems, there occur
problems when, for each source of a set of
sources (in the general case of sources of different
intensity and different spatial geometry of
carriers), it is necessary to specify a location
taken from a number of a priori given sites. A
partial problem is the case of allocating intensities
of sources to fixed positions, i.e. on the
assumption that the carriers of sources have the
same spatial geometry. An example of this can be
the problem of packaging a rack having mounting
locations, with electronic units having different
heat liberation values, or creating different
electromagnetic fields.

The characteristic features of the given class
of problems are the a priori specified constraints
on the location of sources in the domain and on
the resulting temperature field.

For the sake of clarity, let us consider the
problem of allocating point heat sources of
different intensity, which, together with the
boundary conditions, create a stationary field in a
2-dimensional domain.  The problem is to define
such a rearrangement of sources, which would
ensure that the temperature values in the
monitored points do not exceed an a priori
specified value. Since the sources are point ones,
the conditions of their mutual non-intersection
and belonging to the domain are not checked.

The mathematical statement of the this
problem leads to searching for such
rearrangement of sources, which would satisfy the
inequality
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( ) ( )/111//5/4/PD[PLQ - SN737 N3N
=≤π

∈∈π ÙÐ
(1)

ZKHUH# L# LV# D# IXQFWLRQ# characterising the
temperature field in domain Ω; π is the
UHDUUDQJHPHQW# RI# D# VHW# RI# UHDUUDQJHPHQWV#I># JN
(k = 1, 2, …, p) are the temperature monitoring
SRLQWV>#DQG#L-#LV#WKH#FULWLFDO#WHPSHUDWXUH1

Let us consider a feasible hardware
implementation [7] of the algorithm of solving
problem (1). The input information of the SAU
(Fig. 3) are the codes corresponding to the
intensities of the sources being allocated. These
codes are input to the rearrangement enumeration
unit REU [8] intended for enumeration of n!
permutations of n symbols, which are the
intensities of sources. Since the REU outputs are
connected to the digital-to-analog converter DAC,
the codes corresponding to the intensities of
sources are converted to currents-analogs of the
sources. The DAC output currents flow to the
nodes of the passive model PM to form, in
combination with the boundary conditions setting

unit BCSU, an electric field. The potentials from
the outputs of the R-array (the monitored model
nodes), which are proportional to the values of the
field in these points, are applied to the inputs of
the comparison unit COMP. The unit selects the
maximum potential applied to the first input of
adder ADD. The potential corresponding to the
admissible temperature is applied to the second
input o ADD from the voltage divider VD. The
ADD output error signal is fed to the SAU input.
If the difference between the selected maximum
potential value and the admissible value satisfies
constraint (1), the problem is considered solved.
SAU outputs a control signal to the recording unit
RU, which registers the corresponding
rearrangement. This signal also disables the flow
of clock pulses from the pulse generator in the
SAU. If the field formed by using the model does
not satisfy the constraint (1), clock pulses
continue to flow to REU, thus enabling the
formation of new rearrangements of sources to be
analysed similarly. The device described allows
to minimise the maximum temperature of the

DAC

 COMP   VD
ADD

REU

RU

BCSU

   SAU

            Input data

⊂

PM

Start

Fig. 3. Device for allocating heat sources to fixed positions
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points monitored to an a priori level b
enumerating the rearrangement of sources.

Often, when designing engineering systems,
the number of sites differs from the number of
objects being allocated. For instance, during
thermal design of electronic equipment the
number of sites that could accommodate
electronic components, which are heat sources, is
greater, as a rule, than the number of components
proper. In this case, it is necessary to enumerate
the feasible allocations of sources to select their
optimal arrangement based on the criteria of
minimising the system’s maximum temperature.
This problem is solved by means of device [9].

Similar devices [10] can be used for thermal
design of electronic equipment, namely, during
packaging/heat synthesis of electronic units to
minimise their geometric characteristics (overall
dimensions, areas of boards and volumes of
electronic devices), and consequently, the masses
of electronic components and units.

CONCLUSION
All the devices described allow for

modifications, making it possible to find multi-
choice solutions. This is often necessary in
thermal design of electronic equipment for the
designer to have the option of choosing such a
solution from a set of admissible solutions, which
would best satisfy the design, technological and
other constraints unaccounted for in the process
of solving the basic problem. In this case, one
carries out additional investigations with other
combinations of allocating sources and
constraints. Such investigations are called forth
by considerations evolving in the process of
developing a streamlined design of an electronic
unit.

In conclusion, let us note that in the
investigations described in [9, 10, 11 and 12] the
authors made an attempt, on the one hand, to
overcome the low accuracy of analog calculations
and the impossibility of performing logic
operations in analog computers. On the other
hand, the authors made an attempt to meet cost-
performance challenges involving extended
digital computer time needed for multi-choice
solutions of field theory problems. All this proves
the effectiveness of combining both types of
computers in problem-oriented hybrid systems. In
particular, in paper [11], the authors offer one of
the feasible structures of a problem-oriented
hybrid computing system intended for optima
allocation of physical objects.
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ABSTRACT 

An experimental methodology and an inverse 
approach are presented to model the thermal 
condition at the electro-thermal contact between 
two solid bodies. The modelling heat conduction 
equations at the interface involve two contact 
parameters which are estimated according to 
steady state  and transient analysis. The results of 
both methods can then  be compared. 

The transient method is based on the 
minimization of a least squares criterion by using 
a Gauss-Newton algorithm. The experimental 
conditions are designed in order to satisfy the 
linear assumption of the modelling equations, and 
thus to simplify the sensitivity analysis.  

The  inverse analysis shows  that the contact 
parameters to be estimated are highly correlated. 
the correlation coefficient can be reduced by 
choosing the time interval of measurements. The 
optimal extent of this interval is prone to the 
parameter values to be estimated.  
 
NOMENCLATURE 
ai : Thermal diffusivity of material i (m²/s) 
bi : Thermal effusivity of material i (W/m².K.s1/2) 
cc : Correlation coefficient 
cpi : Specific heat of material i (J/Kg.K) 
Li : Distance between boundary condition 
thermocouple and interface in material i (m) 
Pi : Voluminal dissipated heat flux in material i 
(W/m3) 
RTC : Thermal contact resistance (m².K/W) 
REC : Electrical contact resistance (Ω.m²) 
SR : Measurement sensitivity to RTC (W/m²) 
Sα : Measurement sensitivity to α (K) 
tw : Estimation window (s) 

i
mjT : Measured temperature by thermocouple j in 

material i (°C) 

 i
mjx  : Position of thermocouple j in material i (m) 

 

α : Partition coefficient of generated heat flux at 
the interface 
ϕg : Generated heat flux at the interface (W/m²) 
λi : Thermal conductivity of material i (W/m.K) 
θi : Temperature of water box i (°C) 
ρei : Electrical resistivity of material i (Ω.m) 
ρi : Density of material i (Kg/m3) 
σi : Electrical conductivity of material i 
 

i = 1,2  
j = 1,2 
 
INTRODUCTION  

In the case of the perfect thermal contact, the 
boundary condition at the solid-solid interfaces 
does not pose a particular problem in the sense 
that the two equations which describe it are well-
known :  they are the equations of temperature 
continuity and heat flux conservation.  When it is 
established that the contact remains imperfect, a 
temperature jump prevails at the interface.  In the 
absence of a generated heat flux, this temperature 
jump is entirely due to the thermal contact 
resistance RTC . On the other hand, when there is a 
thermal dissipation at the interface, heat flux 
generated φg  also takes part in the temperature 
jump;  but not in all its integrality.  That 
introduces a second parameter into the expression 
of the boundary condition.  This parameter is 
defined as a ' partition coefficient of heat flux 
generated at the interface ' which is noted α  
(α< 1). This type of boundary condition at 
internal bounderies can be found in several cases 
such as sliding or rolling contacts and the 
thermoelectric contacts (connectors, spot 
welding...). 
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The definition of α  knew a significant 
evolution that one finds primarily in studies on 
the sliding contacts.  L. Mazo and alii  [ 1, 2] and 
Badie-Levet [ 3 ] initially defined it in the case of 
the sliding contact, like a ' partition coefficient of 
generated heat flux by friction at the interface '.  
More recently, about the same subject, J P. 
Bardon [ 4 ] introduced a new concept : the one of 
' share of the generated heat flux which takes part 
in the temperature jump '.  Always in the case of 
the sliding contact, this concept, probably 
intrinsic to the interface, was taken again 
thereafter by P. Chantrenne and M. Raynaud [ 5 ] 
which consider that heat flux is dissipated in a 
subjacent volume of the interface. N. Laraqi 
proposes an approach of the generation of flux by 
friction based on a Gaussian distribution of the 
zones of dissipation [ 6 ], but the problem 
involved in the characterization of the intensity of 
the sources remains posed.  Recently, we 
proposed a microscopic ideal model considering a 
current/flux tube which crosses a thermoelectric 
contact [ 7 ].  The results show that coefficient α  
approaches the ratio of the Lorentz numbers 
defined by the Wiedman - Frantz law. But this 
results is unsatisfactory. It does not take into 
account topography of  both surfaces in contact. 

Lastly, let us note that the bibliography reveals 
that, for a long time, the electrical contact arouses 
interest [ 8, 9 ] but the thermal boundary 
condition did not the subject of a particular 
attention of the electricians. 

In this work, we are interested in the thermal 
characterization of a static thermoelectric contact 
where the heating is not too high, i.e. where the 
heat conduction problem remains linear and 
where parameters RTC  and α  can be supposed 
constant.  We present the principle of an 
experimental methodology which leads to a 

simultaneous estimation of both parameters RTC  
and α.  This text is organized into three sections.  
In the first, one presents the principle of 
measurement. The second is devoted to the 
sensitivity analysis. In the third section we present 
results of the inverse analysis optimizing the 
parameters estimation. 
 
PRINCIPLE OF MEASUREMENT OF 
CONTACT PARAMETERS 

We develop here an experimental approach 
which can be exploited in stationary thermal 
mode as in transient mode. The two methods of 
measurement must give the same result but 
probably not with the same precision. We are 
interested primarily in the transient method and 
more particularly with the identifiability problem 
with a view to study the dynamic contact where 
the two required parameters are temporal laws. 
 
Principle of Measurement in Transient 
Model 

The principle of measurement of the 
parameters RTC and α   is found on the transient 
analysis of the response of two cylindrical 
samples of the same geometry in imperfect 
contact. It is schematized on figure 1. The two 
cylinders are assembled aligned and tightened by 
means of a press which applies a normal effort F 
to them. They can be crossed by a heat flux 
and/or an electrical current. The electrical current 
is provided by a stabilized power supply 
connected at the two ends of the cylinders 
(electrodes A and B). The heat flux is ensured by 
two water boxes supporting two water flows 
maintained at two different temperatures θ1  and 
θ2. The side surface is thermally insulated. 

The contact in x = 0 is imperfect. It is thus seat 
of an electrical contact resistance which opposes 

�������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure 1 : Scheme of measurement principle 



4th International Conference of Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

 

to the current and of a thermal contact resistance 
which opposes to the heat flux. The electric 
contact resistance noted REC is supposed to be 
known starting from an auxiliary measurement. It 
determines generated heat flux density φg  (W/m²)  
at the interface x = 0 when an electrical current 
crosses the interface. In the same way, the 
thermophysical characteristics of both materials 
are assumed well known, in particular the 
electrical resistivity which determines the 
voluminal sources P 1  and P 2  (W/m 3)  during the 
current passage. 

On such a device, the estimation of the 
thermal contact resistance RTC and the partition 
coefficient of generated heat flux can be carried 
out by means of a 1D transient linear conductive 
model defined on the domain [ - L1 ;  L2 ] for t > 0 
and by the measurement of the temperature field 
on both sides of the interface along the cylinders 
axis in quite selected points.  Bounderies x = - L1  
and x = L2  are equipped with thermocouples 
which record permanently the respectively noted 
temperatures )(1 tT L−  et )(2 tT L . Thus, we 
consider boundary conditions of first kind on 
these two bounderies. The linear system 
describing the heat transfer in such a device can 
be formulated as follows: 
 

1

1
2
1

2
1

1

1
λ
P

x
T

t
T

a +
∂
∂=∂

∂  0,01 >≤≤− txL                 (1a) 

2

2
2
2

2
2

2

1
λ
P

x
T

t
T

a +
∂
∂=∂

∂  0,0 2 >≤≤ tLx                 (1b) 

( ) ( )tTtLT L 111 , −=−  0,1 >−= tLx                        (1c) 
( ) ( )

gx
tT

x
tT ϕλλ +

∂
∂=

∂
∂ +− ,0,0 2

2
1

1          (1d) 

( ) ( ) ( )
TC

g R
tTtT

x
tT ,0,0,0 121

1

−+− −=+∂
∂ ϕαλ        (1e) 

( ) ( )tTtLT L 222 , =   0,2 >= tLx                           (1f) 
( ) )(0, 1

1 xTxT i=  0,01 =≤≤− txL                   (1g) 
( ) )(0, 2

2 xTxT i=   0,0 2 =≤≤ tLx                       (1h) 

)x(T j
i   (where j=1, 2) represent the initial 

distribution of temperature of the whole of the 
device before the electrical current passage. The 
boundary condition at the interface x = 0 is 
composed of two equations : the heat flux 
conservation equation (1d) and a condition of 
third kind (1e). 

It is the latter which interests us since the 
temperature jump at the interface is described by 
means of the two required parameters RTC  and α. 
The principle of estimation RTC  and α  is based on 
the resolution of the inverse heat conduction 
problem whose direct problem is given by the 
equations system (1). The resolution of the 
inverse heat conduction problem will be based on 
the knowledge of the following data : 
- Two temperature recordings within the 
cylinder 1 noted 1

1mT  et 1
2mT  and two other 

temperature recordings within the cylinder 2 
noted 2

1mT  et 2
2mT . These measurements are 

located at x-coordinates : 1
1mx , 1

2mx  in medium 1 
and 2

1mx et 2
2mx  in medium 2.   

- The voltage recording (current intensity is 
imposed and well known).   
- The electric and thermal characteristics of 
materials are supposed known, uniform and 
constant.  
- the electric contact resistance at the interface 
of the cylinder is the result of an auxiliary 
measurement.  It is used to determine ϕg. 
- Note : although the problem (1) is linear, one 
retained the principle of a numerical resolution of 
the direct problem. The discretisation of the 
equations uses the finite difference method. We 
consider the unconditionally stable scheme of 
Cranck-Nicholson.   
 
Principle of Measurement in Steady State  

In steady state, the estimation of both 
parameters is done in two stages. Initially, one 
chooses the outside temperatures θ1 and θ2 in the 
water boxes so that a significant thermal gradient 

 
 ρe 

 
(Ωm) 

λ 
 

(W/m.K) 

Cp 
 

(J/Kg.K) 

ρ  
 

(Kg/m3) 
pCa ρ

λ=  

(m²/s) 
 

pCb λρ=  

 
(W/m².K.s0.5) 

Li 
 
(mm) 

D 
 

(mm) 

TLi 
 

(°C) 

Steel  10-6 40 500 7300 1,1 10-5 12083 40 40 0 
Copper 5 10-8 320 381 8500 0,99 10-4 32192 40 40 0 

  
Table 1 : Physical properties 
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is established according to the axis of the both 
cylinders. The measurement of the steady state 
thermal field according to the axis of both 
cylinders permits to extrapolate the temperature 
jump at the interface. The knowledge of the 
thermal gradient determines the heat flow which 
crosses the interface. The RTC thus is measured.   
In the second stage, one makes circulate an 
electrical current in the device by means of a 
feeding connected on electrode A and B (figure 
1). A flux density φg  is generated at the interface 
x  = 0 seat of an electric contact resistance. 
Knowing the value of the RTC, it is easy to 
determine the value of the partition coefficient 
α.    
 
SENSITIVITY ANALYSIS  

The sensitivity coefficient of the thermal 
contact resistance will be noted SR  and that of the 
partition coefficient Sα. The sensitivity coefficient 
being defined like the derivative of the measured 
parameter compared to the parameter to estimate. 
One writes that:    

 

ct

j
R R

TS
∂
∂=  (W/m²)                                        (2a)      

  αα
∂
∂= jTS  (K)                                              (2b) 

   
SR  is a heat flux density and Sα  a temperature. 

To obtain the formulation of the sensitivity fields  
in the calculation domain which interests us, one 
successively derives the system from equations 
(1) compared to RTC and α in accordance with the 
relations (2). The equations system describing the 
sensitivity coefficient field of the RTC is similar to 

the system (1) with some differences : all the 
equations are homogeneous except the derivative 
of the equation (1e)  which, in accordance with 
(2a), is written as :  

  
( ) ( ) ( ) ( )







 −∂

∂+−=∂
∂

gRR
CT

R

x
tTtStSRx

tS αϕλλ ,0,0,01,0 1
1211

(3) 
Thus, for a material couple given, one has :   
 

),,,,( txRSS CTgRR ϕα=                                     (4)     

In the same way, the equations system 
describing the sensitivity coefficient field of α is 
similar to the system (1) except equation given by 
the derivative of (1e)  which, in accordance with 
(2b), is written as :   

 
( ) ( ) ( )

CT
g R

tStS
x

tS ,0,0,0 21
1

ααα ϕλ −=+∂
∂           (5) 

 
For a material couple given, one thus has :   
 

),,,( txRSS CTgϕαα =                                          (6) 
 
To appreciate the variations of SR  and Sα  
according to the parameters on which they 
depend, one considers a material couple. The 
numerical data of table 1 describe the 
experimental project :   
 

For the RTC, one considers a field of common 
value in the case of a dry contact metal – metal :  
10 -6  ≤ RTC  ≤ 10 -3  Km²/W.   

The field of value of φg  ranging between 10 
and 30 kW/m² is selected so that the heating of 
the control volume remains ranging between 0 
and 50 K (linear problem).  

The partition coefficient α  varies from 0 to 1.   
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Sensitivity Coefficient of the RTC. Figure 

2 shows the behaviour of SR according to the time 
at both measurement points == 2

2
1

1 mm xx 0.5 mm 
for various values of the RTC. SR  is monotonous 
increasing in time and monotonous decreasing 
according to RTC. The time scale retained in this 
calculation (10 seconds) is of the same order as 
the value of the fundamental time-constant of the 
studied thermal system. One notes that SR  has 
appreciable levels of value, about several 10 
kW/m².  For a given value of the RTC, SR  is 
maximum in steady state. The sensitivity related 
to the measurement point in copper is definitely 
lower (in absolute value) than that related to the 
measurement point in steel.   
Figure 3 shows the temporal law of SR  for RTC = 
10-4  Km²/W and three values of φg. It reveals that 
SR  is monotonous increasing according to φg. 
Figure 4 shows the temporal law of SR for RTC = 
10-4 m².K/W and three values of α. It reveals that 

SR is monotonous increasing according to α. 
We also checked that SR  is decreasing when 

the measurement points are increasingly far away 
from the interface. But for the positions domain 
prospected (a few millimetres) these variations 
are not significant in front of the mean value 
level.   
 

Sensitivity coefficient Sα. Figure 5 shows 
the sensitivity coefficient of α  on the same scale 
of time. Like SR,  Sα  is monotonous increasing in 
time and monotonous decreasing according to 
RTC.  Figure 6 shows that Sα is monotonous 
increasing according to φg. Sα  presents 
appreciable levels of value, about several Kelvins. 
There too, it is noted that the sensitivity related to 
the measurement point in copper is definitely 
lower (in absolute value) than that related to the 
measurement point in steel. 

 
ESTIMATION OF THE PARAMETERS RTC  
AND α  

The selected estimation technique is a variant 
of the Gauss – Newton method.   
 
 Principle of the Estimation Method  

Let β the vector to be estimated such as : 
( )α=β ,RTC . The estimation method is based 

on the minimization algorithm of Gauss-Newton. 
The criterion of least squares to minimize can be  
written as:   

( ) ( )[ ]
2

1

~
2
1∑

=
−=

tN

k

kk YYJ ββ                          (7) 

where kY  is the temperature vector calculated at 
time tk  at sensor locations 1

1mx  and 2
1mx . kY~  is 

the temperature measured at time t k. 
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Starting from an initial vector β0
  the algorithm 

determines at each iteration the vector βn+1 (n>0) 
given by the equation (8) : 

 
nnn β∆+β=β +1                                         (8a) 

[ ] [ ]n)n(t)n()n(tn YY~XXX −=β∆ −1   (8b) 
 
where Xn  is the sensitivity matrix computed at 
iteration n.  

The calculation of nβ∆  according to the 
equation (8)b poses the numerical problem of the 
inversion of matrix [ ])()( nnt XX  which is badly 
conditioned. This problem was regularized by 
multiplying the diagonal terms of the matrix by a 
factor ( )ε+1 , where 1〈〈ε . This operation 
introduces a bias into the final estimation. The 
value of ε is chosen to ensure an optimum 
conditioning and minimized bias.   

The other improvement made to the method 

consisted in optimizing the length of the vector 
displacement of reiterated given by the equation 
(8b). The operation consists in balancing term 

[ ] [ ]nntnnt YYXXX −
− ~)(1)()(  by a coefficient µn  

given by:  
 

( )
( )02

1
β
βµ

J
J n

n =                                                  (9) 

 
The coefficient ½ was obtained empirically. 

This refinement of the Gauss – Newton method 
permits to divide  the iteration count by a factor 
seven.   
 
Identifiability Problem 

The problem of identifiability is significant in 
this application.  Indeed α  has sense only if a 
significant heat flux is generated at the interface. 
One understands by ' significant ' the fact that 
generated heat flux is at the origin of a significant 
component of the heating which, generally in the 
case of the thermoelectric systems, is due to 
several internal and external sources. The origin 
of the generated heat flux at the interface is the 
electrical contact resistance which draws its 
substance from the electric constriction 
phenomenon. And this last is superimposed on the 
thermal constriction phenomenon. The function of 
constriction which one notes F is the same one in 
the two phenomenologies since electric and 
thermal constriction resistances, respectively REC 
et RTC, are written : 
 

σ
FRCE =   ;  λ

FRCT =                                       (10) 

 
Thus this thermoelectric coupling can induce a 
certain correlation between the thermal contact 
resistance RTC  and the partition coefficient of 
generated heat flux α. This correlation is defined 
by a correlation coefficient noted cc given by :   
 

( )
( ) ( )2211

12

XXXX
XXcc

TT

T

⋅
=                           (11) 

 
where ( )ijT XX  are the terms of the square 

matrix 2x2 XX T . 
The analysis of the curves of sensitivity for 

different geometries (in particular values of Li (i 
= 1,2)  shows that it is more interesting to carry 
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out the simultaneous estimation of RTC  and α at 
the beginning of the transient mode. Physically 
that is explained by the chronology of the thermal 
events which are the heating components related 
to each source (internal or external). The heating 
component which appears in first in the interface 
region, i.e. very close to the measurement point is 
that due to the generated heat flux at the interface. 
It is this argument which led us to consider the 
behaviour of the correlation coefficient according 
to the extent of the window of estimation that one 
will note tw. We represent this evolution of cc  on 
figure 7. And for showing the chronology of the 
thermal events well one considered 3 values of 
the external source 12 LL TTT −−=∆ . One observes on 
this figure that, whatever the value of ∆T, cc 
admits an optimal value 0.92 which always 
corresponds to the same temporal window 
covering the interval [ 0, topt = 1.1 s ].  Beyond the 
value of tw  = 7 to 8 s approximately, the curves of 
cc separate but the difference remain very weak. 
And it is only beyond ∆ T=50 K that appears a 
second minimum slightly more favourable to the 
estimation (cc = 0.915). 

Knowing that the sensitivity coefficients SR 
and Sα are functions of the interface parameters  
RTC, α  and φg, it is significant to emphasize the 
behaviour of topt according to the latter. Figure 8 
shows that the optimal estimation window is 
extended more and more according to the RTC, in 
particular beyond RTC = 10-4  K.m²/W. This 
increase of the estimation window corresponds to 
a less and less strong correlation between both 
parameters to estimate. topt  and cc are indifferent 
to the intensity of generated heat flux.   

Figure 9 reveals that topt is monotonous 
increasing according to α. It is clearly more 
sensitive to α in the domain α  >  0.5. The levels 

of value of topt  in the domain α  > 0.5 are an order 
of magnitude weaker than those observed in the 
domain α < 0.5. On the other hand cc is strongly 
sensitive to α  in the domain α < 0.5. Let us note 
here that αϕg  is the share of generated heat flux at 
the interface in the most resistive material. This 
time the increase of the estimation window is 
accompanied by an increasingly strong 
correlation between both  parameters to identify. 
It is there an opposite tendency of that observed 
on the variations according to RTC.  

Finally, the figure 10 presents the confidence 
region of the estimation according to the 
signal/noise ratio. It is still checked that the 
estimation quality is degraded according to an 
increasing amplitude of the noise. For a white 
noise of average amplitude of the order of the 
percent, the estimation of a RTC of 10-4  K.m²/W is 
accompanied by a relative inaccuracy of about 1 
%. That goes from pair with an inaccuracy on α of 
about 16 %. That is related to the geometrical 
configuration of the iso – J(β) in the (RTC, α) 
plan.   
 
CONCLUSION  

The theoretical principle of an experimental 
methodology was presented to model the thermal 
condition at the electro-thermal contact between 
two solid bodies. The modelling heat conduction 
equations at the interface involve two parameters 
which are estimated according to both steady state  
and transient analysis. These two approaches are 
different but they are based on the same 
experimental  apparatus. For the steady  state 
experiments the estimated values are directly 
issued from algebraic equations and for the 
transient experiments, an inverse method is used. 
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The results of both methods can then  be 
compared. 

The transient method is based on the 
minimization of a L-S criterion by using a Gauss-
Newton algorithm. The experimental conditions 
(cylinder sizes, heating level, sensor locations) 
have to be carefully designed in order to satisfy 
the linear assumption of the modelling equations, 
and thus to simplify the sensitivity analysis.  

Numerical experiments have shown that the 
two contact parameters to be estimated are highly 
correlated.  The  inverse analysis shows that the 
correlation coefficient can be reduced by 
choosing the time interval of measurements. The 
optimal extent of this interval is prone to the 
parameter values to be estimated. Thus for a 
given set of experimental conditions, the 
resolution of the inverse problem is performed 
using an initial guess of the couple (RTC, α). This 
choice is based on physical considerations which 
take into account different experimental variables 
like  the nature of the materials, the states of 
contact surfaces, the contact pressure. The first 
estimations can be then refined by adjusting the 
estimation time interval.  
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ABSTRACT

Adaptive multiscale estimation of a spatially

dependent di�usion function is considered.

When utilizing pressure data, the method

has been successful in identifying coarse-scale

structures of the di�usion function. In this pa-

per the method is used with pressure and uid

rate data as information sources. The estimate

is expected to be improved when additional

data is included. However, this expectation is

not always met, and in some cases the simul-

taneous use of these data types in the estima-

tion might even cause problems. The reason

for the lack of improvement is investigated to-

gether with methods for successful estimation

utilizing pressure and uid rates.

NOMENCLATURE

c Parameter vector

d Measured production data

J Objective function
~J Predicted attainable obj. function

k Absolute permeability

x Spatial coordinate vector

Greek symbols

� Standard deviation

~� Approximate standard deviation

INTRODUCTION

When producing a hydrocarbon reservoir, pro-

duction data - well pressures and uid well

rates - can be used to infer properties of the

reservoir. In this paper a porous medium con-

taining two uid phases is considered. The

equations governing uid ow in the reservoir

are of advection-di�usion type. The spatially

dependent di�usion function - the permeability

- is estimated using multiscale inversion tech-

niques.

With multiscale estimation (see e.g. [1][2][3]

[4][5][6]), the inverse problem is solved by per-

forming a hierarchical search for the right pa-

rameterization while solving a sequence of es-

timation problems with an increasing parame-

terization dimension.

With adaptive multiscale estimation [7](see

[8][9][10] for preliminary version of the method-

ology and [11] for an alternative methodology),

the new parameterization at an arbitrary stage

in the estimation sequence is such that new de-

grees of freedom are not necessarily introduced

all over the porous medium. On the contrary,

the aim is to introduce new degrees of freedom

only where it is warranted by the data.

The parameterization selection is based on a

linearization of the model output as a function

of the parameters in the permeability expan-

sion. It is therefore important that the lin-

earization assumption is valid for this method

to work properly.

Previous work [7] has shown that utilizing

the well pressure alone leads to a good esti-

mation of coarse-scale permeability structures.

Including also uid well rates in the data, one

would expect to be able to improve on esti-

mates based on well pressures only. However,

recent studies show that the expectation of im-

provement is not met. The main topic of this

paper is to �nd reasons for this and to suggest

improvements.

The paper starts by describing the forward

model and the adaptive multiscale estimation

methodology used to solve the inverse prob-
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lem. Then, examples of application of adaptive

multiscale estimation are given, utilizing pres-

sure data alone and both pressure and uid

rate data as information sources. The observa-

tions from these examples are then discussed.

Finally, productive utilization of both pressure

and uid rate data is considered.

FORWARD MODEL

The two conservation equations describing

two-phase incompressible, immiscible porous-

media ow in a gravity-free environment with

isotropic permeability are (see e.g., [12])

� (x)
@so

@t
�r � (�ok (x)rpo) = qo (x) ; (1)

� (x)
@sw

@t
�r � (�wk (x)rpw) = qw (x) : (2)

The subscripts o and w refer to the oil and

water phases, respectively, which are assumed

to be the only uid phases present. Further-

more, �i = kri (si)�
�1

i
, si is the saturation, pi

the pressure, �i the viscosity, qi the external

volumetric ow rate, and kri (si) the relative

permeability, each with respect to the ith uid

phase. The functions � (x) and k (x) are the

porosity and the absolute permeability (i.e. the

function to be estimated), respectively, of the

porous medium. In order to close the system a

completely saturated medium is assumed and

an equation of state de�ning the capillary pres-

sure, Pc, is needed,

so + sw = 1; (3)

po � pw = Pc (sw) : (4)

In addition to suitable initial and boundary

conditions, the functions �, k, kri and Pc have

to be speci�ed a priori in order to obtain mean-

ingful solutions for si and pi.

INVERSE PROBLEM

The inverse problem of �nding k through anal-

ysis of production data, when the other func-

tions are assumed known, is the topic of this

paper.

General Methodology

Generally, permeability estimation requires the

permeability to be parameterized. In this

paper this is obtained by setting kN (x) =

c
T

N
 
N
(x), where cN 2 <

N is the parameter

vector and  
N

is an N -vector of real-valued

piecewise constant basis functions spanning the

space within which k is to be estimated. Let

d 2 <
M denote the measured time series of the

production data, and let m (c) 2 <
M denote

the corresponding production data calculated

using the model equations.

The estimation problem is solved by �nd-

ing the parameter vector cest
N

2 <
N which

minimizes the objective function (output least

squares)

J (cN ) = (d�m (cN ))
T
D
�1 (d�m (cN )) ;

(5)

subject to k > 0. Here D�1 is the inverse

of the covariance of the measurement errors.

In order to solve this minimization problem

the Levenberg-Marquardt algorithm, as imple-

mented in [13], is used.

Multiscale estimation

The question of how to select the resolution,

N , for the parameter estimation problem re-

mains. The purpose of multiscale estimation is

to avoid guessing at a �xed resolution and sub-

sequently estimate all the corresponding pa-

rameters simultaneously. Multiscale estima-

tion solves a sequence of parameter estimation

problems with initial low, but increasing reso-

lution.

Several sequential estimations are per-

formed, each (from the second one) starting

from the permeability estimate from the previ-

ous estimation, but with a more detailed rep-

resentation of the permeability.

With ordinary multiscale estimation the res-

olution is gradually increased by the same

amount in the entire grid. A risk of over-

parameterization is present due to the rapid

increase in the number of new parameters.

With adaptive multiscale estimation [7] the

resolution is gradually increased only in regions

of the grid where it is expected to be pro-

ductive. The risk of over-parameterization is
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therefore reduced. Figure 1 illustrates the dif-

ference between ordinary and adaptive multi-

scale estimation.

Figure 1: Illustration of excessive parameterization

with ordinary multiscale estimation. Going from left

to right: The true permeability, ordinary multiscale

4-parameter representation, ordinary multiscale 16-

parameter representation, and a su�ciently detailed

adaptive multiscale representation.

To perform adaptive multiscale estimation,

a way to select parameterization re�nement is

needed. A description of such a method fol-

lows next. A more in-depth description of this

method is given in [7]. An alternative method

for parameterization selection is presented in

[11].

Selection of parameterization

Introduction of new parameters will reduce the

objective function value, but also increase com-

putational cost and, in general, increase the

parameter uncertainty. The parameterization

must be selected in a proper way in order to

obtain a successful result.

In order to select the most productive pa-

rameterization it would be helpful to obtain the

minimum objective function values after intro-

duction of each candidate re�nement. This is,

however, clearly unattainable due to computa-

tional costs.

To avoid this costly computation of the ob-

jective function values, the predicted attain-

able objective function value, ~J , is introduced.
~J is an approximation of min J based on a lin-

earization of m (c) and is therefore available

by analytical calculation.

~J(PQ) = �dT
�
D�1

�G
�
�d; (6)

G =
h
D�1AQ

�
AT

Q
D�1AQ

��1
AT

Q
D�1

i
; (7)

where ~J(PQ) is the predicted attainable objec-

tive function value with the parameterization

PQ, containing Q parameters. The sensitivity

matrix for the parameterization PQ is denoted

AQ, and �d is the current residual.

In order to �nd the best parameterization PQ
with Q parameters, ~J for di�erent parameteri-

zations containingQ parameters are compared.

The parameterization with the lowest ~J is the

best choice with Q parameters (local winner).

The local winners for di�erent numbers of

parameters are then compared in order to �nd

the parameterization to be used in the next

step of the estimation sequence.

Generally, an increase in the number of pa-

rameters will decrease ~J . Hence, selecting the

parameterization with the lowest ~J will intro-

duce more parameters than needed. In order to

determine the number of new parameters to be

introduced it is not optimal to have only min ~J

as criterion. A measure of the uncertainty in ~J

is needed in order to assess whether the reduc-

tion of ~J is signi�cant.

The measurement errors are random and

therefore ~J is also random. The standard de-

viation, �( ~J), of ~J can potentially be used as

a measure of the uncertainty of ~J . However,

�( ~J) is unknown. Instead we use an approxi-

mation [7], ~�( ~J), to �( ~J):

~�( ~J(PQ)) =

q
4 ~J(PQ)� 2 (M �Q) (8)

(M is the number of measurements of produc-

tion data).

An increase in the number of parameters will

reduce ~J but if ~J(PQ+1)+~�( ~J(PQ+1)) � ~J(PQ)

the reduction is not considered to be signi�cant

and PQ is the new parameterization. Figure 2

shows an example of choosing the parameteri-

zation.
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Figure 2: Example of ranking of predictions from re-

�nement analysis. The original number of parameters

is L. In this case Q=L+2, since ~JL+3 + ~�L+3 � ~JL+2

and ~JL+2 + ~�L+2 < ~JL+1.

The sequence of estimations is terminated

when the value of the objective function can

be explained by random measurement errors,

i.e. the sequence is terminated when J(PQ) <

(M �Q) +
p
2(M �Q) (see e.g. [14]). Termi-

nation is also e�ectuated whenever the crite-

rion for introduction of new parameters advises

against introducing more parameters.

APPLICATION OF ADAPTIVE MUL-

TISCALE ESTIMATION

The numerical examples are performed on a

square horizontal reservoir with constant thick-

ness and no-ow outer boundaries (see [7]).

For the simulation, the reservoir is divided into

16x16 grid blocks. Water is injected at a con-

stant and equal rate from wells located in grid

blocks (2,2),(2,15) and (15,2). Oil and water

are produced at constant pressure from a well

located in grid block (15,15). The reservoir is

initially fully saturated with oil. Table 1 shows

the properties of the uids and the reservoir.

Table 1: Fixed reservoir and uid properties.
Reservoir dimensions 150m�150m�10m

Water viscosity �w = 1:0 � 10�3Pa�s

Oil viscosity �o = 1:3 � 10�3Pa�s

Water rel. perm. krw = s2
w

Oil rel. perm. kro = s2
o

Capillary pressure Pc(sw) � 0kPa

Data for the history matching are generated

by adding uncorrelated Gaussian noise to a set

of pressure and rate data calculated using a se-

lected permeability pro�le (the true permeabil-

ity). The noise level in the data, represented

by the standard deviation, is 0.25 per cent of

the total production rate for the oil and water

rate data, and between 0.3 and 1.7 per cent

of the pressure di�erence between the injection

and production wells for the pressure data.

For the estimations the time series of data

contain 400 observations of pressure in each

injection well, and 400 observations of oil and

water rates in the production well when rate

data are used. The time of observations ranges

from the start of the injection and until 0.625

pore volumes are injected.

Estimating with pressure data

In [7] it was found that adaptive multiscale esti-

mation of coarse-scale permeability structures

was successful when utilizing pressure data

as the only information source (P-estimation).

This is illustrated for the true permeability kt1
given in �gure 3.

 40
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Figure 3: The true permeabilities going from left to

right: kt1, kt2, kt3 and kt4. The gray scale represents

the permeability in mD (the same scale will be used

in the rest of the paper.). White dots indicate well

positions.

The estimation sequence for kt1 is given in

�gure 4. The permeability is not completely

recovered, but the coarse-scale variations are

identi�ed.

Examples of other true permeabilities (kt2,

kt3 and kt4) successfully estimated with P-

estimation are given in �gure 3. kt2 and kt3
where completely recovered with P-estimation,

while coarse-scale variations in kt4 was recov-

ered [7].
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Figure 4: The P-estimation sequence for kt1. In this

example the entire estimation sequence is shown, for

other examples only the �nal estimates will be shown.

Estimating with pressure and uid rate

data

In this section pressure data and uid rate data

are both utilized in order to do the estimation

(PR-estimation). There are potentially di�er-

ent information content in the di�erent data

types. The information quality may vary from

data type to data type, but di�erent data types

may also contain information about di�erent

features of the reservoir. More data points is

expected to produce better estimates.

PR-estimation of kt1 produces the �nal es-

timate given in �gure 5. The expectation of

Figure 5: The PR-estimate.

a better estimate is not met. On the con-

trary, the result is clearly way o�, and hence

much worse than the estimate obtained by P-

estimation.

PR-estimation of kt2 through kt4 produces

results which are fairly good, but in no cases

better than results obtained with P-estimation.

The next two sections discuss potential rea-

sons for the lack of improvement in the esti-

mates when performing PR-estimation, and al-

ternative ways of performing PR-estimation.

DISCUSSION OF OBSERVATIONS

We will discuss the observations with respect

to model nonlinearity and with respect to data

weighting.

Model nonlinearity

The parameterization selection depends on a

linearization of the model function so it is a

prerequisite that the model function does not

have large nonlinearity.

If the nonlinearity of m(c) with PR-

estimation is systematically higher than the

nonlinearity with P-estimation it might explain

the lack of improvement.

Curvature measures of nonlinearity,

�h = kmhhk=kmhk
2; (9)

where m is the model function and subscripts

h and hh denotes the �rst and second order di-

rectional derivatives in parameter space, can be

used to quantify model nonlinearity (for a more

thorough discussion of curvature measures see

[15]).

A relative curvature is de�ned as h = �h�,

where � is a normalizing factor such that h �

1 corresponds to a (close to) linear model.

The most suitable choice of � may vary

from problem type to problem type. Bates

and Watts [15] investigated a di�erent problem

type than ours, so their suggestion of normal-

izing factor can not be used here [16]. We are

using � = kA�~ck�1, where A is the sensitivity

matrix and �~c the step corresponding to the

\linearized minimum" ~J [16].

It is also a question whether curvatures in all

directions should be taken into account or only

curvatures for directions close to �~c.

The following di�erent curvature measures

have been tested:

g = max
h

khk=1

h (10)
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and

g
 = max
h2


khk=1

h (11)

where 
 � <
Q, such that 8b 2 
; �~c

T
b

k�~ck kbk
�

f . (In this paper f = 0:86.)

Both these curvature measures show similar

trends when applied to the data. Only results

with g
 are therefore given.

For kt1 the range of g
 is from 1 to 11 when

performing P-estimation. There is an increase

in the nonlinearity when the number of param-

eters increase. Trying to estimate this case by

PR-estimation gives a range of curvatures from

3 to 33. The numbers can not be compared

directly since they are obtained from di�erent

parameter spaces.

For kt2 the ranges are 1 to 23 for the P-

estimation and 1 to 17 for the PR-estimation.

The other cases give similar results for the cur-

vature.

PR-estimation and P-estimation both start

with the same parameterization (a single pa-

rameter). At some point in the estimation

sequence PR-estimation results in a di�erent

choice of parameterization than P-estimation.

The nonlinearity at this particular point is

potentially of special interest, since one may

argue that PR-estimation selects a non opti-

mal parameterization exactly there. However,

there is not much di�erence in the curvature

at such points. The small di�erence that ex-

ists, however, seems always to be favorable to

the P-estimation case. It is di�cult to decide

whether this is a coincidence or a small e�ect

of nonlinearity problems with PR-estimation at

these choices of parameterizations.

Based on the curvature measure values ob-

tained, it can not be concluded with certainty

that increased nonlinearity is the reason for the

lack of improvement of PR-estimations com-

pared to P-estimations.

Weighting of the di�erent data types

The information content in the di�erent data

types may, as mentioned earlier, vary. Weight-

ing the data according to the measurement er-

rors (as in eq. 5) might therefore not be the

best choice.

Figure 6 shows an example where production

data with di�erent measurement error magni-

tudes have been used. The only di�erence be-

tween the sets of data are the noise level added

to the production data. The result is that for

estimation sequences performed on these cases,

di�erent relative weighting of the data types

is applied since the data are weighted accord-

ing to the measurement errors. This example

shows that the relative weighting is important

for the �nal result. This is also observed in

other examples.

Figure 6: Example showing the importance of the

relative weights. Going from left to right: The true

permeability, the estimate with high relative weight on

pressure, the estimate with high relative weight on uid

rates, and the estimate with the best weighting found

(in this case approximately equal weight on pressure

and rates) are shown. Wells in grid blocks (2,2), (23,2)

and (11,23) are injection wells while the others are pro-

duction wells.

It is seen that the measurement errors on

each data type are not always an indication

of the optimal way of weighting the data in

the estimation. The problems observed with

PR-estimation are potentially explained by the

weight on each data type not being optimal.

POTENTIAL REMEDIES

Optimal weighting

Figure 6 showed an example where the relative

weighting had been varied by varying the noise

added to the real production data. In real life

the measurement errors and noise exist in the

data, and the assignment of relative weight has
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to be done subsequently to the acquisition of

the data. Finding the optimal weighting, sub-

sequently to the acquisition of the data, might

be a potential remedy.

Utilizing the best relative weight of the dif-

ferent data insures the result to be at least

as good as the estimate from either data type

alone (in many cases a lot better). There is

a catch though: The best weighting has to be

found from case to case. It is case dependent

and not only dependent on the types of data

used.

Sequential integration of pressure and

rate data

Instead of introducing the di�erent data types

in the estimation sequence simultaneously,

they can be introduced sequentially. The uid

rate data are introduced after the P-estimation

sequence has ended. A PR-estimation se-

quence is started at the point where the P-

estimation ended to see if pressure and rate

data contain additional information that can

be utilized.

Potentially, this method will perform at least

as good as the P-estimation. If the uid rate

data contain information about variation on

�ner scale it might improve the estimate.

The results for kt1 from such an estimation

are given in �gure 7. In this sequential PR-

Figure 7: The �nal estimate with sequential PR-

estimation is shown to the right. The result from P-

estimation is shown to the left for comparison (see also

�gure 4).

estimation the �nal estimate is an improve-

ment compared to the P-estimation, since it

has a parameterization that is closer to resolv-

ing the true permeability completely. It is,

however, to early in the development of sequen-

tial PR-estimation to say if this method always

is preferable to P-estimation.

SUMMARY

Adaptive multiscale estimation for solving the

inverse problem of estimating the permeabil-

ity from production data has been considered.

Earlier [7], the method has proved successful

in utilizing pressure data in estimating coarse-

scale permeability variations.

Applying the method introducing pressure

and uid rates simultaneously in the estimation

sequence did not give the expected improve-

ment in the estimates.

Possible reasons for the lack of improvement

have been discussed. It can not be concluded

that the model nonlinearity of the combined

pressure and uid rate data is to blame for the

lack of improvement. However, the weighting

of the di�erent data types may be important

for the estimation result.

Potential remedies are suggested in order to

apply pressure and uid rates in a manner giv-

ing an improved estimate. The obvious choice

of �nding the optimal weighting of the data

types have some potential, but it is di�cult

to apply in real life since the optimal weights

are case dependent. Sequential introduction of

the data types has been tested and found to

be a potential practical method for obtaining

improved estimate from pressure and uid rate

data.
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ABSTRACT 

This paper deals with the solution for the 
inverse problem of simultaneously estimating 
moisture content and temperature-dependent 
moisture diffusivity, together with thermal 
conductivity, heat capacity, density and phase 
conversion factor of a drying body, as well as 
boundary condition coefficients, by using only 
temperature measurements. Two different 
physical problems, convective and contact drying, 
are examined and compared. 

The present parameter estimation problem is 
solved with the Levenberg-Marquardt method of 
minimization of the least-squares norm, by using 
simulated experimental data. The temperature 
responses during drying are obtained with a 
numerical solution of the non-linear one-
dimensional Luikov's equations. As a 
representative drying body, a mixture of bentonite 
and quartz sand with known thermophysical 
properties has been chosen. Analyses of the 
sensitivity coefficients and of the determinant of 
the information matrix are presented. 
 
NOMENCLATURE 

a = water activity 
c = heat capacity, J/K kg  
C = concentration of water vapor, kg/m3 

D = moisture diffusivity, m2/s 
h = heat transfer coefficient, W/m2K 
hD = mass transfer coefficient, m/s 

   ∆H = latent heat of vaporization, J/kg 
I = identity matrix 

jm = boundary mass flux, kg/m2 s 
jq = boundary heat flux, W/m2  
J = sensitivity matrix 
k = thermal conductivity, W/mK 
L = flat plate thickness, m 
ps = saturation pressure , Pa 
P = vector of unknown parameters 
q    =   applied heat flux, W/m2 
t = time, s 
T = temperature, 0C 
T = vector of estimated temperatures, 0C 
V = velocity, m/s 
x = spatial coordinate, m 
X = moisture content (dry basis), kg/kg db 
Y = vector of measured temperatures, 0C 

     δ = thermo-gradient coefficient, 1/K 
ε = phase conversion factor 
σ = standard deviation 
µ = damping parameter 

      ρ = density, kg/m3 
  ϕ = relative humidity 
 

Subscripts 
a = drying air 
s = dry solid 

 
INTRODUCTION 

Drying of hygroscopic capillary-porous bodies 
is a complex process of simultaneous heat and 
moisture transport within the material and from 
its surface to the surroundings, caused by a 
number of mechanisms. There are several 
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different methods of mathematically modeling the 
drying process. In the approach proposed by 
Luikov [1], the drying body moisture content and 
temperature field are expressed by a system of 
two coupled partial differential equations. The 
system of equations incorporates coefficients that 
must be determined experimentally. The main 
problem is the determination of the moisture 
diffusivity connected with the difficulty of 
moisture content measurements. Local moisture 
content measurements are practically unfeasible 
especially for small drying objects. Standard 
drying curves measurements (body mean 
moisture content during drying) are complex and 
have low accuracy. 

Dantas et al [2, 3, 4] and Kanevce, Kanevce 
and Dulikravich [5, 6, 7, 8] recently analyzed the 
application of inverse analysis approaches to the 
estimation of thermophysical properties of drying 
bodies. The main idea of the applied methods was 
to take advantage of the relation between the heat 
and mass (moisture) transport processes within 
the drying body and from its surface to the 
surrounding media. Then, the estimation of the 
thermophysical properties of the drying body 
could be performed on the basis of accurate and 
easy-to-perform thermocouple temperature 
measurements, by using an inverse analysis 
approach. Kanevce, Kanevce and Dulikravich [5, 
6,7,8] analyzed this idea by using the temperature 
response of a body exposed to convective drying, 
while Dantas et al [2, 3, 4] examined contact 
drying experiments. 

The objective of this paper is to compare these 
two kinds of experiments for the estimation of the 
thermophysical properties of a drying body. In 
order to perform this analysis, the sensitivity 
coefficients and the determinant of the 
information matrix were calculated. 

 
A MATHEMATICAL MODEL OF DRYING 

Two different physical problems, convective 
and contact drying, are analyzed here. In the 
convective drying experiment (Fig. 1) the 
boundaries of the drying body are in contact with 
the drying air, thus resulting in a convective 
boundary condition for both temperature and 
moisture content. In the contact drying 
experiment (Fig. 2), one of the boundaries of the 
one-dimensional body is in contact with a heater. 
That boundary is impervious to moisture transfer. 
The other boundary is in contact with the dry air, 
thus resulting in a convective boundary condition. 
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Fig. 1. Scheme of the convective drying 
experiment 
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Fig. 2. Scheme of the contact drying experiment 
 
 
An infinite flat plate of the capillary porous 

material with negligible shrinkage has been 
considered in both kinds of experiments examined 
here. 

The system of equations for energy balance 
and moisture transport can be expressed [1] as 
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where T(x,t) and X(x,t) are the unsteady 
temperature and moisture content fields, 
respectively. From previous experimental and 
numerical examinations of the transient moisture 
and temperature fields [9] it was concluded that, 
for practical calculations, the influence of the 
thermo-gradient coefficient, δ, is small and can be 
ignored. It was also concluded that this system of 
coupled partial differential equations can be used 
by treating the transport coefficients as constants, 
except for the moisture diffusivity, D. 
Consequently, the resulting system of equations 
for temperature and moisture content prediction 
becomes 
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As initial conditions, uniform temperature and 

moisture content profiles are assumed, that is, 
 

0,)0,(,)0,( 00 === tforXxXTxT  (5)
 
The boundary conditions on the body surface 

exposed to convection, at x = L, are 
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where the convective heat flux, jq(t), and mass 
flux, jm(t), are given respectively by 

 
( )

( )aLxDm

Lxaq

CChj

TThj

−=

−=

=

=  (7)

 
The water vapor concentration in the drying 

air, Ca , is calculated by 
 

)]273(9.461/[)( += aasa TTpC ϕ  (8)
 

The water vapor concentration of the air in 
equilibrium with the surface of the body exposed 
to convection is calculated by 
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The water activity, a, or the equilibrium 

relative humidity of the air in contact with the 
convection surface at temperature Tx=L and 
moisture content Xx=L, is calculated from 
experimental water sorption isotherms. 

In the case of the convective drying 
experiment the problem is symmetrical and 
boundary conditions on the mid-plane of the plate 
(x = 0) are given by: 
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In the case of the contact drying experiment 
the boundary conditions at the surface x = 0, in 
contact with the heater that provides the heat flux 
q, are: 
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ESTIMATION OF PARAMETERS 
The estimation methodology used is based on 

minimization of the ordinary least square norm 
 

)]([)]([)( PTYPTYP −−= TE  (11)
 
Here, YT = [Y1,Y2, … ,Yimax] is the vector of 

measured temperatures, TT(P) = [T1(P), T2(P), … 
Timax(P)] is the vector of estimated temperatures at 
time ti  (i = 1, 2, …, imax), PT = [P1,P2, … PN] is 
the vector of unknown parameters, imax is the 
total number of measurements, and N is the total 
number of unknown parameters (imax ≥ N). 

A version of Levenberg-Marquardt’s method 
was applied for the solution of the present 
parameter estimation problem [10]. This method 
is quite stable, powerful, straightforward and has 
been applied to a variety of inverse problems. It 
belongs to a general class of damped least square 
methods [11]. The solution for the vector P is 
achieved with the following iterative procedure 
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(12) 

where the superscript r denotes the number of 
iterations and the sensitivity matrix is given by: 
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Near the initial guess, the problem is generally 

ill conditioned so that a large damping parameter 
is chosen, thus making the term µI large as 
compared to the term JTJ. The term µI damps 
instabilities due to ill-conditioned character of the 
problem. Hence, the matrix JTJ is not required to 
be non-singular at the beginning of iterations and 
the procedure tends towards the slow-convergent 
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steepest descent method. As the iteration process 
approaches the converged solution, the damping 
parameter decreases and the Levenberg-
Marquardt method tends towards Gauss’ method. 
The iterative procedure of the Levenberg-
Marquardt method is stopped when the ordinary 
least squares norm, E(P) is sufficiently small, or if 
the norm of the gradient of E(P) is small enough, 
or if the changes in the vector of parameters are 
very small [13]. 

 
RESULTS AND DISCUSSION  

For the direct problem solution, the system of 
equations (3) and (4) with initial conditions given 
by equations (5) and boundary conditions given 
by equations (6) and (10a) (or 10.b), has been 
solved numerically for a model material [5], 
involving a mixture of bentonite and quartz sand, 
with the following experimentally determined 
thermophysical properties [9]: ρs  = 1738 kg/m3,  
∆H = 2.31x 106 J/kg, c = 1550 J/K kg db,  
k = 2.06 W/m K and ε = 0.5.  

The experimentally obtained desorption 
isotherms of the model material are given by the 
following empirical equation [9]: 
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where the water activity, a, represents the relative 
humidity of the air in equilibrium with the drying 
object at temperature, T, and moisture content, X. 

The following empirical expression can 
describe the experimentally obtained relationship 
for the moisture diffusivity of this material 
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where DX  = 9.0x10-12 and DT  = 10. 

In the inverse problem investigated here, the 
values of DX, DT, ρs, c, k, ε, h and hD are regarded 
as unknown for the convective drying experiment. 
For the contact drying experiment there is one 
additional unknown parameter, the applied heat 
flux, q. All other quantities appearing in the direct 
problem formulation were assumed to be exactly 
known.  

For the estimation of these unknown 
parameters, the transient readings of a single 
temperature sensor, located at the position x = 0, 
were considered available for the inverse analysis. 
Simulated experimental data were used in this 

work. Such data were obtained from the 
numerical solution of the direct problem 
presented above, by treating the values and 
expressions for the material properties as known. 
In order to simulate real measurements, normally 
distributed errors, with zero mean and constant 
standard deviation σ, were added to the numerical 
temperature responses. 

 
Convective drying experiment 

The vector of unknown parameters in the case 
of the convective drying experiment is 

 

PT = [Dx , DT , ρs, c, k, ε, h, hD] (16)
 
The possibility of simultaneously estimating 

the moisture content and temperature dependent 
moisture diffusivity, together with other 
thermophysical properties of the model material, 
as well as the heat and mass transfer coefficients 
in the convective drying experiment, by using 
only temperature measurements, was already 
investigated in [8]. Here, we will outline the main 
conclusions and results. 

Following the conclusions of previous works 
[6, 7] the selected drying air bulk temperature, 
speed, and relative humidity were taken as Ta = 
80 OC, Va = 10 m/s and ϕ = 0.12, respectively.  

The analysis of the sensitivity coefficient has 
been carried out for a plate of thickness 2L = 6 
mm, with initial moisture content of X(x,0) = 0.20 
kg/kg db and initial temperature T(x,0) = 20OC. 
Figure 3 shows the relative sensitivity coefficients 
Pj∂T/∂Pj, with respect to all unknown parameters, 
j = 1, 2,…,8. 
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Fig.3. Relative sensitivity coefficients for the 

convective drying experiment 
 
The temperature sensitivity coefficient with 

respect to the phase conversion factor, ε, is very 
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small. This indicates that ε cannot be estimated in 
this case. The relative sensitivity coefficients with 
respect to the dry material density, ρs, and the 
convection heat transfer coefficient, h, are 
linearly-dependent. This makes it impossible to 
simultaneously estimate ρs and h. Due to these 
reasons and to the fact that the density of the dry 
material can be relatively easily determined by a 
separate experiment, the density of the dry 
material was assumed as known for the inverse 
analysis.  

The relative sensitivity coefficient with 
respect to the thermal conductivity, k, is very 
small, except for the moment when the body 
moisture content is nearly equal to its equilibrium 
value. This is also a moment when a small 
evaporation rate and a fast body temperature 
increase occur. Temperature measurements of a 
single thermocouple do not make it possible to 
estimate the thermal conductivity, if the initial 
guess is higher than the exact value of the 
parameter. For the cases when the initial guess for 
thermal conductivity is smaller than the exact 
value, the estimation of the thermal conductivity 
by a single thermocouple temperature response of 
a thin drying plate is possible.  

An analysis of the determinant of the 
information matrix JTJ with normalized elements 
confirms the previous conclusions. Figure 4 
presents transient variations of the determinant of 
the information matrix if five, (DX, DT, c, h, hD), 
six, (DX, DT, c, h, hD, ρs), seven, (DX, DT, c, h, hD, 
ρs, k), and eight, (DX, DT, c, h, hD, ρs, k, ε) 
parameters are simultaneously considered as 
unknowns. 

Based on the foregoing analyses of the 
sensitivity coefficients and of the determinant of 
the information matrix, we now consider as 
unknown parameters for the inverse problem the 
moisture diffusivity parameters, DX and DT, the 
specific heat, c, the convection heat transfer 
coefficient, h, and the convection mass transfer 
coefficient, hD. For the solution of such a 
parameter estimation problem with the 
Levenberg-Marquardt method, we use simulated 
measurements of a single thermocouple, with 
different levels of random errors, including σ = 0 
(errorless measurements), 0.2 and 0.5 OC. Table 1 
shows the parameters estimated for these different 
levels of random error. For comparison, the exact 
values for the parameters are also shown in this 
table. The obtained results show good agreement 
between the estimated and exact values for the 

parameters. For measurements with a standard 
deviation of 0.5 oC, the maximum relative error 
between estimated and exact values is of 4.4% for 
hD, but for the other parameters such an error is 
smaller than 1%.  
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Fig.4. Determinant of the Information Matrix 
 
Contact drying experiment  

The vector of unknown parameters in the case 
of the contact drying experiment is 
 

PT = [Dx , DT , ρs, c, k, ε, h, hD, q] (17)
 

The analysis of the sensitivity coefficients has 
been carried out for an infinite flat plate with 
initial moisture content of X(x,0) = 0.20 kg/kg and 
initial temperature T(x,0) = 20.0 OC. The 
possibility of simultaneously estimating the 
moisture content and temperature-dependent 
moisture diffusivity together with other 
thermophysical properties of the model material, 
as well as the heat and mass transfer coefficients 
and the applied heat flux, has been investigated 
for a variety of boundary conditions and 
dimensions of the drying body.  

The drying air bulk temperature, Ta, was 
varied between 20 and 80 OC, the drying air 
velocity, Va, between 3 and 10 m/s, the applied 
heat flux, q, between 1000 and 5000 W/m2 and 
the plate thickness L, between 3 and 6 mm. The 
relative humidity of the drying air was ϕ = 0.12. 
The best combination of the relative temperature 
sensitivity coefficients with respect to all 
unknown parameters, was obtained with Ta =  
20 OC, Va = 10 m/s, q = 3000 W/m2 and L = 3 
mm.  
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Table 1. Estimated parameters in the convective drying experiment 
Parameters Exact  Estimated  Relative errors 

  σσ = 0 σσ = 0.2 OC σσ = 0.5 OC for σσ = 0.5 [%] 
DX  x 1012 [m2/s] 9.00 8.99 9.04 9.06 0.7 
DT  10.0 10.0 9.999 10.1 1.0 
c [J/K kg] 1550 1551 1550 1551 0.1 
h [W/m 2 K] 83.1 83.1 83.2 83.3 0.2 
hD x 102 [m/s] 9.29 9.29 9.12 8.88 4.4 
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Fig.5. Relative sensitivity coefficients for the 

contact drying experiment 
 
Figure 5 shows the relative sensitivity 

coefficients Pj∂T/∂Pj, with respect to all unknown 
parameters. It can be seen that the relative 
sensitivity coefficients with respect to the applied 
heat flux, the dry material density and the 
convection heat transfer coefficient are much 

larger than the other sensitivity coefficients. Due 
to the same reasons underlined in the case of 
convective drying experiment, the phase 
conversion factor and the dry material density 
were taken as known quantities for the cases 
examined below. 

Figure 6 presents the transient variation of the 
determinant of the information matrix if nine, 
(DX, DT, c, ρs, k, ε, h, hD, q), seven, (DX, DT, c, k, 
h, hD, q), six, (DX, DT, c, h, hD, q) and five (DX, 
DT, h, hD, q) parameters are simultaneously 
considered as unknown. Elements of the 
information matrix were defined for a large, but 
fixed number of transient temperature 
measurements (501 in these cases) [13]. The 
maximum determinant of the information matrix 
corresponds to the drying time when equilibrium 
moisture content and temperature profiles have 
been reached, as can be seen in figures Fig. 7 and 
8. 
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Table 2. Estimated parameters in the contact drying experiment 
 Estimated values  

Parameters Exact 
values 

Initial 
guesses σσ = 0 σσ = 0.5 σσ = 0.5 σσ = 0.5 

Relative errors 
for σσ = 0.5 [%] 

DX x1012 [m2/s] 9.00 11.00 9.00 9.049 9.063 9.041 0.5 
DT  10.0 12.0 10.0 9.904 9.806 9.874 1.3 
c [J/K kg] 1550 1300 1550 - 1533 1531 1.2 
k [W/m K] 2.06 2.70 2.06 - - 2.12 2.9 
h [W/m 2 K] 68.7 80.0 68.70 68.697 68.64 68.59 0.2 
hD⋅x 102 [m/s] 6.94 8.00 6.94 6.90 6.89 6.82 1.7 
q [W/m2] 3000 3500 3000 3000 2997 3003 0.1 
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Fig.7. Transient moisture content and temperature 

profiles in the case of the contact drying 
experiment 

 
Table 2 shows the estimated parameters for 

σ=0.5, for 5, 6 and 7 unknown parameters. For 
comparison, the values of exact parameters and 
the values estimated with errorless  (σ=0) 
temperature data are shown in this table. Table 2 

also shows the initial guesses used for the 
Levenberg-Marquardt method, as well as the 
relative errors for the case involving the 
estimation of 7 unknown parameters. Estimated 
values of similar accuracy have been obtained 
with other initial guesses. If the dry material 
density and the phase conversion factor are 
considered as known, the remaining seven (DX, 
DT, c, k, h, hD, q), parameters can be 
simultaneously estimated with relative errors 
within 2.9%. The accuracy of computing the 
parameters in the case when six (DX, DT, c, h, hD, 
q) parameters were simultaneously estimated was 
within two percent. In the case of simultaneous 
estimation of the moisture diffusivity and the 
boundary conditions parameters, (DX, DT, h, hD, 

q), the relative errors of the computed parameters 
were within one percent. 
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CONCLUSIONS 
The use of two types of experiments, 

convective and contact drying, for the solution of 
the inverse problem of simultaneous estimation of 
thermophysical properties of a drying body 
together with the boundary condition parameters, 
by using only temperature measurements, has 
been analyzed in this paper.  

Values of two moisture diffusivity parameters, 
the dry material density, the thermal conductivity, 
the specific heat, the phase conversion factor, the 
convection heat transfer coefficient and the mass 
transfer coefficient were regarded as unknown 
quantities in the convective drying experiment. In 
the contact drying experiment an additional 
unknown parameter, the applied heat flux, was 
taken into account.   

In the convective drying experiment based on 
a single thermocouple transient response, it is 
possible to estimate simultaneously five of the 
eight unknown parameters: the two moisture 
diffusivity parameters, the specific heat, the 
convection heat transfer coefficient and the mass 
transfer coefficient. 

In the contact drying experiment it is possible 
to estimate simultaneously seven of the nine 
unknown parameters: the two moisture diffusivity 
parameters, the specific heat, the thermal 
conductivity, the convection heat transfer 
coefficient, the mass transfer coefficient and the 
applied heat flux.  

The application of the convective or contact 
drying experiment for the estimation of the 
thermophysical properties of the drying body 
primarily depends on the available experimental 
setup; but the use of the contact drying 
experiment allows for the estimation of the 
thermal conductivity together with the other 
parameters.  
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ABSTRACT
The experimental technique based on the

established periodic regime of heat transfer is
applied for characterization of semi-transparent
materials (STM). The direct model for the time
dependent conductive and radiative transfer
coupled problem is analytical. The noisy
experimental signal consists in phase lag
evolutions versus frequency of excitation. They
have been obtained through a system based on a
modulated heat flux supplied by a laser that
impinges on various glasses samples. The
identification process is made by minimizing the
cost functional of the squared residuals between
measured and calculated phase lag, using either
direct or stochastic algorithms. The results show
that thermal diffusivity estimations match the
values obtained with the flash method.
Concerning possible estimation of the two
additional parameters introduced by the radiative
transfer, especially of an “average” extinction
coefficient, one shows that even though such goal
is accomplished in most cases, it is not feasible
for the important case from an experimental point
of view of small optical thickness, for which the
two parameters are highly correlated. Neither
deterministic nor stochastic algorithms are shown
to yield trustable results in such ill-posed
conditions.

NOMENCLATURE

e thickness of the sample
f* dimensionless frequency = f tc

h heat exchange coefficient
k thermal conductivity
n gray index of refraction

NPl Planck number = kβ/4n²σ 3
0T

tc characteristic time of conduction = e²/α
T0 reference temperature of the sample
α thermal diffusivity
β spectrally averaged (mean) extinction

(absorption) coefficient / parameter vector
εi emissivity of boundary i
ϕ phase lag variable (rad)
φ heat flux density (W/m²)

σ Stefan-Boltzmann constant / standard
deviation (Std Dev)

τ0 optical thickness = β e
ω pulsation of excitation = 2πf
^ / ¯ upperscripts for estimated / averaged values

INTRODUCTION
Characterizing a glass in view of heat transfer

modeling generally means first to measure the
true thermal (or phononic) diffusivity and/or its
conductivity in distinct thermal experiments, and
secondly to measure the spectrally dependent
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absorption coefficient and refractive index in
optical experiments. In this paper, we are looking
for establishing whether or not a single thermal
experiment could lead simultaneously to the
correct thermal diffusivity as well as to some
spectrally averaged or mean absorption
coefficient. The interest would be to reduce
properties data base of glasses only to
temperature dependent mean absorption
coefficient that may be used with sufficient
accuracy in gray modeling of more complex
processes. It may also be used for the
qualification of ceramic thermal barriers at high
temperatures by comparative measurements. One
previous attempt to reach such an objective has
been carried out by Schatz and Simmons [1], for
optically thick samples and low frequency
temperature waves.
It has been shown already [2] that the flash
method is able to provide a correct measurement
of the single phononic diffusivity. Therefore, the
thermal diffusivities measured on pure silica and
Zinc Selenide (ZnSe) with flash method will
provide reference estimations. A theoretical
stochastic analysis of the parameter estimation
problem (PEP) [3], has shown that firstly, the
modulated technique can lead to a good
estimation of the phononic diffusivity and
secondly, that retrieving mean absorption
coefficient estimations is possible in most cases
but very difficult in the important experimental
case of small optical thickness. Real experimental
measurements obtained at the solar oven of
Odeillo (France) have been used for inverse
recovering of the parameters of the model and
confirm the results previously obtained.

DIRECT MODELS
When PEP is applied to real measurements,

the experimentalist will most certainly benefit
from developing more than one direct model. The
objective reason for this is that generally, the
physics of the mechanisms at hand and the
hypothesis made on the problem may lead to
asymptotic behavior and/or to various idealized
conditions respectively. Therefore, the size of the
unknown parameter vector can change, the
combination of the various parameters can be
different (e.g. when dimensioned or
dimensionless models are considered) which may
change the nature of the PEP by affecting the
parameter sensitivities. Parameter or model
reduction may then be readily applied as needed
in the identification process. This kind of driving

thought is applied here and three direct models
are presented next.
• The first direct model (DM1) is obtained when
considering an opaque material. This model can
be useful to handle data obtained on very thin
semi-transparent materials having high reflective
opaque boundaries (e.g. 10 µm coating of gold).
In this case, the radiative transfer is weakened to
approach a zero heat flux and heat is transferred
by conduction only. As a consequence, only the
thermal diffusivity can obviously be estimated.
• The second model (DM2) is obtained when a
pure scattering media is considered towards the
radiative intensity exchange. In this case, the
radiative transfer is uncoupled from the
conductive one. It is also the model appropriate
for a material layer of weak absorption when a
direct radiative exchange may be preponderant
between the two frontiers (radiative equilibrium).
• The third model (DM3) is for the more general
case of coupled conductive and radiative heat
transfer.

All three models are analytical, derived using
the quadrupole method, and are briefly described
here. For a more detailed description, see [4] for a
general overview of the quadrupole method and
[3] for the specific details concerning the problem
under analysis in the present work. In what
follows, the temperature variable θ  corresponds

to the variations of the absolute temperature T~

with respect to the reference temperature T0:

0TT
~

−=θ
q In the case of DM1, it can be readily derived
that in a periodic steady-state regime, one can
look for a solution involving the complex

amplitude )),z(jexp(),z(A),z(* ωϕ−ω=ωθ  of

the complex temperature )tjexp(T ** ωθ= ,
which derives from the solution of the
transformed one dimensional time dependent heat
equation

*2*
2

*2 j

dz

d
θγ=θ

α
ω

=
θ

(1)

A and ϕ denotes respectively the magnitude
(modulus) and phase lag of the complex

temperature *θ . Equation (1) can also be seen as
the Laplace transform of the heat equation where
the Laplace variable has been substituted by the
pure imaginary number jω. When the knowledge
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of entire temperature field is not necessary, one
can use the quadrupole method [4] to obtain an
intrinsic solution of (1), formulated in terms of a
matrix transfer QC linking the input and output
vectors, i.e. temperature and heat flux density.
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where Ac = Dc = cosh(γe), Bc = (1/kγ) sinh(γe),
 Cc = kγ sinh(γe). In the case where heat losses are
considered on both sides of the sample, Ohm’s
law gives rise to ** )h/1( φ=θ  which leads, with

the quadrupole method, to a simple matrix
product (quadrupoles in cascade):
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Finally, specifying the input flux as φ=φ*
i ,

amplitude of the modulated excitating flux whose
phase is equal to the reference 0, origin of any

phase lag, and the output flux *
oφ  as being equal

to 0 (no back surface heat source), the model
DM1 for the temperature evolution of the rear
face is

)(Ceq

*
o ω

φ=θ (4)

with Ceq = Cc+2Ac/h+Bc/h² , being the coefficient
C of the equivalent quadrupole resulting from the
above matrix product.

q In the case of DM2, one has just to connect a
radiative resistance Rr in parallel to the
conductive quadrupole QC. The expression of this
resistance (in dimensionless form) can be easily
derived from any textbook on radiative transfer
and looks like







−

ε
+

ε
+β

σ
= 1

11
e

Tn4

e/k
R

21
3
0

2r (5)

This leads to a quadrupole matrix Q2 whose
coefficients are respectively  A2 = D2 = (Bc + Rr

Ac) / (Bc+Rr) , B2 = RrBc  / (Bc+Rr) ,  C2 = (2 (Ac –

1) + RrCc) / (Bc+Rr) . In this case the radiative
transfer adds only one additional parameter to the
problem. In the case of perfectly reflecting walls,
Rr tends to infinity which means that no heat flux
can be exchanged by radiation and DM2 reduces
to DM1.

q In the case of DM3, it has been shown [4]
that a quadrupole matrix may be obtained as a
transfer function of a STM layer where coupled
conductive and radiative transfer takes place,
when the two following conditions hold. First,
one linearizes the heat transfer about the reference
temperature T0 of the experiment. This means that
the emission terms of the blackbody function, in
the 4th power of the temperature are linearized

through θ=θ 3
0

4 T4 , so that the radiative flux

only involves the 1st order of the temperature.
This condition holds when a maximum of 50 K of
temperature differences between two different
locations inside the STM sample is considered.
This is the case in our experiments. The second
condition for which this analytical model can be
derived is the approximation of the exponential
integral functions of the radiative flux equation by
pure exponentials of the form A exp(-Bx). This is
named ‘kernel substitution’ technique and even
though it has not been intensively used in
engineering calculations it has been shown to be
of good precision [4] (semi-transparent medium
temperature field calculations within 2% of a
numerical ‘exact’ solution).
A differential equation in the fourth power of the
temperature can then be obtained instead of (1),
by twice differentiating the heat equation and the
quadrupole formulation follows. The expressions
for the 4 coefficients of the quadrupole matrix
cannot be given in a single formula but are easily
calculated analytically. The resulting
computational time for this direct modeling are of
the same order of calculating basic functions like
the hyperbolic cosh and sinh of the conductive
quadrupole Qc. This makes this approach
interesting in view of exhaustive iterative
estimation procedures. In case of black walls and
very transparent material, DM3 reduces to DM2.

Parameter Vector
According to the direct models presented

above, we have three possible parameter vectors.
For DM1, the parameter vector is the singleton
β = {β1=tc=e²/α}. For DM2, the parameter vector
is made by both tc and the dimensionless radiative
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resistance Rr. Thus β = {β1=tc, β2=Rr}. For DM3,
it is β = {β1=tc, β2=NPl, β3=τ0}. One can note that
DM2 introduces the single parameter Rr for the
radiative contribution that is made of both the two
parameters of DM3, NPl and τ0.
These parameter vectors can be extended when
considering heat losses. In the case of modulated
experiments of heat transfer, this is required at
very low frequencies and we won’t need to take
this parameter into account (i.e. negligible
sensitivity) in the present study.
One additional parameter may also be introduced.
It is a ‘nuisance’ parameter that stems from
experimental constraints. Due to the electronics of
the lock-in detection, the absolute value of the
phase lag in the measurements shown experiences
an offset. This parameter will be considered as
unknown and noted β0 later on.

Direct simulations
Figure 1 shows theoretical simulations

obtained with DM3 for different values of the
optical thickness and Planck number, exhibiting
how radiative transfer may alter the well known
monotonically decreasing phase lag evolution of
opaque materials (curve 0). Symbol fco in the
figure means that attention has been paid to the
fact that at high frequency, the temperature can
not be measured anymore (low detectivity limit
reached). Simulations are stopped when the
amplitude of the signal falls below the technical
limit of the detection system used. Curve 1 has
been obtained for NPl = τ0 = 0.5. One can observe
the phase lag blocking occurring for a given high
frequency, indicating a single in-phase radiative
transfer. Curves 2,3 exhibit all the intermediate
behaviors obtained for other sets of (NPl ,τ0) until
the opacity limit (Curve 4, NPl = τ0 = 5).

Figure 1 : Phase-lag ϕ versus frequency f*

PARAMETER ESTIMATION PROBLEM

Experimental system
The experimental setup is derived from the

one described in [5] but adapted to monolayer
geometry (Fig 2). The temperature investigations
are carried out by setting the sample at the focus
of a double reflection 1-m diameter solar furnace.
This facility is able to deliver a flux density up to
900 kW/m2 onto a 25 mm diameter focal zone. It
is equipped with a slow moving iris diaphragm
that can tune the incident flux, but is unable to
modulate this flux at high frequency. So, the
modulated flux is delivered by a remote
controlled 40 Watts CO2 laser (Millenium Lasers
Ltd., Model ML30/S) the beam of which is
colinear to the concentrator axis and spreads over
a 15 mm gaussian spot onto the sample surface.
The rear face temperature is  measured by optical
pyrometry. The mean value is determined with a
slow response pyrometer (Ultrakust InfraPlus).
The temperature oscillations are monitored with
an arrangement involving a ZnSe lens and a fast
response IR detector (InSb) in order to sight a 2
mm diameter zone.
The control computer is connected to two
IEEE488 devices :
- a synthesized function generator (Stanford
Research, Model DS345) that controls the laser
chopper frequency,
- a lock-in amplifier (Stanford Research, Model
SR830) for recording the temperature phase lag:
difference between the IR detector output and the
function generator command (hardware
demodulation).

Figure 2 : Experimental set-up.

Measurements
The experimental data consists on the
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the laser input) versus the frequency of excitation.
For each data set sequence programming, the
following experimental parameters have to be
selected:
- frequency values: linear or logarithmic evolution
or values list,
- stabilization time before measurements start,
- measurement recording definition: data number,
integration time, duration.
For a given frequency value, the lock-in outputs
(phase and modulus) are measured a given
number of times. Phase measurement reliability
can be evaluated from the observed standard
deviation ϕσ  and from the modulus evolution.

When signal-to-noise ratio decreases, phase
inaccuracy increases. In the experimental results
shown, only 5 phase measurements are repeated
for each data point. Rather than having a
statistical mean that could be introduced as a
diagonal weighting matrix in deterministic
algorithms, the measured standard deviation (Std
Dev) provides an estimation of the squared
residues cost function that can be expected. In our
experiments, one have generally

∑ ≅σ= ϕ
i

2 075.0)3(S
i

.

Estimation procedures
q It has been shown previously [6] that
accounting for the various sources that generates
and transforms the noise that corrupts the data, it
can be considered as additive, of gaussian type,
having zero-mean value and Std Dev proportional
to the square root of the band pass integration.
When setting the integration time in an
appropriated manner for each tested frequency,
the Std Dev of the noise can be made constant.
All these conditions are included in the model for
the noise that has been considered in the
stochastic theoretical study.
q Estimations are performed in the classical
way of minimizing the uni-modal cost functional
that consists on the square of the phase lag
residuals, i.e. distance between experimental and
calculated signals. Four inversion algorithms have
been considered in the estimation software :
- the simplex Nelder-Mead and Levenberg-
Marquardt algorithms, based on a deterministic
search of the minimum, based on the computation
of the descending gradients. These methods are
very efficient in terms of computational time. In
some complicated cases where a good design of
the PEP can not be achieved (i.e. in case of

correlated parameters), such methods lead to local
minima that are dependent upon the initial
guesses. This induces an error on all the
estimates, according to the influence of the noise
on the sensitivity matrix. This problem may be
overcome in some situations, when multiplying
starting guesses and averaging the resulting
estimates. This situation may arise here as a
previous theoretical stochastic study [3] shows
that in the particular case of small optical
thicknesses, a high correlation exists between the
two “radiative” parameters τ0 and NPl.
- the stochastic optimization algorithms used are
the “Simulated Annealing” method (SA), which
has been already used in heat transfer problems
by Silva Neto and Soeiro [7], and the method due
to Berg [8]. They consist basically in a random
walk over the cost-functional landscape over the
hyper-space domain of the parameter vector. In
order to avoid to be trapped in a local minimum,
the SA algorithm make use of a probabilistic
model for escaping from it, that relies on an
Arrhenius (or thermally activated) law where the
temperature parameter used here has nothing to
do with the physical variable of the problem, but
can be considered as a fine tuning parameter for
the algorithm. On the other hand, the Berg
method retains all the local minima encountered
during pure random walks.
The software has been written in MATLAB
language. It makes use of the built-in function
fminsearch for the Nelder-Mead simplex
algorithm, of the function leasqr.m developed by
Richard I. Shrager, from the National Institute of
Health (Bethesda, MD, USA) and modified by
Arthur Jutan and Ray Muzic, available at the
Internet Matlab site (matlab42/toolbox/contrib),
and functions SimAnneal.m and randcost.m
developped by Peter Cervelli from the Dpt of
Geophysics (Stanford University).

Results and discussion
In this section, we give examples showing the

ability of this method to yield the phononic
diffusivity of STM easily, in all experimental
configurations. Focusing on pure aspects of PEP,
we mainly discuss the problem of estimating
radiative parameters. For this purpose, we
concentrate our efforts on measurements where an
evident correlation exists between parameters NPl

and τ0 when using DM3.
Identification test case : Figure 3 shows

phase lag measurements (star dots) for a sample
of 4 mm thickness of pure Si02, at 600 °C. The
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emissivities are considered as equal to 1 (Graphite
paint coating). At this temperature, the phononic
diffusivity measured with the flash method is
5.7 10-7 m²/s. This yields a phononic conductivity
k=1.55 W/m/K when considering experimental
data of ρCP(T) [2]. The expected characteristic
time is then tc = 28.2 s. Eighteen measurement
points have been acquired between 0.02 and 1 Hz.
The average Std Dev associated to each data point
is of the order of σϕ=0.7° The phase lag blocking
predicted by the model at ”high” frequency can be
noted here and looking back at Fig. 1, one can
state that it corresponds to a case of small Planck
number NPl and small optical thickness τ0.

Tertiary Headings.  The third level of
headings should follow the style of secondary
headings, but it will be indented 0.5 cm (0.20 in)
and followed by a period, a space and its text.

Figure 3 : Example of experimental phase lag
measurements along with a model fitting.

In order to allow the discussion that will follow,
let’s anticipate the identified results and consider
DM3 in the case

{ }1.0,15.0N,2.28t 0Plc =τ===β

A theoretical stochastic analysis [3], allows to
calculate the expected variance-covariance
matrix, that is presented below in a modified form
where the diagonal terms correspond to the
relative error that is expected to affect the

parameters, calculated through i
ˆˆ

i
βσβ and

expressed in %, and where the off-diagonal terms
are the cross-correlation coefficients. One obtains
the following result when considering a noise of

°=σϕ 7.0 . The assumptions on the measurement

errors are the standard ones denoted 11111111
according to the notation of Beck & Arnold.

( )















=β

3.2499.05.0

99.06.2248.0

5.048.09.0
ˆcov mod

(6)

One can first conclude that the two radiative
parameters are highly correlated in this region of
the parameter space and that it is impossible to
pretend identifying both within a good confidence
interval. The second conclusion is that besides
this, the identification of the diffusivity can be
performed in fairly good conditions : 95%
confidence bounds of the order of 2.1% (t-
distribution).
Despite this obviously ill-conditionned PEP, we
will implement lately stochastic algorithms for
performing identification in this hard test case; in
order to compare their performance to direct
methods.

Use of reduced DM2.  We first start
estimations with DM2, which is the reduced
model that corresponds to the expected situation
of small optical thickness. Independently of the
algorithms used and of any initial guesses, all
algorithms converges onto the following result

α = 6. 10-7m²/s and rR  = 2.2
The diffusivity value is 6% higher than the one
found with the flash method. The quality and
facility for performing the identification can be
confirmed when using the residuals  at
convergence for calculating the variance-
covariance matrix of the parameters. One finds

( ) 







=β

0.14.0

4.06.0ˆcov mod (7)

This means that a 0.6% and 1% of relative error
are obtained respectively for α and Rr. In this case
the value found for the nuisance parameter

0β was 38°. Considering the value of Rr and the

value of the thermal conductivity obtained by the
flash method, eq. (5) allows then to calculate both
the optical thickness and Planck number that
should be estimate later on. One finds

93.0e0 ≅β=τ  and then to 1N Pl ≅ (see formula of

table 1).

Use of full DM3. The thermal diffusivity
value that has been estimated from DM2 will be
introduced as initial guess when using DM3. One
will then be able to confirm that this value may
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not be altered much despite the high correlation
between the two radiative parameters. Concerning
these latter, starting with the knowledge drawn
from direct simulations performed for various
parameter vectors, one will retain to initiate
estimations, the initial guess of NPl=0.5 and

5.00 =τ  (curve 1 of Fig. 1) and also different
values of the parameter vector in the
neighborhood of this point : 0.1 and 1 for both NPl

and 0τ . This leads to 9 different starting points

for identification.
Concerning deterministic algorithms, three clearly
distinct local minima (1,2,3) have been found
(Table 1). When using the Simulated Annealing
algorithm, one have only to provide lower and
upper bounds for the parameter vector. Then the
algorithm initiates itself and does random walks.
When simply repeating the estimation procedure a
certain number of times, this algorithm recovers
the previous minima encountered but also finds
more minima (4). This is not a surprise as it may
explore other regions of the cost-functional
topography. Deterministic algorithms directly
goes to the local minima closest to the initial
guess.
The conclusion that can be stated is that both
algorithms are unable to find the good global
minimum in this ill-conditioned case.

Table 1. Local Minima
Parameter

vector
Minima

components N°1 N°2 N°3 N°4
α (107 m²/s) 5.2 4.9 5.85 4.8

PlN 0.6 0.74 0.16 0.82

0τ 0.38 0.5 0.076 0.56

0β 42° 43° 38° 44°

Rr = ( )1
N

0
0

Pl +τ
τ

2.18 2.22 2.26 2.28

Thanks to the reduced direct model DM2 used
before, one can try to go further on, searching for
the more correct or likely minimum. Looking at
Table 1, one can see that only for the minima n°3,
the good diffusivity value is found : 5.85 10-7

m²/s. Among all other values found, this is the
closest one to the value estimated with DM2 and
to the value obtained by the flash method. As
proved by the covariance matrix of the estimated
parameters calculated in (6), the correct
diffusivity can be found with DM3 that is not
corrupted by the large error made on the

correlated parameters. Furthermore, this
minimum may also be considered as the good one
as only in this case, the value of the nuisance
parameter 0β found is the same as the one found
with DM2. This parameter also has a unique
value for a given set of data that has not to depend
on the estimation procedure.
Retaining minimum 3 as the most probable one,
one can proceed to estimations in conditions
where 0β and c1 t=β  (i.e. α) are considered as
known parameters. One have then a cost function
that depends only on the two radiative parameters

Pl2 N=β  and 03 τ=β . One can then focus on a
small domain of variations of both parameters,
centered on the values given by minimum 2:

{ }07.0,16.0N 0Plc ≅τ≅=β . The algorithm of

Berg allows to perform random walks and
retaining all the minima encountered on them.
Then a statistics for the estimations can be
obtained and studied. In the same manner, if N
distinct minima are found, N identifications are
repeated with different initial guesses selected in
the prescribed constraint domain using
deterministic algorithms.
4000 random walks (106000 function
evaluations) have been performed in a parameter
domain centered on cβ , and of 40% span for the

parameter movements around cβ . 200 distinct
minima have been found. The statistics show a
distribution of the parameter estimates that is
rather flat, not of gaussian type, centered about

the initial values { }07.0,14.0Nˆ
06Pl =τ==β .

If one calculates a standard deviation of the
parameter estimates distribution about their mean,

it is found { }%6.20%,3.19ˆ
ˆ =βσβ  which is the

value drawn from the stochastic analysis given in
Eq.(6). If one proceed with 200 repetitions of
deterministic algorithms for different initial
guesses in the same domain, exactly the same
result is found thus confirming published results
on the comparison of both approaches in
parameter estimation. Two conclusions can be
drawn at this point.  The non gaussian distribution
of the estimates shall lead to the conclusion that
the minimum found is not the good one.

Furthermore, using the values of β̂  along with
the definition of NPl and τ0, one finds a
conductivity of 2.8 W/m/K which is far from the
known value. Supposing that the good minimum
(calculated previously with the estimated
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parameter Rr of DM2) when introducing the
knowledge of the thermal conductivity) can be
found, it will be obtained with a very large error.
These two conclusions shall lead to this last one :
it is impossible to identify both parameters in the
case of small optical thicknesses and therefore use
has to be made of model DM2.

This result can be illustrated by a contour plot
of the cost functional in the parameter space
defined above (Fig 4). Some minima found during
the random walks or repeated deterministic
estimations are plotted also (big dots). The reason
of this very ill conditioned situation can be
understand when looking at the very narrow and
non convex shape of the minimum valley. The
minimum cost loci in the vicinity of cβ  follow a

line that gives the constant ratio 2N 0Pl =τ ,
nearly the value of the radiative resistance of
DM2. This was also the case for the other minima
found far from cβ  but still in the valley (see

Table 1). One can then understand how the
physics rules the PEP. One conclusion is also that
it may be dangerous to retain as best estimates,
those giving the lowest cost (S=0.063 in our case)
as it is done in stochastic algorithms. It is
worthwhile to note that the averaged cost function
value found in the valley is of 07.0S = , which is
a little below the optimal value predicted by
computing it from the measured Std Dev of the
experimental data. (S=0.075).
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Figure 4: Contour plot of the cost function.

CONCLUSIONS
From both paper [3] and the present results

with real experimental data, one can drawn
several conclusions :

The periodic method is a good method for
measuring the true diffusivity of STM, using
either DM1 (results not shown here for small
optical thickness samples having gold coated
boundaries), or DM2 and DM3, depending on the
case. Averaged gray optical parameters (mean
absorption coefficient) can be measured with
good accuracy only in the approximate range

55.0 0 ≤τ≤  (results not shown here), which

seriously compromises the objective of being able
to obtain through this method trustable average
optical coefficients.
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ABSTRACT
An explicit formulation is developed for the

simultaneous estimation of the single scattering
albedo and diffuse reflectivities of a semi-trans-
parent slab using moments of the exit radiation
intensity.  Results from preliminary numerical
tests are presented.

INTRODUCTION
The procedure usually employed for solving

inverse problems of radiative transfer involves a
numerical iterative implicit solution in which a
cost functional (e.g. squared residues between
calculated and measured quantities) is minimized
when estimating the unknowns [1-4].

For some problems in very simple geometries,
analytically based procedures can be developed
that provide an alternative to the implicit method
[5-7]. The unknowns to be recovered with an
analytically based system of equations appear
explicitly, although in some cases the resulting
equations from the explicit formulation are
nonlinear. In such cases an iterative solution is
required for the equations that differs from that
with an iterative implicit formulation.

The explicit algorithms developed in Refs. [5-
7] do not require the solution of the direct
problem. In Ref. [8] is presented the source-
detector methodology, which is also an explicit
formulation but it requires the solution of the
direct problem in the analytical formulation of the
inverse problem.

In this work two formally exact equations are
used for estimating the single scattering albedo
and the diffuse reflectivities, at the inner
boundary surfaces of the medium, of an iso-
tropically scattering, homogeneous slab medium
that is illuminated from the outside.  The explicit
solution of this inverse radiative transfer problem
for the three unknowns requires only
experimental data of the ingoing and exiting
radiation intensity moments acquired with ex-
ternal sensors.  Numerical tests are presented for
the case in which two equations come from an
experiment with isotropic external illuminations
and a third equation comes from an experiment
with a constant heat flux illumination.  The tests
are presented for media with different optical
thicknesses.

The formulation also can be easily used to
give two formally exact equations for a
collimated incident illumination.  The three
unknowns then could be obtained from two
experiments with different incident illumination
directions.

MATHEMATICAL FORMULATION OF THE
DIRECT PROBLEM

As schematically represented in Fig. 1, a
plane-parallel, gray, isotropically scattering slab
of optical thickness 0τ , with diffusely reflecting
boundaries, is subjected to external isotropic
irradiation at both boundaries, 0=τ  and 0ττ = .
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It is assumed that the emission of radiation by the
medium due to its temperature is negligible in
comparison to the external radiation.

The mathematical formulation of the direct
radiation problem is given by [9]

 , ),(
2

),(),( 1

1

µµτωµτ
τ

µτµ ′′=+
∂

∂ ∫
−

dIII

11    , 0   0 ≤≤−≤≤ µττ                           (1)

where ( )µτ ,I  is the dimensionless radiation
intensity, τ  is the optical distance, µ  is the
direction cosine of the radiation beam with the
positive τ  axis, and ω  is the unknown single
scattering albedo.  The boundary conditions for
isotropic external illuminations are given by

( ) ( ) 0,     02,0
1

0
11 >′′′−+= ∫ ++ µµµµρµ d,IAI  (2a)

( ) ( ) 0,   ,2,
1

0
0220 >′′′+=− ∫− µµµµτρµτ dIAI   (2b)

and the boundary conditions for constant heat flux
illuminations are

0,  
1

0
012)/1(,0 >′′


 ′−++=


 + ∫ µµµµρµµ d,ICI

(2c)

0,
1

0
,022)/2(,0 >′′


 ′−+=


 −− ∫ µµµµτρµµτ dICI

  (2d)

Here 1ρ  and 2ρ  are the unknown diffuse reflec-
tivities, and A1, A2, C1, and C2 are the strengths of
the external irradiations just inside the boundaries
at 0=τ + and 0ττ = -, respectively.  Index of
refraction effects at the boundary have been
neglected.

MATHEMATICAL FORMULATION OF THE
INVERSE PROBLEM

We wish to solve an inverse problem of
radiation governed by Eq. (1).  Initially we show
that the two diffuse reflectivities 21  and ρρ  and
the single scattering albedo ω  can be estimated
by solving

Figure 1 – Plane-parallel medium with diffusely
reflecting boundaries subjected to isotropic

external irradiations.

three coupled equations for appropriately selected
conditions on A1, A2, C1, and C2. Two equations
come from an experiment with isotropic external
illuminations, as given by Eqs. (2a,b), and a third
equation comes from an experiment with constant
external heat flux illuminations as in Eqs. (2c,d).
The procedure to derive the equations utilizes
ideas developed by Siewert [5,10] and
McCormick [11].

General Inverse Equations
We will develop two general equations before

searching for the appropriate boundary
illuminations to impose. Both general equations
are derived with the use of a change from µ  to

µ−  in Eq. (1),

      , ),(
2

),(),( 1

1

µµτωµτ
τ

µτµ ′′=−+
∂

−∂− ∫
−

dIII

11    , 0 0 ≤≤−≤≤ µττ                    (3)

Multiplication of Eq. (1) by τµτ ∂−∂ ),(I  and Eq.
(3) by τµτ ∂∂ ),(I , integration of each equation
over –1 ≤ µ ≤ 1, and then adding the results we
obtain

21

1

1

1

),(
2

),(),( 







=− ∫∫

−−

µµτ
τ

ωµµτµτ
τ

dI
d
ddII

d
d (4)

Integration of Eq. (4) over the spatial domain,
−+ ≤≤ 00 ττ , and use of symmetry on the left hand

side of the equation gives
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Equation (5) is the first general inverse equation
for this type of problem for a homogeneous
medium.

The second general inverse equation is
derived by first multiplying Eq. (1) by µI(τ,−µ)
and Eq. (3) by µI(τ,µ), and then integrating each
equation over 11 ≤≤− µ . After subtracting the
results we find
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Then we integrate Eq. (1) over 11 ≤≤− µ  to
obtain the energy conservation equation
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From the symmetry and the definition of ω~ ,
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we obtain from Eqs. (6) and (7),

∫ −
1

0

2 ),(),(4 µµτµτµ
τ

dII
d
d

21

1

),(~ 







= ∫

−

µµτµ
τ

ω dI
d
d

(10)

Integration of Eq. (10) over −+ ≤≤ 00 ττ leads to
the final result for the second equation,
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Isotropic and Constant Heat Flux
Illuminations

We wish to incorporate the boundary
conditions, given by Eqs. (2a,b) into Eqs. (5) and
(11), which is done by breaking up the integrals
over –1 to 1 into separate integrals from –1 to 0
and from 0 to 1. To do this we define the
moments of the radiation intensities ),0( µ−+I
and ),( 0 µτ −I , for 0>µ , inside the surfaces

0=τ  and 0ττ = , as

2,1 ,0      ,),0()0(
1

0
∫ =−= + ndIE n

n µµµ           (12a)

2,1 ,0      ,),()(
1

0
00 ∫ == − ndIE n

n µµτµτ           (12b)

The moments correspond to the outward portions
of the energy density (n = 0) and the heat flux
( )1=n . Measurement of the emerging radiation
quantities for n = 2 would be a problem because
they do not correspond to any common
measurement system, but one can measure the
radiation intensity at different polar angles, and
then use Eqs. (12a,b) to obtain the moments.

The inverse Eqs. (5) and (11) are written for
radiation intensities inside the surfaces, i.e. at

+= 0τ  and −= 0ττ . Therefore it is necessary to
write Eqs. (12a,b) using quantities that can be
measured using only external detectors, as for
example the exit radiation intensities ),0( µ−−I
and ),( 0 µτ +I , for 0>µ . A schematic
representation is given in Fig. 2.

Figure 2 – Schematic representation of the
radiation intensities at the boundaries of the

medium.

ττττ = 0
ττττ

ττττ = ττττ0

ττττ0
−−−−    ττττ0

+0−−−−   0+

I(ττττ0
−−−−,µµµµ)  µµµµ > 0I(0+,µµµµ),  µµµµ < 0

boundary
condition

(2b)

I(ττττ0
−−−−,µµµµ)  µµµµ < 0I(0+,µµµµ),  µµµµ > 0

boundary
condition

(2a)

ρρρρ1 ρρρρ2exit radiation
intensity

I(0−−−−,µµµµ) = Ieff(0,µµµµ)
µµµµ < 0

exit radiation
intensity

I(ττττ0
+,µµµµ) = Ieff(ττττ0,µµµµ)

µµµµ > 0



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

The number of photons interacting with the
surfaces can be preserved with the constraints

[ ] 0),0(),0(
1

1

=− −+

−
∫ µµµµ dII                        (13a)

[ ] 0),(),( 00

1

1

=− −+

−
∫ µµτµτµ dII                        (13b)

which can be satisfied by the equations

( ) ( ) ,
1

),0(
1

),0(),0(
11 ρ
µ

ρ
µµ

−
−

=
−

−=−
−

+ effIII 10 ≤≤ µ   (14a)

( ) ( ) ,
1

),(
1

),(
),(

2

0

2

0
0 ρ

µτ
ρ
µτµτ

−
=

−
=

+
− effIII 10 ≤≤ µ   (14b)

where the symbols ),0( µ−effI  and ),( 0 µτeffI  for
0>µ  are used to represent quantities that can be

effectively measured using only external
detectors.

With the definitions

2,1 ,0         ,),0()0(
1

0
∫ =−= ndIF eff

n
n µµµ        (15a)

2,1 ,0      ,),()(
1

0
00 ∫ == ndIF eff

n
n µµτµτ        (15b)

Eqs. (12a,b) can be written as

( ) ,
1

)0(
)0(

1ρ−
= n

n

FE                      2,1,0=n         (16a)

( ) ,
1

)(
)(

2

0
0 ρ

τ
τ

−
= n

n

FE                   2,1,0=n         (16b)

so the boundary conditions of Eqs. (2a-d) now
can be written as

( ) ( ) 0     ,020 111 >+=+ µρµ EA  ,I                 (17a)

( ) ( ) 0     ,2 01220 >+=−− µτρµτ  EA,I             (17b)
( ) ( ) 0     ,02)/(0 *

111 >+=+ µρµµ EC  ,I         (17c)
( ) ( ) 0     ,2)/( 0

*
1220 >+=−− µτρµµτ  EC,I     (17d)

where the superscript * distinguishes the constant
heat flux experimental results from those for the
isotropic illumination experiment.

By recognizing in Eqs (5) and (11) the terms
that correspond to the boundary conditions and

those that relate to the moments of the exit
radiation intensities, and by introducing Eqs. (12),
(15), (16) and (17a,b), two inverse equations for
an isotropic illumination are obtained,

D
N=ω ,         

D
N
~
~

~ =ω                                 (18, 19)

where

])(2)[({4 201200 AEEN += τρτ ]})0(2)[0( 1110 AEE +− ρ
(20a)

2
200012 ])()(2[ AEED ++= ττρ 2

1011 ])0()0(2[ AEE ++− ρ
(20b)

])(2)[({4~
201202 AEEN += τρτ ]})0(2)[0( 1112 AEE +− ρ

(20c)

−



 −−=

2

2
201 2
)1)((~ AED ρτ =



 −−

2

1
11 2
)1)(0(

AE ρ

( )[ ] ( )[ ]2
11

2
201 202 AFAF −−−= τ      (20d)

To obtain a third equation we utilize the
boundary conditions given by Eqs. (17c,d) with
the simplification that 02 =C . If we were to
attempt to use these boundary conditions with Eq.
(5) then an essential singularity corresponding to
integrating µ1  from 0 to 1 would occur, so we
focus on use of Eqs. (17c,d) with Eq. (11) to
obtain

∗= DN ~~~ *ω                                                        (21)

where

[ ]{ }1
*
21

*
10

*
20

*
12

* )0(2)0()()(24~ CEEEEN +−= ρττρ

(22a)

( )[ ] ( )[ ] =−−−−= 2

11
*
1

2

20
*
1

* 1)0(1)(~ CEED ρρτ

[ ]2

1
*

1
2

0
*

1 )0()( CFF −−= τ                              (22b)

Equations (18), (19) and (21) are sufficient, in
principle, to determine the three unknowns ω

1ρ , and 2ρ  provided two of the equations do not
become degenerate. Note that the equations
involve a highly nonlinear search, however, even
though they appear formally in closed form.
From Eqs. (16) we see that the moments of the
exit radiation intensities depend on the diffuse
reflectivities, and in Eqs. (20) there are several
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products of those quantities. Also, one can
observe that the optical thickness 0τ  cannot be
determined with the time-independent
experiments as proposed here because
integrations were performed in the optical
variable in the range [ ]0,0 τ , thus eliminating the
optical thickness from the final formulation of the
inverse problem.

A disadvantage of these equations is that the
experiments would be difficult to perform, so we
also develop additional equations from which all
three parameters can be obtained simultaneously
from experiments done with collimated incident
illuminations.

Because the direct measurement of ( ),0nE
( )0τnE , ( )0*

nE  and ( )0
* τnE  for 0=n  and 2 would

be difficult, however, a more practical approach is
to change the surface illumination conditions.

Collimated Illumination
More and potentially better equations can be

obtained if the external illuminations previously
considered for the isotropic and constant heat flux
cases are replaced by a set of collimated external
illuminations. We will now set 02 =A  in the
boundary condition given by Eq. (2b) and assume
that the set of measurements are made so that the
boundary conditions to be satisfied are

( ) ( ) ( ) 0     ,,02,0
1

0
1 >′′′−+−= ∫ ++ µµµµρµµδµ dIAI jjjj

(23a)

( ) ( ) 0     , ,2,
1

0
020 >′′′=− ∫ −− µµµµτρµτ dII jj    (23b)

with j = 1 to J denoting each experiment
performed.  Clearly J must be such that the use of
of the collimated boundary conditions in Eqs. (5)
and (11) gives at least three equations, but more
equations could be used.

By redefining the moments of the exit
radiation given by Eqs. (15) and (16), including
the index j to indicate each experiment performed,
with , J,, j !21= , the boundary conditions (23)
are written as

( ) ( ) ( ) 0        ,02,0 11 >+−= µρµµδµ jjjj EAI    (24a)

( ) ( ) 0                          ,2, 0120 >=− µτρµτ jj EI    (24b)

for j = 1 to J. With the same procedure as before,
boundary conditions (24) lead to the following
system of equations

, J,, jDN jj !21          , ==ω                      (25)

, J,, jDN jj !21          ,~~~ ==ω                     (26)

where the right hand sides of Eqs. (25) and (26)
are given by Eqs. (20a-d) with 02 =A , A1

replaced by Aj, and )0(nE  and )( 0τnE  replaced
by )0(njE  and )( 0τnjE .

SOLUTION OF THE INVERSE PROBLEM
For the vector of unknowns

{ } Tz 21 ,, ρρω="                                                 (27)

the solution of the inverse problem is obtained by
solving a system of nonlinear equations

( ) 0=zH ""
                                                          (28)

For the first formulation with an isotropic
illumination and constant heat flux, we obtain
from Eqs. (9), (18), (19) and (21)

0)(1 =−= NDzH ω"                                      (29a)

( ) 01~~)(2 =−−= ωω NDzH "                            (29b)

0)1(~~)( **
3 =−−= ωω NDzH "                        (29c)

A similar set of equations corresponding to Eqs.
(25) and (26) follows for the second formulation
involving the set of collimated illuminations.

From a Taylor series expansion, by keeping
only the terms up to the first order,

( ) ( ) 01 =∆+=+ kkkk zJzHzH """                        (30)

where k is an iteration counter, J is the Jacobian
matrix, and kz"∆  are corrections for the unknowns
to allow for new estimates

kkk zzz """ ∆+=+1                                               (31)

The elements of the Jacobian matrix are given by
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,
j

i
ij z

HJ
∂
∂

=      3,2,1=j                                  (32)

where 3 ,2 ,1=i  for the first inverse problem
formulation, and Ji 2 ,...,2 ,1=  for the second
inverse problem formulation.

After multiplying Eq. (32) by the transpose of
the Jacobian matrix, the vector of corrections can
be calculated using

( )kTkkT zHJzJJ
kk "" −=∆                             (33)

Therefore, to obtain the solution of the system of
nonlinear equations (29), an iterative procedure is
constructed by starting with an initial guess 0z" ,
and obtaining in a sequential way corrections and
new estimates for the unknowns using
respectively Eqs. (33) and (31).

The iterative procedure is continued until a
convergence criteria such as

3 ,2 ,1      , =<∆ jzz k
j

k
j ε                             (34)

is satisfied, where ε is a small number. This
tolerance should be related to the level of noise
present in the experimental data. We used 10-5 for
our numerical tests.

RESULTS
We used a Newton multivariable method to

examine the performance of the explicit inverse
method of analysis presented here for the
estimation of ω , 1ρ , and 2ρ . Several test cases
have been studied. We considered participating
media with optical thicknesses varying in the
range 0.51.0 0 ≤≤ τ , single scattering albedo
values in the range 9.01.0 ≤≤ ω  and diffuse
reflectivities in the range .9.0,05.0 21 ≤≤ ρρ

In Tables 1 to 4 are shown the results for just a
few cases in media with different optical
thicknesses. These tables are self contained but a
few remarks are made. In Table 1 for the cases
with 9.0=ω  we observe the importance of
properly choosing the strength of the external
sources. For 111 == CA  and 02 =A  convergence
was not achieved, but good results are obtained
with 111 == CA  and 52 =A . This happened
because in the first situation the importance of 1ρ
is felt only after two internal reflections take place

and the exit radiation at 0=τ  and 0ττ =  is
measured.

Table 1 – Test results for a medium with optical
thickness .1.00 =τ  Noiseless data.

Case Control
Parameters

Initial
Guess Estimates

1.0
9.0

9.0

2

1

=
=

=

ρ
ρ
ω

0    
1

2

11

=
==

A
CA

4.0
4.0
4.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

did not
converge

1.0
9.0
9.0

2

1

=
=
=

ρ
ρ
ω

5    
1

2

11

=
==

A
CA

4.0
4.0
4.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

0999.0
8999.0

8999.0

2

1

=
=

=

ρ
ρ
ω

In Table 2, for 5.0=ω  and 0.9 poor results
were obtained with 02 =A , but very good  results
were obtained with 52 =A .  The importance of
finding proper values for the strength of the
external illumination can also be seen in Table 3
for 9.0=ω .

Table 2 – Test results for a medium with optical
thickness τ0 = 1. Noiseless data.

Case Control
Parameters

Initial
Guess Estimates

9.0
1.0

5.0

2

1

=
=
=

ρ
ρ
ω

0    
1

2

11

=
==

A
CA

4.0
4.0
4.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

9683.0
9331.0
9858.0

2

1

=
=

=

ρ
ρ
ω

9.0
1.0

5.0

2

1

=
=
=

ρ
ρ
ω

5    
1

2

11

=
==

A
CA

4.0
4.0
4.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8999.0
0999.0

4999.0

2

1

=
=

=

ρ
ρ
ω

9.0
1.0

9.0

2

1

=
=
=

ρ
ρ
ω

0    
10

2

11

=
==

A
CA

4.0
4.0
4.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8701.0
7057.0

9949.0

2

1

=
=

=

ρ
ρ
ω

9.0
1.0

9.0

2

1

=
=
=

ρ
ρ
ω

5    
10

2

11

=
==

A
CA

4.0
4.0
4.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8999.0
0999.0
8999.0

2

1

=
=

=

ρ
ρ
ω

In Table 3 we observe for higher values of the
diffuse reflectivities in a highly scattering
medium with a large optical thickness that
convergence could not be achieved. We have tried
different combinations for the strength of external
irradiation.
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Table 3 – Test results for a medium with optical
thickness τ0 = 5. Noiseless data.

Case Control
Parameters

Initial
Guess Estimates

5.0
5.0

5.0

2

1

=
=
=

ρ
ρ
ω

8.0    
1

2

11

=
==

A
CA

8.0
8.0
8.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

5002.0
5000.0

4998.0

2

1

=
=

=

ρ
ρ
ω

2.0
2.0

9.0

2

1

=
=
=

ρ
ρ
ω

5    
10

2

11

=
==

A
CA

5.0
5.0
5.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

2011.0
1999.0

8999.0

2

1

=
=

=

ρ
ρ
ω

2.0
8.0

9.0

2

1

=
=
=

ρ
ρ
ω

5    
10

2

11

=
==

A
CA

5.0
5.0
5.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

did not
converge

2.0
8.0

9.0

2

1

=
=
=

ρ
ρ
ω

5    
1

2

11

=
==

A
CA

5.0
5.0
5.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

1999.0
8001.0

8999.0

2

1

=
=

=

ρ
ρ
ω

9.0
9.0

9.0

2

1

=
=
=

ρ
ρ
ω

20    
10

or       
0    

10

2

11

2

11

=
==

=
==

A
CA

A
CA

5.0
5.0
5.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

did not
converge

In Table 4 for 5.0=ω  and 0.9 we observe
that an under-relaxation is necessary to achieve
convergence. In Eq. (31) instead of using the full
correction kz"∆  we used kz"∆γ , where γ  is a
damping factor with 10 << γ . We also used
damping factors on the test cases in Table 3.

All results presented in Tables 1 to 4 were
obtained using simulated noiseless data. In Tables
5 and 6, data with different levels of noise are
shown. The largest deviations were obtained for
the estimation of 1ρ , which is consistent with a
sensitivity analysis that demonstrated that the
sensitivity to 1ρ  is lower than the sensitivity to
ω  and 2ρ .

CONCLUSIONS
The results demonstrate the applicability and

accuracy of an explicit method developed here for
the solution of an inverse radiative transfer
problem with reflecting boundaries. The
computational implementation of the formulation
with collimated external irradiation is in progress.
We note that an alternative approach to this
problem has been developed in Ref. [12].

The solution obtained with the explicit
formulation developed here also has been used as
the initial guess for a more complicated inverse
radiative transfer problem solved with a
Levenberg-Marquardt implicit formulation.
Although the problem involved a larger number
of unknowns, use of the initial guess enabled
convergence of the implicit formulation in a
situation in which convergence otherwise did not
occur[13].

Table 4 – Test results for a medium with optical
thickness τ0 = 0.5. Noiseless data.

Case Control
Parameters

Initial
Guess Estimates

8.0
8.0

5.0

2

1

=
=
=

ρ
ρ
ω

0.1      
0    

10

2

11

=
=

==

γ
A

CA

5.0
5.0
5.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

9852.0
9940.0

9916.0

2

1

=
=

=

ρ
ρ
ω

8.0
8.0

5.0

2

1

=
=
=

ρ
ρ
ω

05.0      
0    

10

2

11

=
=

==

γ
A

CA

5.0
5.0
5.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8000.0
8001.0

5000.0

2

1

=
=

=

ρ
ρ
ω

9.0
9.0

9.0

2

1

=
=
=

ρ
ρ
ω

0.1      
3    

1

2

11

=
=

==

γ
A

CA

5.0
5.0
5.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

did not
converge

9.0
9.0

9.0

2

1

=
=
=

ρ
ρ
ω

0.1      
1    

5

2

11

=
=

==

γ
A

CA

7.0
7.0
7.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

9809.0
9927.0

9989.0

2

1

=
=

=

ρ
ρ
ω

9.0
9.0

9.0

2

1

=
=
=

ρ
ρ
ω

1.0      
1    

5

2

11

=
=

==

γ
A

CA

7.0
7.0
7.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8995.0
8995.0

8993.0

2

1

=
=

=

ρ
ρ
ω

Table 5 – Test results for a medium with optical
thickness τ0 = 0.5. Data with noise.

Case Control
Parameters

Initial
Guess Estimates

9.0
1.0

1.0

2

1

=
=

=

ρ
ρ
ω

error  %1  
0    

1

2

11

=
==

A
CA

5.0
5.0
5.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8961.0
0384.0

0922.0

2

1

=
=

=

ρ
ρ
ω

9.0
1.0

1.0

2

1

=
=

=

ρ
ρ
ω

error  %5  
0    

1

2

11

=
==

A
CA

5.0
5.0
5.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8945.0
0182.0

0953.0

2

1

=
=

=

ρ
ρ
ω

8.0
8.0

5.0

2

1

=
=
=

ρ
ρ
ω

error  %2  
0    

10

2

11

=
==

A
CA

5.0
5.0
5.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8112.0
8122.0

5005.0

2

1

=
=

=

ρ
ρ
ω
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Table 6 – Test results for a medium with
optical thickness τ0 = 1. Data with noise.

Case Control
Parameters

Initial
Guess Estimates

9.0
1.0

5.0

2

1

=
=
=

ρ
ρ
ω

error  %1  
5    

1

2

11

=
==

A
CA

4.0
4.0
4.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8998.0
0984.0

4998.0

2

1

=
=

=

ρ
ρ
ω

9.0
1.0

5.0

2

1

=
=
=

ρ
ρ
ω

error  %5  
5    

1

2

11

=
==

A
CA

4.0
4.0
4.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

9029.0
1266.0

5056.0

2

1

=
=

=

ρ
ρ
ω

9.0
1.0

5.0

2

1

=
=
=

ρ
ρ
ω

error  %8  
5    

1

2

11

=
==

A
CA

4.0
4.0
4.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8982.0
0883.0

4995.0

2

1

=
=

=

ρ
ρ
ω

9.0
1.0

9.0

2

1

=
=
=

ρ
ρ
ω

error  %.50  
5    

10

2

11

=
==

A
CA

4.0
4.0
4.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8994.0
0959.0

8984.0

2

1

=
=

=

ρ
ρ
ω

9.0
1.0

9.0

2

1

=
=
=

ρ
ρ
ω

error  %1  
5    

10

2

11

=
==

A
CA

4.0
4.0
4.0

0
2

0
1

0

=
=
=

ρ
ρ
ω

8943.0
0506.0

8944.0

2

1

=
=

=

ρ
ρ
ω
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ABSTRACT
A multiobjective optimization approach has

been applied to solve parameter estimation
problems. An improved genetic algorithm has
been proposed to optimize mathematical model
parameters. The algorithm makes use of a new
concept of fitness function, based on an extended
ranking procedure and a new class of operators,
which enhance the algorithm performance.

 Two processes have been analyzed: a grain
cooling process and a grain drying process. In
order to estimate the coefficient of heat transfer
and the drying rate parameters of these models,
minimization of the sum of the least squares of
temperature and equilibrium moisture content
have been conducted. Experimental data obtained
from the soybean cooling in a continuous cross-
flow moving bed heat exchanger and the corn
drying in a fixed bed dryer have been used to
evaluate the estimated parameters. The simulated
results demonstrated the algorithm efficiency to
perform parameter estimation. The validated
model consistently fits the experimental data.

NOMENCLATURE
Cp specific heat (kJ/kgK)
Dp particle diameter (m)
fm drying rate
F objective function
Fk fitness function
G mass velocity of drying gas (kg/m2s)
h heat transfer coefficient (kJ/m3s)
H specific enthalpy (kJ/kg)
N number of experimental data
S solid superficial area/bed volume (m-1)
t time(s)
T temperature (K)
UR relative humidity
x gas flow direction
X dimensionless parameter
Y moisture content of the grain (-)

z bed height coordinate
Z dimensionless parameter

Greek symbols
ε void fraction in bed of solids
φ particle shape factor
λ latent heat of evaporation (kJ/kg)
ρ density (kg/m3

)

Subscripts and Superscripts
exp experimental
g gas
gt total gas
l liquid
R reference
s solid
se solid in equilibrium
v vapor

INTRODUCTION
Accurate modeling is an important

prerequisite for optimization, control and design
of engineering processes. Mathematical models
are set of expressions that simulate the behavior
of a system, describing quantitatively the
mechanisms of the process.  The generality of a
model depends upon the process complexity as
well as the available information concerning the
system. In order to validate the model, it is often
necessary to estimate the model parameters of
nonlinear algebraic or differential equations.

The parameter estimation procedure is based
on the minimization of the total sum of every
observed error. Such procedure is often conducted
using optimization algorithms. Traditionally, the
estimation methods are “hill-climbing” methods
that converge to only one stationary point. The
objective functions based upon a nonlinear model
and experimental data frequently present more
than one optimum. The hill-climbing algorithms
are easily trapped in local optimum, and are
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unable to exploit the existing optima when the
eigenvalue ratio becomes large [1]. Heuristic
optimization techniques have been successfully
used to solve parameter estimation problems
[1,2,3,4].

Parameter estimation constitutes a
multiobjective optimization problem, as it entails
opposing requirements to be satisfied
simultaneously. As the targets are often in
conflict, a compromise solution has to be sought.
The estimation problem has been handled by
single objective approaches, in which all targets
are combined into a single objective function by
using weighting factors. A meaningful
optimization approach implies the use of the
multiobjective concept, which generates a family
of equally good solutions, called Pareto optimal
set, instead of a global optimum. The choice of
the optimal results requires additional knowledge
of the process, in order to select the best
compromise solution between the competing
goals.

This contribution is focused on the
development of a multiobjective optimization
algorithm to solve parameter estimation problems.
An improved approach based on the genetic
algorithm technique is proposed. A new class of
operators consisting of a Pareto-set filter, an
elitism operator and a niche operator is
introduced. These operators enhance the
performance of the algorithm and are
considerably simple to implement. A new ranking
strategy is proposed to treat multidimensional
problems. The new strategy does not require any
previous knowledge of the relative importance of
individual objectives. A fitness function based on
each rank population size and rank level is also
provided to determine the reproduction ratio.

In order to evaluate the algorithm
performance, two different processes have been
studied: a soybean grain cooling process and a
corn grain drying process. The mathematical
model of each process was employed to generate
the dependent variable values under the same
conditions of the experiments. The minimization
of every discrepancy between the measured and
the predicted variables guides the search for the
best-fit parameters. The heat and moisture
transfer coefficients of these processes are
estimated by the temperature and equilibrium
moisture content least squares. Experimental data
obtained from a continuous cross-flow moving
bed heat exchanger and a fixed bed dryer have
been used to evaluate the estimated parameters.

The simulated results demonstrated the ability
of the method to handle multiobjective
optimization problems. The proposed algorithm
can successfully seek tradeoff surface regions and
find the Pareto optimal set. It has been shown that
the validated model fits the experimental data
satisfactorily, indicating to be a consistent
strategy to solve parameter estimation problems.

MULTIOBJECTIVE GENETIC ALGORITHM
The genetic algorithm technique simulates a

natural evolution process: the fittest species
survive and propagate while the less successful
tend to disappear. The GA optimization procedure
consists of a search for nondominated solutions.
The concept of nondominance refers to the
solutions for which no objective can be improved
without worsening at least one of the other
objectives. The progress strategy is guided by the
fitness evaluation, and consists of performing the
population with genetic operators to generate the
next population. Different adaptations of the
original GA are presented in the literature [5,6,7].
A detailed background on the GA theory is
reported in Goldberg [8] and Busacca et al. [9].

The Proposed Algorithm
The multiobjective optimization algorithm

developed is an improved version of a Pareto
genetic algorithm proposed by Cheng and Li [5].
The standard ranking procedure, based on the
concept of nondominance, is extended to treat
multidimensional problems. New operators are
introduced to enhance the algorithm performance:
(a) a niche operator, which prevents genetic drift
and maintains a uniformly distributed population
along the optimal set; (b) a Pareto-set filter, which
avoids missing optimal points during the
evolutionary process and (c) an elitism operator,
which insures the propagation of the best result of
each individual objective function. These
operators reduce the necessary number of
generations and are computationally feasible for
even complicated problems [10]. A new concept
of fitness function is adopted in order to provide
the evolutionary process with robust and stable
convergence. The computational code developed
operates in a continuous variable space, which is
computational fast and stable in converging to the
Pareto optimal set.

The proposed GA procedure works through
the following steps:
(a) creation of a random initial population;
(b) evaluation of the individuals;



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

(c) ranking of the individuals, calculation of the
fitness, registration of the best individuals;

(d) registration of all nondominated individuals
in the Pareto set filter operator;

(e) selection of pairs of individuals as parents;
(f) crossover of the parents to generate the

children;
(g) replacement of the individuals using the

niche operator;
(h) genetic mutation;
(i) replacement of the individuals using the

elitism operator.
The improvements made to the original

method are discussed in the next sections.

Ranking procedure. The ranking
procedure consists of the classification of the
individuals into categories according to the
concept of Pareto set dominance. First, all
nondominated individuals of the population are
identified and assigned rank 1. These individuals
are virtually removed from the population and a
new evaluation is conducted on the remaining
individuals. The next set of nondominated points
are identified and assigned rank 2. This procedure
continues until all the individuals are classified.
Figure 1 illustrates the ranking procedure for a
maximization problem.

F2

F1

rank1

rank2

rank3

rank4

Pareto optimal set

Figure 1 - Population ranking for a two-
dimensional maximization problem

Mathematically, the classification method
proposed by the authors is conducted in four basic
steps:

(a) the points are sorted according to the
evaluation of an objective function, randomly
chosen as a reference function;

(b)  all points that produce opposite effects on the
function values are selected as potential
candidates to the rank, i.e., the sequence of
points that simultaneously produces an

increase on the reference function and a
decrease on the other functions, or vice versa,
will be selected;

(c)  repeat steps (a) and (b) until all the objective
functions have been chosen as the reference
function;

(d)  all points selected at least (n-1) times in the
step (b) will be assigned to the rank.
These steps are repeated for each rank, until

all points are classified.

Fitness function. After being ranked, all
individuals in the population are evaluated by a
fitness function. The fitness value represents a
measure of each individual performance, which
will be used on the selection procedure. Every
individual belonging to the same rank class is
considered equivalent and has the same fitness
value. Thus, it has the same probability of being
selected for reproduction. The fitness function, Fk,
is determined to each individual of the same rank
k by the following equations, as proposed by
Cheng and Li [5]:

∑
=

+−=
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k
skr

s
PkN

P
SS
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kNF r
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1+−

= (2)

where Nr is the highest rank of the population, Ps
is the population size and Psk is the population
size of rank k. According to this fitness definition,
the larger the population size at a rank is, the
smaller the fitness of a point. Hence, the
reproduction ratio of individuals at each rank
depends on both the rank level and population
size.

Niche operator. The niche technique
consists of a replacement procedure of
individuals. This operator has been applied to
determine which individuals will go to the next
population. The fitness of each child originated by
the crossover procedure is calculated in the
domain of its parental population. The
replacement of the parents only occurs if the child
fitness exceeds the parents’ superior fitness.
Otherwise, both parents will go to the next
generation [5]. This operator helps to avoid the
phenomenon known as genetic drift, which makes
a population become clustered at certain regions.
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The genetic drift results from stochastic errors
associated with the genetic operators and the use
of a population of finite size. Hence, this
technique has been adopted with the purpose of
maintaining the appropriate diversity of the
population.

Elitism Operator. The GA’s evolutionary
process, as mentioned before, is guided by the
ranking of the population. In the ranking
procedure, points are categorized into groups
according to their nondominance levels. The
closer to the Pareto set a group of points is, the
higher its probability to propagate to the next
generation. The concept of nondominance refers
to a characteristic behavior presented by a
sequence of points sorted according to their
objective function values. Hence, the
classification of a group of points depends on
their best objective function values.

The elitism procedure consists of the
propagation of the best solutions to the next
generation. For this purpose, it maintains an
elitism file where the best solution of each
individual objective function is registered. At
each generation, this file is updated: if a better
solution was generated it replaces the one stored.
The individuals selected to the next population by
the crossover and mutation procedures are
submitted to the elitism operator. The points
registered in the elitism file will randomly replace
some of the individuals selected as candidates to
the next generation. Since the elitism operator
stores the best solutions obtained till the current
iteration, it guarantees the propagation of best
solutions during the evolutionary search
procedure. As a consequence, it increases the
convergence of the optimization process as well
as the robustness of the algorithm.

Pareto-set filter operator. The Pareto set
filter operator works during the whole
optimization process. All points assigned rank 1
at each generation are registered in a Pareto set
file. This file is dynamically updated by using a
filter operator. In this filter, the nondominated
solutions of the current population are compared
with those already stored in the file, from the
previous generations. A new evaluation is
conducted in all points in the filter, according to
the following rules:

(a) all points in the filter reassigned rank 1, i.e.,
points identified as nondominated, are

recorded in the Pareto set file. The dominated
ones are discarded;

(b) if the number of points in the file is inferior
to the population size, the new nondominated
points are stored. Otherwise, if the file is full,
the most similar points in the Pareto set file
are replaced.

The concept introduced to measure the
similarity between two points in rule (b) is based
on the euclidean distance between the values of
the objective functions. Points with minimum
distance relative to the others are removed from
the file. Such procedure maintains an even
distribution of the points in the file, which helps
to provide the optimal set with the best solutions.
At the end of the optimization process, the file
itself comprises the Pareto optimal set and
constitutes the result of the optimization.

The proposed algorithm is detailed in a
previous work [10]. The computational load
associated to the algorithm relies on the number
of objective functions of the problem. At each
generation, the objective functions are evaluated
just once for each point. Therefore, the total
number of the objective evaluations is a function
of the size of the population, the number of
generations and the number of objective functions
optimized.

PARAMETER ESTIMATION PROBLEM

Grain Cooling Process
The first case study is the estimation of the

overall heat transfer coefficient in a grain cooling
process. The process is conducted in a continuous
cross-flow moving bed heat exchanger, fed with
warm soybean grains and dry air. The model
formulation considers the convection on the
particle surface as the dominant mechanism in the
gas-solid heat transfer [11]. Some assumptions
were made to simplify the mathematical
formulation of the problem:

(a) gas and solid velocity profiles are linear;
(b) the temperature profiles in both phase

feeding regions are considered linear;
(c) heat losses through the equipment walls are

negligible;
(d) the heat transfer perpendicular to the flow is

negligible;
(e) solid and gas flows are unidirectional;
(f) the physical and chemical properties are

constant throughout the bed.
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A hyperbolic system of differential equations
are provided to describe the steady state heat
transfer mechanism as follows:

Gas phase:

0)( =−+
∂

∂
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g
gg TTSh
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Solid phase:

0)( =−+
∂
∂

sg
s

ss TTSh
z

T
GCp (4)

where 
Dp

S
φ

ε )1(6 −
=

subject to the initial conditions

Tg (0,Z) = Tg0  and  Ts (X,0) = Ts0 (5)

 After integration, the equations (3) and (4)
can be expressed in dimensionless form as:
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where I0 is the modified Bessel function of the
first kind of order zero, and
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The optimization problem involves the
minimization of the least squares of the measured
temperature and the one predicted by the model.
The heat transfer coefficient is the decision
variable. The parameter estimation problem is
formulated as follows:
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Experimental results obtained in a pilot scale
heat exchanger have been used to estimate the
heat transfer coefficient. The physical properties
and parameters of the problem are presented in
[11].

In order to investigate the multiobjective
behavior of the formulated problem, the decision
variable is plotted in Figure 2 as a function of the
objective functions.

Figure 2 – Heat transfer coefficient of the grain
cooling process as a function of the objective

functions F1 and F2.

The objective functions are affected in
opposing ways by changes in the decision
variable. Therefore, the estimation parameter of
the soybean cooling process constitutes a
multiobjective optimization problem, and is
suitable to evaluate the algorithm performance.

Grain Drying Process
The second problem deals with the estimation

of the heat transfer coefficient and the drying rate
parameters of a corn drying process, conducted in
a fixed bed dryer. The drying model constitutes a
set of differential equations describing the
temperature and moisture content profiles in the
gas and solid phases. An algebraic-differential
approach is adopted to express the energy
balances in term of the enthalpies. The hypotheses
considered in the model formulation involve [12]:
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(a) a uniform plug flow of air through the bed;
(b) adiabatic walls, the heat losses are negligible;
(c) the temperature gradients within the

individual particles are negligible;
(d) the heat capacities are constant;
(e) the packing density of the grain in the bed is

uniform;
(f) the evaporating water extracts the heat of

desorption from the grain and enters the air
stream as water vapor at the grain
temperature.

The differential equations describing the heat
and mass transfer mechanisms are presented:

Solid phase mass balance
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t
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s −=
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∂
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Solid phase energy balance
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Gas phase mass balance
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The enthalpies are related to the temperatures as:
)( Rsss TTCpH −=             (18.a)
)( Rsll TTCpH −=             (18.b)

)( Rggg TTCpH −=             (18.c)
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R

−+= λ             (18.d)
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The drying rate expression for corn grains is
described as

))(( 21 sess YYbYbfm −−= (19)

where b1 and b2 are the parameters to be
estimated in order to determine the drying rate.

The sorption isotherms, Yse, for corn grains (Ts ≥
400C) are expressed by:
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where d1, d2 and d3 are parameters present in the
literature [13].

The partial differential and algebraic equation
system is discretized in the spatial domain into 50
points, using the implicit Euler form. The
resulting system consists of 300 equations, which
were integrated using the solver DASSL [14].

The formulation of the multiobjective
parameter optimization problem comprises the
minimization of the following objective
functions:
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Three decision variables are selected: the heat
transfer coefficient, h, and the drying rate
parameters of equation (19), b1 and b2. The
experimental data obtained by Calçada [13] in a
soybean drying process were used to estimate the
parameters above. The physical properties and
parameters related to the process are presented in
the same work.

RESULTS AND DISCUSSION
The proposed algorithm has been applied to

estimate the model parameters for the two cases
formulated. The optimizations have been carried
out using the GA parameters summarized in
Table 1, established according to a sensitivity
study of a previous work [10].

Table 1. Genetic algorithm parameters

Population size 20 individuals
Crossover  probability 75 %
Mutation probability 5 %
Number of children /crossover 1

Grain Cooling Process
Figure 3 shows the Pareto set obtained in the

soybean cooling process. The number of
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generations required to optimize the heat transfer
coefficient was 32 iterations.

Figure 3 – Pareto set for the soybean cooling
process.

The optimal values of the heat transfer
coefficient corresponding to both extremes of the
Pareto set were used to verify the parameter
estimation. The simulations of the model
illustrated in Figures 4 and 5 show that the
estimated parameter satisfactory fits the
experimental data.

Figure 4 - Air temperature profiles as a function
of the position in the heat exchanger.

Figure 5 - Soybean temperature profiles as a
function of the position in the heat exchanger.

Grain Drying Process
The Pareto set obtained for the corn drying

process is depicted in Fig. 6. Sixty-four iterations
were required to generate the solution set.

Figure 6 – Pareto set for the corn drying process.

Simulations of the model using the best set of
results for each objective function are illustrated
in Fig 7 and 8. The influence of the multiobjective
behavior can be observed in both cases by the
difference on the moisture content profiles.

Figure 7 – Moisture content profile as a function
of time using the best set of results for F1 and F2.

Figure 8 – Moisture content profile at different
heights using the best set of results of F1 and F2.
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In Figure 7, the parameter estimation based on
F1 provides the best description of the moisture
content. In Figure 8, the moisture content profile
is better simulated using the results based on F2.
The selection of the best compromise solution
will depend on the judgment of the engineer,
based on additional knowledge of the system.

For the sake of comparison, Figure 9 presents
the estimated correlation and the ones proposed in
the literature, by Lewis [15] and Mancini [16].
The estimated results are the ones that best fit the
experimental data in all tested cases.

Figure 9 – Corn moisture profiles as a function of
the height (t = 120 min), and the time (z = 50 cm).

CONCLUSIONS
Our focus in this contribution has been to

evaluate the performance of the proposed
algorithm in conducting multiobjective parameter
estimation. The algorithm has been applied to a
grain cooling process and a grain drying process
in order to determine the heat and moisture
transfer coefficients.

The model was validated against the
experimental data. Simulations were carried out
to verify the estimated parameters. The model
predictions have been shown to match the
measured values within experimental error.
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ABSTRACT 
The formal calibration procedure of a phase 

fraction meter is based on registering the outputs 
resulting from imposed phase fractions at known 
flow regimes. This can be straightforwardly done 
in laboratory conditions, but is rarely the case in 
industrial conditions, and particularly for on-site 
applications. Thus, there is a clear need for less 
restrictive calibration methods regarding to the 
prior knowledge of the complete set of inlet 
conditions. A new procedure is proposed in this 
work for the on-site construction of the 
calibration curve from total flow mass values of 
the homogeneous dispersed phase. The solution is 
obtained by minimizing a convenient error 
functional, assembled with data from redundant 
tests to handle the intrinsic ill-conditioned nature 
of the problem. Numerical simulations performed 
for increasing error levels demonstrate that 
acceptable calibration curves can be 
reconstructed, even from total mass measured 
within a precision of up to 2%. Consequently, the 
method can readily be applied, especially in on-
site calibration problems in which classical 
procedures fail due to the impossibility of having 
a strict control of all the input/output parameters. 

 
NOMENCLATURE 
α volumetric solid fraction 

 solids (particulate) mass flow rate sm&
Qs solids volumetric flow rate 
ρs solids density 
C inter-electrode capacitance 
Ms total solids mass 
φ( ⋅ ) calibration curve to be reconstructed 
ai expansion coefficients of φ( ⋅ ) 
e error functional 
 

INTRODUCTION 
The continuous measurement of physical 

parameters in multiphase flows is of great 
interest, not only for the monitoring and control 
of industrial equipment, but also to obtain 
phenomenological insight in research 
applications. In particular, the development of 
phase fraction sensors is a subject very frequently 
found in the related scientific literature, 
considering that this parameter is one of the most 
adequate when describing and analyzing two-
phase flows. 

A good illustration of this is the determination 
of composition and flow rates in the petroleum 
industry (Fischer, 1994). In the absence of an 
acceptable on-line measurement device, the most 
common procedure is to adopt a strategy based on 
the continuous separation of the fluid constituents 
and subsequent measurement by conventional 
single-phase techniques followed by 
recombination. Despite the extensive number of 
applications based on this approach, its efficiency 
and economic feasibility are not satisfactory. The 
large size of conventional separation equipment, 
such as hydro-cyclones and other centrifugal 
separators, is frequently restrictive and even 
prohibitive in offshore production systems for 
instance. In addition to this, in some situations, 
special thermal or chemical methods are required 
to deal with emulsion formation. Also, the 
flashing of dissolved gases from the liquid phase 
requires a more elaborate temperature and 
pressure control system implying in more 
complex operation conditions (Rajan et al., 1993). 
Thus, the development of simple, robust and 
inexpensive non-intrusive multiphase flow 
sensors suited for industrial applications is still an 
open problem. 

In this context, electrical sensing techniques 
are particularly attractive due to its capability of 
resolving fast changes in the flow structure, 
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besides being simple to implement and not 
expensive as well. Its general principle of 
operation is based on differences or contrasts in 
the electrical properties of the phases of the 
mixture, and also on the assumption that the 
electromagnetic sensing field is instantaneously 
modulated by the flow (Chang and Watson, 
1994). In general, problems associated with 
electrical sensing are related to electrochemical 
effects (Hemp, 1994), electrostatic stray charges 
(Green and Thorn, 1998), nonlinearly due to the 
influence of flow regimes (Andreusi et al., 1988), 
and electrode erosion or coating. One way of 
overcoming these problems is to design the sensor 
and the sensing strategy specifically for the 
desired application, therefore the need for on-site 
calibration methods (Duncan and Trabold, 1997). 

The formal calibration procedure of a 
measurement device is based on the construction 
of the output/input relation by imposing known 
inputs and registering the corresponding outputs. 
In the case of a phase fraction probe this is not 
sufficient because, in addition to being correlated 
to the phase fraction, the probe's response will be 
also strongly correlated to the flow regime. In 
other words, the same phase fraction may result in 
different responses depending on the topological 
organization of the constituent phases within the 
sensing volume (see for instance the work of 
Andreussi et al., 1988). Attempts have been made 
aiming to minimize the influence of the flow 
regime, mostly relied on the optimization of the 
electrodes (Seleghim and Hervieu, 1998) or on 
the sensing strategy (Klug and Mayinger, 1994). 
A very promising approach is based on fuzzy and 
neural signal processing techniques and is 
implemented so to previously identify the flow 
regime and subsequently take the correct 
calibration curve (Tsoukalas et al. 1997; Mi et al. 
1998; Crivelaro and Seleghim, 1999). 

Thus, in a strict sense, the calibration of a 
phase fraction meter requires the ability to impose 
known phase fractions at known flow regimes, 
which can be straightforwardly done in laboratory 
conditions. In industrial conditions this is rarely 
the case. For instance, if it is necessary to 
calibrate a fraction meter placed on a pneumatic 
conveying line, the control of the flow conditions 
would require the addition of auxiliary equipment 
that would produce significant disturbances in the 
operating conditions and, consequently, 
compromising the final result. Still, the majority 
of industrial scale pneumatic conveyors are 
designed to operate at nonpermanent flow 

conditions, which may take the form of discrete 
structures such as solid plugs and rolling dunes, 
or alternating flow regimes associated with 
varying inlet mass flow rates. This justifies the 
need for less restrictive calibration methods, in 
particular with regard to the prior knowledge of 
the complete set of inlet conditions.  

The purpose of this paper is to contribute in 
this direction by proposing a new inverse 
procedure for the on-site construction of the 
calibration curve of a phase fraction meter from 
less restrictive data, i.e. not the instantaneous flow 
rate signal but its integral value. The problem will 
be precisely stated in section 2 and a numerical 
simulation will be presented in section 3 (in 
which the consequences and a solution for the 
problems associated with the inverse nature of the 
formulation will be shown). A final conclusion 
and the references are presented respectively in 
section 4 and 5. 

 
STATEMENT OF THE PROBLEM 

Consider the homogeneous flow of a two-
phase mixture trough a capacitive fraction meter 
installed on a light phase pneumatic transport 
system (Fig. 1). The volumetric solid fraction (α) 
is defined as the ratio between the volumes 
occupied by the solids (Vs) and the total sensing 
volume (Vs+Va), which, according to the one-
dimensional one-velocity model (Bergels et al., 
1981), can be written as 
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in which the volumetric flow rates (Qs and Qa), 
solid density ρs and mass flow rate  is defined 
in Fig. 1. 
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Figure 1: Homogeneous flow of a gas-solid 
mixture trough a capacitive fraction meter  
 
The capacitance (C) measured between the 

sensing electrodes depends on how the electrical 
field traverses the sensing volume, which is 
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related to the permittivity of the medium and also 
to the geometric organization of the different 
phases. Thus, the capacitance is strongly 
correlated to the solid fraction and to the flow 
regime (homogeneous by assumption), and the 
formal relation between these variables, i.e.  

 
)C(flowφ=α  (2) 

 
is known as the meter's calibration curve as 
mentioned before. Substituting equation (2) into 
(1) and isolating the solid mass flow rate yields: 
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a

−
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Qm s
s

φ

ρ
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In an industrial pneumatic conveying system 

the instantaneous values of the air volumetric 
flow rate (the continuous phase) can be readily 
determined, for instance with an orifice plate or 
simply from the blower's performance curve by 
measuring its rotation and pressure rise. However, 
the measurement of the instantaneous values of 
the solid flow rate is quite complex without 
modifying the piping to install auxiliary 
equipment. In addition, the solid flow rate must 
be measured at the fraction meter's section since it 
can vary significantly along the transport line as 
well as in time (Ostrowski et al., 1999). A more 
convenient variable to measure would be the total 
solid mass (Ms) conveyed in a given time interval: 
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This expression can be obtained from the 

integration of equation (3), with the additional 
assumption (for simplicity and without loss of 
generality) of a constant volumetric air flow rate. 
It will then result 
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To obtain the calibration curve α = φ( C ) it is 

necessary to solve the integral equation (5) on the 
input data Ms, ρs, Qa and C = C( t ), the 
instantaneous capacitance values delivered by the 
fraction meter. Equation (5) can also be seen as a 
special case of an inhomogeneous Fredholm 

equation of the first kind, which is known to be ill 
conditioned. Consequently, as it will be shown on 
the sequel, if specific methods to deal with the ill-
conditioned nature of the problem are not 
employed, the calibration curve will be extremely 
sensitive to small changes in the input parameters, 
which in fact are likely to happen due to intrinsic 
experimental errors. This is so because the 
integration of the unknown function in (5) causes 
an information loss.  A proper method to deal 
with this must, in some way, restore the lost 
information from some prior knowledge or from 
redundant measurements. 

 
NUMERICAL SIMULATION AND MA-
NAGING THE ILL-CONDITIONED NATURE 
OF THE INVERSE PROBLEM 

 
In order to demonstrate the statements above 

consider the following numerical simulations. 
First, suppose that the calibration curve is given 
by the following representative formula (taken 
from previous laboratory experiment – Hervieu, 
1999): 

 
C12.00036.006.0)C( −−=φ=α  (6) 

 
This equation is not known a priori and will 

have to be reconstructed from experimental data. 
Suppose now that, due to a specific operating 
condition, the instantaneous measured solids 
fraction values follow the equation 

 
[ ]t(sin1025.0)( π+=α  (7) 

 
This being, the substitution of (7) into (6) 

yields the instantaneous capacitance values 
delivered by the probe: 

 
[ ] [ ][ ])t(sin10052.0025.0)t(sin1)t(C π+−π+=  

 …(8)
  

The resulting instantaneous solids mass flow 
rate for homogeneous flow can be determined by 
introducing (7) into expression (3), which yields 

 

[ ]( ) 1)t(sin1025.0
Qm 1
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−π+
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= −
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The following figure illustrates the behavior 

of these curves for ρs = 3000 kg/m3 and 
Qa = 0.01 m3/s 
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Figure 3: Capacitance in pF (equation (8)) and mass flow rate in kg/s (equation (9)) as a 

function of time in sec, resulting from (6) and (7) in an homogeneous gas-solid flow. 
 
 
The inverse problem, such as formulated 

above, consists in reconstructing the calibration 
curve (2) (which was imposed to follow (6)) from 
measurements of the total mass Ms and the 
instantaneous capacitance values (8). To do this 
we can start by expressing (2) according to 

 

∑ ϕ≅φ=α
N

0
ii C(a)C( )  (10) 

 
where {ϕi( C )} is a convenient set of known 
functions. Subsequently, substituting (8) into (10) 
and the result in (5) we obtain a formal relation 
with the capacitance signal, the approximated  
calibration curve and the measured total mass, 
that is (equation (11) ): 
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The difference between both sides of the 

expression above constitutes an error functional 
expressing how well is the approximation given 
by (10). The influence of experimental errors in 
the measurements can be introduced, for instance, 
by randomly perturbing Ms. and C. We thus 
define (equation (12) ): 
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where δ and ε( t ) are centered uniform random 
variables. The reconstruction of the calibration 
curve can now be achieved by searching the 
minimum of equation (12).  

The steepest descent method is employed in 
this work, with increments calculated from an 
arbitrated step ∆a, according to the following rule: 
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Consider δ = ε( t )= 0 to illustrate the ill-posed 

nature of the problem. In this case, the minimum 
of (12) can be calculated by solving equations  
(13) directly, which produces progressively better 
approximations as the polynomial order N in (10) 
is increased. This is as shown in Figure 4 for a 
linear and a third order approximation. 
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Figure 4: Reconstruction of the calibration curve from simulated experimental data b 

 searching the minimum of (12) for increasing approximation order in (10) 
 

As it can be seen, the reconstruction works 
adequately under the assumption of no 
experimental errors. In a real situation however, 
these errors must be taken into account and, due 
to the inverse nature of the problem, this will 
produce an extremely negative affect. This can be 
illustrated by performing the same reconstruction 
as shown in Figure 4.b (third order 
approximation) and considering only a centered 

experimental error in the measurement of Ms, i.e. 
ε( t ) = 0 while δ varies randomly between ±δmax. 
The following figure shows the influence of 
increasing values of δmax in the reconstructed 
calibration curve. Although neglecting the error in 
the measurement of the instantaneous capacitance 
values, even unrealistic experimental errors the 
order of δmax = 10-6 have a disastrous effect. 
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Figure 5: The influence of experimental errors in the reconstruction of the calibration curve 

 (third order polynomial) from the minimum of (12). 
 
As mentioned before, this problem is probably 

triggered by the integration of the unknown 
function φ( C ) in (5) rendering the problem 
extremely ill conditioned. To deal with this there 
are some mathematical methods, mostly based on 
the construction of regularizing operators from a 

priori information. Another way of overcoming 
the problem, which in fact is more natural in the 
case we are dealing with, consists in reintroducing 
the lost information by redundant measurements.  

 Consider then a set of measurements of 
the total mass Ms

(k) and the corresponding 
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capacitance historic C(k)( t ), performed over 
different time intervals ∆t(k) (k = 1,2,… M). For 
the purposes of this numerical simulation, these 
data can be generated by randomly varying δ and 
ε( t ), i.e. 
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Within these definitions, the error associated 
with each measurement can be quantified by the 
following  
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and a global error function can be defined by 
calculating the Euclidean norm of {e(k)}: 
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The problem can now be solved by searching 
for the minimum of (18) instead of (12). Figure 6 
shows the results for increasing error in the 
measurement of the total mass (δmax) and time 
intervals varying randomly between 10 and 30s 
according to a uniform law. One can readily 
conclude that the admissible error have been 
significantly increased.  

To illustrate how the ill-conditioned nature of 
the problem manifests itself at the formulation 
proposed here some numerical simulations were 
carried out with a reduced number of parameters. 
The graphic in Fig. 7 shows (18) with N = 2, i.e. 
E = E( a0, a1 ), to  
 
allow visualization, and M = 100 (that is 100 
evaluations of (17) with different values of δ). It 
is possible to observe that there exists a 
pronounced minimum at the point (0.0002, 
1.4489) which corresponds to the calibration 
curve 

 
C4489.10002.0)C( +=φ=α  (19) 

 
Equation (19) corresponds to the projection of 

the actual calibration curve (6) onto the subspace 
of all possible linear calibration curves. It is also 
important to stress that the topology of the (18) 
have particular features which will induce severe 
difficulties regarding the convergence of the 
minimization procedure (a tradeoff between 
setting very small iteration steps and intense 
oscillatory behavior of the global error function). 
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Figure 6: The influence of experimental errors in the reconstruction of the calibration curve 
 (third order polynomial) from the minimization of (18)
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Figure 6: ( continued) 

 

 
 
Figure 7: Error surface constructed for a two-parameter (linear) approximation of the calibration curve 

 
CONCLUSION 

A new inverse procedure is proposed in this 
work for the on-site reconstruction of the 
calibration curve from total flow mass values of 
the homogeneous dispersed phase. The problem is 
formulated as an intrinsically ill conditioned 
integral equation solved by setting an appropriate 
approximation for the calibration curve (equation 
(10), figure 4). Under these circumstances, the 
method cannot be applied in practical situations 
due to the severe influence of very small 
experimental errors (illustrated in figure 5).  

The proposed solution to this is based on 
minimizing an error functional constructed from a 
set of redundant measurements, which restores 
the lost information associated to the integration 
of the instantaneous mass flow rate in the one-
dimensional one-velocity flow model in equation 
(5). Numerical simulations performed for 
increasing errors demonstrate that acceptable 
calibration curves can be reconstructed, even 
from total mass measurements within a precision 
of up to 2%. Thus, the method can readily be 
applied, especially in on-site calibration problems 
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in which classical procedures fail due to the 
impossibility of having a strict control of all the 
input/output parameters. 
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ABSTRACT 

The moving phase change interface in the 
latent heat energy storage system is estimated by 
applying a two-dimensional inverse geometry 
problem. The energy storage system of the 
vertical tube type is considered for the present 
inverse geometry problem. To solve the phase 
change problem, the boundary element method is 
adopted. The moving phase change interface is 
estimated by using the conjugate gradient method. 
Estimation of the phase front motion is verified 
by conducting the inverse analysis for an assumed 
phase front motion. An inverse analysis for the 
desired temperature distributions is executed to 
investigate the possibility of desired front motion 
control or ice monitoring. The effects of the noise 
levels and the thermocouple spacing on the 
inverse solutions are also examined. 

 
NOMENCLATURE 

PC  constant-pressure specific heat 
J  functional defined by Eq. (5) 
J ′  gradient of functional 
k  thermal conductivity 
La  latent heat 
M  total number of thermocouples 
T  dimensionless temperature 

T∆  sensitivity function 
Ste  Stefan number 
Y  dimensionless measured temperature 
 
Greek Symbols 
β  search step size 
γ  conjugate coefficient 
Ω  computational domain 
Γ  boundary of computational domain 
λ  Lagrange multiplier of adjoint problem 
ω  random variable in measured data 
σ  standard deviation of the measurement 

errors 

 
Subscripts 
L  liquid region 
m  location of thermocouple 
S  solid region 
∞  working fluid 
 
Superscripts 
ˆ estimated variables 
n  number of iteration 
∗  Green function 
 
INTRODUCTION 

By using inverse analysis, engineers can 
obtain the thermal quantities that are difficult to 
measure or analyze. When the shape of the 
problem is unknown, the inverse geometry 
problem can be applied to the shape estimation. 

Thermal energy storage is becoming popular 
as an energy saving method to solve the 
imbalance between day and night energy demand 
patterns. Especially, latent heat energy storage 
system has advantages of low volume/energy 
ratio together with its small temperature deviation 
as compared with sensible heat storage system. 

In the previous work of thermal storage 
system by Ismail et. al. [1,2,3,4], a direct phase 
change problem on the solidification of phase 
change material was studied numerically. 

Zabaras et. al. [5] estimated the thermal 
boundary conditions for desired phase front 
motion. Huang and Chen [6] carried out the 
inverse geometry problem successfully by using 
boundary element method and conjugate gradient 
method. Huang and Hsiung [7] also conducted the 
optimal design problem of the cooling passage 
inside a turbine blade by using inverse geometry 
problem. 

The objective of this work is to extend the 
inverse geometry problem to the phase change 
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problem in estimating the ice growth process in a 
vertical tube type energy storage system. 

 
DIRECT PROBLEM 
 
Two-Dimensional Phase Change Problem 

In the thermal storage system shown in Figure 
1, the liquid water is contained inside the external 
shell, while the working fluid flows into a set of 
tubes inside the shell. When the temperature of 
the working fluid is lowered below the phase 
change temperature, the solid-liquid interface is 
growing on the outside surface of the inner tube. 

The mathematical modeling is conducted 
using only one inner tube of the thermal storage 
system as shown in Figure 2. The thermal 
resistance of the inner tube is assumed to be 
negligible. To transform the formulation to the 
dimensionless form, the following dimensionless 
quantities are defined. 
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where the ‘¯’ denotes dimensional quantit ies, La  
means the latent heat, x, y are dimensionless 
geometrical coordinates, and á is dimensionless 
thermal diffusivity. L , 0T  are reference length 
and initial temperature, respectively. Bi is the 
Biot number that means heat transfer between 
tube surface and working fluid, and Ste is the 
Stefan number that means the effect of latent heat. 
In the formulation, it is assumed that the phase 
change is dominated by heat conduction. 
Considering the above assumptions, the 
dimensionless governing equation for a two-
dimensional phase change problem is given as: 
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where n is normal outward direction to the 
boundary, vn is the n-direction velocity of moving 
interface, and Tm is the phase change temperature. 
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Boundary Element Method 
Since the BEM [8] can readily accommodate 

the change of unknown boundary, the BEM is 
adopted for the estimation of interface shape. 

After multiplying conduction equation by the 
Green function, integrating the result with respect 
to all space and time domain, and applying 
Green’s second identity, the following equation is 
obtained. 
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where K is the thermal diffusivity, tJ denotes 

the final time step, and N is a point to be analyzed. 
T* is Green function, and q* is the derivative of T* 
with respect to the normal direction. r is the 
length to a point on the boundary from N, and ô = 
tJ – t. d is the partial derivative of r respect to 
normal direction. 

Since the initial temperature is zero, the last 
integral term of right-hand side of Eq. (2) is 
eliminated. Reformulating the result, the 
boundary element equation is obtained. By 
solving the boundary element equation, the 
unknown temperatures or heat fluxes can be 
obtained. 

 
INVERSE PROBLEM 

The present inverse estimation of the phase 
change interface is to be performed in such a way 
that the following functional is minimized. 
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Here TS,m(t) is the calculated temperatures by 

the estimated interface, and Ym(t) is the measured 
temperatures. 

 
Conjugate Gradient Method 

The CGM iterative process is used for the 
estimation by minimizing the functional. The 
phase change interface is given as 
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where φ is the angle between the horizontal and 
outward normal direction of the unknown 
boundary. ( )tyxP ,,  is the direction of descent 
(i.e., search direction) given by 
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where γ n is the conjugate coefficient defined as 
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Sensitivity Problem and Search Step Size 

The sensitivity problem is obtained by 
replacing Ã2 by Ã2 +ÄÃ2 and T by T+ÄT in the 
direct problem, then subtracting the direct 
problem from the resultant expression, and 
neglecting the second-order terms. 
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Only one of the two boundary conditions is 

applied to unknown interface, since the measured 
temperatures are used additionally. If Eq. (9d) is 
used for the boundary condition, the iteration 
cannot be performed because of the fluctuation 
resulting from the condition including a ‘vn’ term 
coupled with an unknown interface that is 
changed with iterations. Therefore, Eq. (9e) is 
used for the interface condition in this study. 

The functional can be rewritten as follows. 
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The following expression on the search step 

size is obtained by differentiating Eq. (10) with 
respect to ân and letting by zero. 
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The sensitivity function )(,

n
mS PT∆  can be 

obtained from the solutions of Eq. (9) by letting  

nP−=∆Γ2 . 
 

Adjoint Problem and Gradient Equation 
To obtain the adjoint problem, Eq. (1) is 

multiplied by the ),,( tyxSλ , then integrated over 
all space and time domain, and added the 
functional. In the resulting equation, the ÄJ is 
obtained by perturbing Ã2 by ÄÃ2 and T by ÄT, 
then subtracting the original equation, and 
neglecting the second-order terms. This gives 
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where )(•δ  is the Dirac delta function. In Eq. 
(12), the domain integral term is reformulated 
based on Green’s second identity, the boundary 
and the initial conditions of the sensitivity 
problem are utilized, and the integral including 
ÄT becomes zero. Then the following adjoint 
problem is obtained 
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After the introduction of the adjoint problem, 

the following integral term is left. 
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By definition [6], the functional increment can 

be represented as 
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By comparing Eq. (14) with Eq. (15), the 

gradient of functional ( )tyxJ ,,′  is obtained as 
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In Eq. (16), the estimation cannot be 

performed since the initial and final values are 
always equal to zero. Therefore the following 
assumptions are introduced. 
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where Ät is the numerical time increment. 

 
Stopping Criterion 

If the problem contains no measurement errors, 
the traditional check condition is specified as 

 
ε<Γ + )],,(ˆ[ 1

2 tyxJ n    (19) 
 

where å is a small value. However, the measured 
temperature data may contain measurement errors. 
Therefore the stopping criteria å is obtained by 
using the discrepancy principle [9]. 

 

JtM 2σε =     (20) 
 

where ó is the standard deviation of the 
measurements, which is assumed to be a constant. 
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Computational Procedure 
When ( )tyxn ,,ˆ

2Γ  is available, the calculation 
for the iteration n+1 is summarized as below. 
Step 1. Solving the direct problem given by Eq. 

(1), and compute the functional of Eq. (5) 
Step 2. Examine the stopping criteria given by the 

Eq. (19) and Eq. (20). 
Step 3. Solve the adjoint problem of Eq. (13). 
Step 4. Compute ( )tyxJ ,,′  by Eq. (16). 

Step 5. Compute nγ  and nP  from Eq. (7) and Eq. 
(8), respectively. 

Step 6. Solve the sensitivity problem of Eq. (9). 
Step 7. Compute the search step size of Eq. (11). 
Step 8. Estimate the new ( )tyxn ,,ˆ 1

2
+Γ  from Eq. 

(6), and return to step 1. 
 
RESULTS 

We consider one specific inverse problem 
whose phase change interface is assumed to be 
the known function to verify the methodology 
considered in the present work. The specified 
moving velocity of the interface and the relational 
equation between the moving velocity and the 
phase change interface are used for assuming the 
known function of the interface. 

The temperature readings for this inverse 
problem are produced numerically by adding 
numerical noises to the exact solution of the direct 
problem. The numerically produced measurement 
data can be expressed as follows. 

 
ωσ+= exactYY     (21) 

 
where Yexact is the exact solution of the direct 
problem, ó is the standard deviation of the 
measurements, and ù is a random variable 
generated by IMSL subroutine DRNNOR. ù has 

a value within –2.576 and 2.576 for the 99% 
confidence bounds. 

The reference length representing the radius of 
inner tube is given as unity. The thermal 
properties of ice in the solid and liquid regions are 
given as: 
 =Lρ 999.8 3/ mkg , =PLC 4.225 CkgkJ °⋅/ , 

=Lk 0.566 CmW °⋅/ , =Sρ 920 3/ mkg , 

=PSC 2.11 CkgkJ °⋅/ , =Sk 2.2 CmW °⋅/ , 

=La 333.4 kgkJ /  
In order to specify an arbitrary phase change 

configuration, the moving velocity of a phase 
change interface is assumed as 
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The explicit relationships between the moving 

velocity and the phase change interface are given 
as 
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From the interface velocity given by Eq. (22) 

and the explicit relationships given by Eq. (23), 
the phase change interface for the validation is 
specified. The interface configuration specified by 
Eq. (22) and Eq. (23) is shown in Figure 3. 

The initial guessed interface configuration for 
the iteration is assumed to be the surface shape of 
inner tube, ( )tyx ,,1Γ . 

The difference between the exact and the 
estimated interface is expressed by the following 
shape error. 

FIGURE 3  Exact interface shape of ice. 

1

1 .2

1 .4g
(t)

0

5

10

15

t (tim
e)

0

2

4

θ

FIGURE 4  Estimated interface shape of ice using 
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where I and J represent the number of elements 
discretized by space and time, respectively. 

The relative quantity of measurement errors is 
calculated by the following measurement error. 
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Here Yavg is the average of measured data. 
 

Validation Case Using 9-Thermocouples 
The inverse analysis using 9-thermocouples, 

denoted by the dots in Figure 2, is performed. 
Without measurement errors (ó = 0), the given 
stopping criteria å = 0.002 is satisfied after the 
estimation with 33-iterations. The estimated result 
of the phase change interface is shown in Figure 4. 
In this case, the functional is converged to 0.0018 
from 1900, the shape error to 0.02% from 11.0%. 
From Figures 3 and 4, it can be seen that the 

phase change interface of ice is obtained 
accurately in the case of no measurement errors. 

Since the measurement errors are always 
introduced in any real measurement, it is required 
to observe the influence of measurement errors on 
the inverse estimation. Figure 5 shows the 
estimated interface after 13-iterations in the case 
of ó = 0.05. In this case, the measurement error is 
calculated as 1.40%. The functional is converged 
to 0.37 from 1900, and the shape error to 0.27% 
from 11.0%. In Figure 6, the estimated interface 
converged after 8-iterations is shown in the case 
of ó = 0.2. Here the measurement error is 

FIGURE 5  Estimated interface shape of ice 
using ó = 0.05 and M = 9. 
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FIGURE 6  Estimated interface shape of ice 
using ó = 0.2 and M = 9. 
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FIGURE 7  Estimated interface shape of ice 
using ó = 0.0 and M = 5. 
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using ó = 0.2 and M = 5. 
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calculated as 5.70%. The functional is converged 
to 2.2 from 1900, and the shape error on 0.75% 
from 11.0%. The above results indicate that the 
phase change interface estimation is accurately 
performed even though measured temperatures 
contain measurement errors. 

 
Validation Case Using 5-Thermocouples 

In the most of real systems, there are some 
difficulties in installing enough sensors. Therefore, 
it is necessary to verify the effect of the less 
number of sensors. To examine the influence of 
the number of sensors, the inverse analysis is 
performed using 5-thermocouples. 

In the case with 5-thermocouples, only five-
spatial information can be obtained. But the five-
spatial information is not enough to express the 
interface for the inverse calculation. Therefore the 
phase change interface is expressed more closely 
by interpolation between each thermocouple. 

Figure 7 shows the estimated result of phase 
change interface in the case with no measurement 
error. It satisfies the given stopping criteria å = 
0.002 after 33-iterations. The functional is 
converged to 0.0018 from 1900, the shape error to 
0.14% from 11.0%. Using 5-thermocouples 
without measurement errors, the phase change 
interface of ice is estimated accurately. 

In Figure 8, the estimated interface after 18-
iterations is shown in the case of ó = 0.05. The 
measurement error is 1.40%, the functional is 
converged to 0.19 from 1100, and the shape error 
to 0.35% from 11.0%. As expected, the estimated 
interface with measurement errors is worse than 
that with no measurement error. But the estimated 
interface shows a good agreement with the exact 
interface. 

In Figure 9, the estimated interface after 12-
iterations is shown in the case of ó = 0.2. Here the 
measurement error is 5.80%, the functional is 
converged to 3.4 from 1100, and the shape error 
to 1.1% from 11.0%. Though small number of 
thermocouple and large measurement error, the 
interface can also be estimated with a good 
agreement. 

 
Results on the Desired Temperature 
Distributions 

To illustrate the ability of the present inverse 
estimation in operating the practical thermal 
storage system and monitoring the generated ice, 
we consider arbitrary temperature distributions on 
the thermocouple location. The estimations for 
the arbitrary temperature distributions are 
performed. 

Figure 10(a) shows the estimated interface 
configuration when imposing relatively higher 
temperature distribution on the first thermocouple 
and lower temperature distributions on the fifth 
and sixth. It can be seen that a thinner ice layer is 
generated around the first thermocouple, and a 
thicker ice layer around the fifth and sixth. Figure 
10(b) is the estimated result for the similar 
temperature distribution as in Figure 10(a), but 
temperature increases more with time compared 
to that of Figure 10(a). Figure 10(b) shows that 
the ice growth is more active than that of Figure 
10(a) because of increasing temperature 
differences. 

Figure 11(a) illustrates the estimated interface 
configuration when imposing relatively lower 
temperature on the ninth point and increasing the 
temperature clockwise from that point. It can be 
seen that the thick ice layer is generated around 
the ninth thermocouple, and the thickness of ice 

FIGURE 10  Estimated ice shape for higher 
desired temperatures at 1 and lower at 5, 6. 
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FIGURE 11  Estimated ice shape for higher 
desired temperatures along 1,2,3, medium along 

4,5,6 and lower along 7,8,9. 
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layer decreases clockwise from that location. 
Figure 11(b) shows the estimated result with the 
similar temperature distributions as in Figure 
10(a), but temperature increases more with time 
compared to that of Figure 11(a). It is observed 
that thickness of ice layer in Figure 11(b) is 
thicker than that of Figure 11(a). 

 
CONCLUSION 

In this work, the phase change interface is 
estimated using the inverse geometry technique 
by applying the conjugate gradient method 
(CGM) along with the boundary element method 
(BEM). Several cases for different numbers of 
sensors and measurement errors are successfully 
performed. Physical validity for an arbitrary 
temperature distribution imposed on the 
thermocouples is also examined. The present 
results show that the phase change interface can 
be estimated with a good accuracy by using the 
method considered in this work. The present work 
may also be used for controlling and monitoring 
the thermal storage system. 
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ABSTRACT
This paper deals with the resolution of

inverse problems in magnetostatics. The cases
the authors have considered are related to the
determination of the current density or positions
of air coils on the basis of magnetic field
measurements. These problems are ill-posed, so
regularization techniques are needed. The authors
discuss the main iterative regularization
principles and D-optimal experimental design.
Numerical and experimental results are
presented.

NOMENCLATURE
A: Matrix of the contribution of each coil to

each field value.
B: Magnetic field values.
e: Maximum relative error on the estimated

parameters.
E: Quadratic error between the exact and

computed solution.
J: Coil current densities.
MF: Information matrix.
R: Quadratic residue between the computed

and measured field.
Z: Coil axial positions.
δ2: Level of experimental error.

INTRODUCTION
In superconducting magnet technology, coils

are located in cryostatic equipment. Therefore, a
numerical tool calculating the coil parameters
from magnetic field measurement is interesting
for faulty operating conditions determination.
This leads us to solve two different inverse

problems: a linear inverse problem to compute
the current densities on the basis of field
measurements, and a nonlinear inverse problem
for the computation of the coil positions.

Several aspects across electromagnetism raise
inverse problems. Inverse problems for Maxwell
equations in general are discussed in [1]. In the
case of superconducting magnet diagnosis, this
subject has been discussed by [2] who uses the
Levenberg-Marquard algorithm. Reference [3]
employs the Truncated Singular Value
Decomposition for identification of the plasma
magnetic contour from external measurement by
means of equivalent currents. Magnetostatic
inverse problems have also been discussed in
biomagnetism by several authors. Reference [4]
gives an overview of the different methods used.

In this paper, the authors present a different
approach based on iterative regularization [5,6].
This method was chosen because it applies to
linear and nonlinear problems. We reconstruct
the current densities then the coil axial positions
of Magnetic Resonance Imaging (MRI) magnets.
The main contribution of this paper is the
experimental validation of the numerical method
presented in [7].

The first part of this paper describes the
problem statement. In the second part, the
resolution of the linear inverse problem is
detailed. Numerical and experimental results are
presented, a D-optimal experimental design is
calculated. In the third part, the resolution of the
nonlinear inverse problem with numerical and
experimental results is described.
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PROBLEM STATEMENT

Description of MRI magnets
The magnets we are considering are magnets

for MRI. These magnets produce a high and
uniform magnetic field in a Volume Of Interest
(VOI), which is a sphere at the center of the
magnet. Typically, the field values range from
0.5 T to 1.5 T and the field homogeneity is 10
ppm (part per million). To create such strong
magnetic field, superconducting technology is
required. Therefore the magnet coils are made of
superconducting wire and the whole magnet is in
a cryostat. The magnet length is about 1.5 m and
the bore diameter 0.9 m (Fig. 1). The field
homogeneity is checked by performing
measurements at the surface of the VOI.

Figure 1. Example of a MRI magnet

Magnetostatics equations
We assume that the magnetic field is static

and that the equipment is in vacuum. The
Biot-Savart law gives the magnetic flux density B
at the point P produced by a current distribution j
at the point M [8]:

( ) ( )
τ

π
µ

d
M

P ∫∫∫
×

=
volume Coil MP

MP
B

34
0

j
(1)

In a MRI magnet, the principal magnetic field
is parallel to the magnet axis. Thus, we consider
only the axial component of the field Bz. The
system possesses cylindrical symmetry, the
current density is only azimuthal (Fig. 2).

Measurement pointsMagnet axis

Coils
Volume of interest

Figure 2. Cross section of the magnet geometry

Inverse problems statement
We will discuss two types of problems.
Linear inverse problem. The coil geometry

and positions are known, and we reconstruct the
current density. This leads us to solve a linear
integral equation of Fredholm of the 1st kind. The
unknowns are the current density values. We
denote J the vector of all the densities. The
spatial discretrization and collocation of the Biot-
Savart law lead to a singular integral
discretization. It can be stated as the matrix
relation:

BJ =A (2)

where B denotes the magnetic field values, and A
is the matrix of the contributions of each coil to
the field values in each point.

Nonlinear inverse problem. The current
density, coil geometry, and coil radius are
known, and we reconstruct the coil axial
positions. The integral equation to be solved is
then nonlinear. The purpose is to evaluate a
displacement from the normal position, which
causes a loss in the field homogeneity. The
unknowns are the coils axial positions Z. As this
problem is nonlinear, the discretization of (1)
leads to a formulation of the type:

( ) BZ =A (3)

where A depends on the coil positions Z.

RESOLUTION OF THE LINEAR
INVERSE PROBLEM

The authors use iterative regularization
[5-7]. According to this method principle, we
formulate the inverse problem as an optimization
problem, then solve it by an iterative method
coupled to a stopping rule. The number of
iterations in the minimization is the
regularization parameter.

Objective function
The objective function to minimize is the

quadratic residue R between the computed
magnetic field and the measured field.

( )   BJJ
2

−= AR (4)

The direct problem i.e. AJ is computed by
integration of the Biot-Savart law.
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Minimization procedure
The minimization is performed with the
conjugate gradient method [9].
The residue gradient is calculated by:

( ) i
T

i AAG BJ −= 2 (5)

where Ai denotes the ith column of the matrix A.
The descent parameter is calculated by making a
one variable minimization along the descent
direction D. As the problem is linear, this
minimization has an analytical solution:

)A()A(
)A()A(

T

T

DD

BJD −
−=γ (6)

Choice of the regularization parameter
The authors employ two different ways to

choose the regularization parameter.
Discrepancy principle [5]. The authors

match the residue and the error level δ in the
input data. We define the error level by:

22
exactmeasured BB −=δ (7)

Thus, the final iteration is determined when:

2δ≈R (8)

L-curve [10]. The value of the residue is
plotted versus the solution norm for different
regularization parameters. This curve has an
L-shape. The iteration number is chosen by
selecting the value corresponding to the corner of
the L.

Numerical example
We consider a magnet (Fig. 3) divided into

24 coils. Our goal is to compute the current
density values from 101 measurement points: 1 at
the VOI center and 100 on the sphere.

Measurement
points

1.4 m

0.4 m
Coils

Figure 3. Geometry of the numerical example

We have simulated experimental data by
adding a gaussian random noise of 10 ppm to the
exact data. For this noisy data, the exact value of
δ2 is 2.7.10-9.

The minimization procedure starts with all
values set to zero. The application of the
discrepancy principle (Fig. 4) or the use of the
L-Curve (Fig. 5) indicates the 23rd iteration as the
final iteration to be taken.

 δ2  value
1E-09

1E-06

1E-03

1E+00

1 6 11 16 21 26 31 36 41 46

Iteration number
 R
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id

u
e

13
 Iteration 23

Figure 4. Application of the discrepancy principle
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Figure 5. L-curve.

In order to check the optimality of this iteration
number, we plot the quadratic error:

2
exactcalulated _E JJ=  (9)

versus the iteration number. We observe that the
error E decreases until the 23rd iteration then
increases (Fig. 6). So, the final iteration selected
is the optimal iteration. Comparing the computed
solution for 23 iterations and the exact solution,
we observe a good agreement (Fig. 7). The
maximum relative error on the estimated
densities: 

exact

calculatedexact

coil j

jj
e

−
= max (10)
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is 9%. At the end of the minimization, the
computed solution becomes unstable (Fig. 8).

This numerical test shows that the proposed
method enables us to find the current density
with measured field values as input data.
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Figure 6. Quadratic error versus iteration number
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Figure 7. Exact and calculated solutions 23 iterations
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Figure 8. Exact solution and calculated solutions 500
iterations

Experimental validation
The aim of this experimental validation is to

show the instability of real magnetostatic inverse
problems and to test the proposed method on
these problems.

Experimental scheme. We use resistive
circular air coils of rectangular cross section. The
experimental scheme is presented in figure 9.

The power supply is current controlled. The
magnetic field strength is measured by a Hall
effect probe. For the measured field (about
10-2 T), this equipment has an absolute accuracy
of  3.10-4 T. For each point, we perform 100
acquisitions of the field values and we take the
mean of these acquisitions. As a result, the
variance of the measurement error is reduced by
a factor of 10 [11]. The probe position is
controlled by displacement tables.

Power supply Multimeter

Coil

Hall effect probe

Probe holder

Displacement table

Figure 9. Experimental scheme

Inverse problem under analysis. We
assume the coil is divided into 5 sections. The
magnetic field is measured in 5 points regularly
distributed in 20 mm on the coil axis (Fig. 10).
The value of δ2 is 4.5.10-9. The exact current
density that we search is constant and equals to
4.45.106 A/m2.

Measurement points
Coil divided into  sections

20 mm

16.5 mm

~73.25 mm

Figure 10. Experimental inverse problem

Resolution by iterative regularization..
Applying the discrepancy principle, we select the
first iteration as the final one (Fig. 11). The use
of the L-curve selects iteration 3 (Fig. 12). By
plotting the quadratic error versus the number of
iterations (Fig. 13), we observe that the
discrepancy principle application is efficient to
determine the right iteration number. The
computed solution is in good agreement with the
exact solution (Fig. 14). The use of the L-curve,
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in that case, produces a less accurate solution.
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Figure 11. Application of the discrepancy principle
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Figure 12. L-curve
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Figure 13. Quadratic error versus iteration number
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Figure 14. Computed values

As expected, at the end of the minimization, the
computed solution is unstable (Fig. 15).
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Figure 15. Unstable solution

This experimental tests show that the
proposed method enables us to compute stable
solutions for the problem considered.

D-optimal experimental design
The aim of this section is to present the

computation of a D-optimal experimental design
[12,13] and to illustrate that this plan increases
the accuracy of the inverse problem solution.

Theoretical results. We assume additive,
independent errors of zero mean and constant
variance. With the least squares estimator, the
estimation of the parameters J is given by:

BJ TT A)AA( 1−= (11)

The matrix AAM T
F =  is called the information

matrix. It has been demonstrated that:

12 −= )AA()(V TσJ (12)

with V variance-covariance matrix of the
parameters, σ variance of the measurement error.
So the variance of the estimated parameters
depends not only on the variance of the
measurement errors but also on the experimental
design through the model matrix A. A D-optimal
design consists in maximizing the determinant of
the information matrix. This ensures that the
generalized variances of the parameters are
minimized, and that the volume of the confidence
region of the estimated parameters is minimal.

Computations. We choose to take as many
measurement points as unknown currents in order
to minimize the number of measurements. In this
case, A is a square matrix and:

)A(det)Mdet( F
2= (13)

So we minimize:
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( )( )FMd detlog−= (14)

To take into account the physical limitations of
experiments, we minimize (14) under constraints.
We use the projected conjugate gradient
algorithm. The gradient in a u direction is
calculated by:

( )( )Adetln/
u

)Adet(
G

i
i 102

∂
∂

−= (15)

The derivative of det(A) is the sum of the
determinants obtained by derivation of each row
of A. The descent parameter is numerically
computed by a golden section algorithm.

Numerical Results. We consider the
superconducting  magnet of figure 16 made of 6
coils. The classic choice for the experimental
design would be to take the measurements on the
surface of VOI.

VOIClassic

D-optimal

1.4 m

0.4 m

Figure 16. Magnet shape and experimental designs

We compute the D-optimal experimental
points following the method presented in the
preceding section. As the measurements are not
possible in the cryostat, we limit the y-coordinate
to 0.35 m. The computed positions are presented
in figure 16, the determinant of the information
matrix and the condition number of A are given
in Table 1. The increase in the determinant goes
along with an improvement in the condition
number of A. As a result, the inverse problem is
more stable. The comparison between the
accuracy of the computed current densities for
both designs shows a significant improvement
(Fig. 17).

Table 1. Determinant and condition number
Classic design D-optimal design

-log(det(MF)) 111 100
Condition number 503 5

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1 3 5

Coil number

Classic design D-optimal design

Figure 17. Accuracy obtained for both designs

So, The construction of a D-optimal
experiment for an inverse problem improves the
accuracy of solutions.

RESOLUTION OF THE
NONLINEAR INVERSE PROBLEM

Computations
The computations of the coil geometric

dimensions Z are performed with the same
principles as in the linear case. The objective
function is expressed as:

( ) ( ) 2
BZ Z −= AR (16)

In the minimization procedure, the gradient is
computed as:

( )( ) ( )








∂

∂
−=

iZ

Z
BZ

A
AG T

i 2 (17)

The derivative of A with respect to the coil axial
positions is computed by derivation of (1) with
respect to the integral bounds in z.

The descent parameter is chosen as the linear
estimation of the solution of the one variable
minimization.
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Z
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∂
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∂

−
∂
∂

−=γ (18)

This enables us to avoid the use of a
numerical line search.

Numerical example
The problem we propose to solve is the

diagnosis of a magnet that presents a low
homogeneity due to a manufacturing error. Some
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of its coils have an incorrect axial position. As a
test case, we use the magnet represented
schematically in figure 18.

Measurement points

Coils

z

1 2

-1 mm 1 mm

Figure 18. Geometry of the nonlinear numerical example

A defect is simulated by a 1 mm displacement
of the central coils. We simulate experimental
measurements by adding a uniformly distributed
random noise of 10 ppm to the exact field values.
We use 29 measurement points on the VOI
surface. The starting points of the minimization
are the coil theoretical values. All coils are
allowed to move. Selecting the final iteration
using exact δ2 leads to stopping the minimization
at the 6th iteration (Fig. 19). For this iteration, we
observe that the quadratic error is minimal (Fig.
20).

By comparing the exact values and the
regularized solution (Table 2), we observe that
we are able to compute the simulated defects.

 δ2 value
1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

Iteration number

13

6th iteration

Figure 19. Application of the discrepancy principle.
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1.E-06

1.E-05

Iteration number

13

6th iteration

Figure 20. Quadratic error versus iteration number

Table 2. Computed defects for the regularized solution
Exact

Displacement
(mm)

Computed
Displacement

(mm)

Relative
Error
(%)

Coil 1 -1 -9.94.10
-1

0.6

Coil 2 1 9.92.10
-1

0.8

At the end of the minimization, the accuracy
of the computed solution is lower, but large
oscillations in the computed values are not
observed (Table 3). This fact can be explained by
the physical nature of the inverse problem to be
solved. Large instability in the solution occurs
when the unknown values increase in magnitude
and take different signs to produce exactly the
measured field. In this problem, a large increase
in the coil axial positions cannot produce a
similar field to the one measured. Thus, the
instability is limited.

Table 3. Computed defects for the unstable solution
Exact

displacement
(mm)

Computed
displacement

(mm)

Relative
error
(%)

Coil 1 -1 -8.92.10
-1

10.8

Coil 2 1 1.10.10
-1

10

Experimental validation
We use two Helmholtz air coils (Fig. 21) with

the same experimental scheme presented in
figure 9. These coils, which are separated by a
distance equal to their radius, produce a
homogeneous field at the center of the system
[8]. We compute their axial positions from two
field measurement points at the coil center. We
apply the iterative regularization with the
discrepancy principle (Fig. 22). We observe that
the computed positions match the exact values
(Table 4).

So, the numerical and experimental tests
illustrate the efficiency of the proposed method
to reconstruct the coil axial positions.

73.3 mmRadius
73.3 mm Measurement points

Figure 21. Helmholtz coils under analysis
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 δ2 value

1.E-11
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1 2 3 4 5 6 7 8 9 10
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Figure 22. Application of the discrepancy principle

Table 4. Exact and computed positions
Exact

position
(mm)

Computed
position

(mm)

Relative
error
(%)

Coil 1 -36.65 -36.77 0.3

Coil 2 36.65 36.77 0.3

CONCLUSION
The authors have presented iterative

regularization applied to a linear and nonlinear
inverse problem of magnetostatics. The
numerical and experimental tests show that in a
magnet it is possible to find the current density or
a faulty coil axial position with measured field
values as input data. The method used always
produces better results than the usual least
squares solution. For unstable problems, this
improvement is significant, the regularized
solutions are close to the exact ones, while the
least square solutions are strongly distorted. The
authors have analyzed the parameters that
influence the stability of the inverse problems:
measurement noise level, number of unknowns
and number of measurements, and the unknown
solution itself in the nonlinear case.
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ABSTRACT 

This paper deals with inversion of 
spectroscopic measurements in order to obtain 
temperature and CO2 concentration distributions 
in a flame. This is a non-intrusive method, where 
a CO2 high-resolution spectrum, characterized by 
its strong dependence with temperature, is 
observed. Modeling is performed by a one-
dimensional Radiative Transfer Equation (RTE). 

Then minimization of the misfit between 
computed and observed spectra gives temperature 
and concentration profiles. The RTE is solved as 
a differential equation, and an adjoint-state 
method is used to compute a descent direction for 
the misfit. In order to analyze the information 
content of data with some noise level, for some 
concentration and temperature distribution, a 
Singular Value Decomposition is used; it enables 
to estimate the number of retrievable parameters. 
Then Gauss-Newton optimization method is 
applied to perform inversion and to evaluate 
parameters. Finally, we compare inversion results 
with intrusive measurements on real data from 
turbojets and gas turbines. 
 
NOMENCLATURE 
C   CO2 Concentration   % 
h  Length of a subsegment  cm 

ΣJ  Objective function 
k   Boltzmann constant 

 k = 1.38e-23    J.K-1 

1k  Constant in Planck’s Law 

1k = 1.19e-8               W.cm3 

2k   Constant in Planck’s Law 

2k = 1.438    cm.K  

σK   Absorption Coefficient for σ  cm-1 

0L   Background Radiation      W.m-2.sr-1.cm-1 

σL   Radiative Intensity function for σ  
              W.m-2.sr-1.cm-1 

mesL σ  Real measurement forσ    W.m-2.sr-1.cm-1 
mesL Σ   Real measurements for Σ   
0L σ   Local Plank function for σ   

              W.m-2.sr-1.cm-1 
N   Number of subsegments 
P   Pressure    bar 
T   Temperature distribution  K 
u   State variable 
u   Adjoint-state variable 

σΦ  Lagrangian function for σ  
σ   Wavenumber   cm-1 
Σ   A set of wavenumbers 
 
INTRODUCTION 

There are a lot of studies on the inversion of 
the Radiative Transfer Equation (RTE) in order to 
construct the temperature distribution, to find 
some medium characteristics, or to calculate some 
source properties for industrial or ecological 
purposes. A lot of work has been reported on the 
reconstruction of flame temperature. Determining 
gas distribution is an additional requirement to be 
pulled out from spectroscopic data. Yousefian et 
al. [1] [2] have used infrared emission to retrieve 
temperature and concentration profiles for a 
moderately noisy measurements in axisymetric 
flame by Abel Inversion. L. H. Liu et al. [3] [4] 
worked on the estimation of temperature and 
spectral absorption coefficient in a non-grey 
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medium, and on the identification of source term 
distribution. Measuring temperature in order to 
retrieve some radiative parameters is the subject 
of some works like H. M. Park and T. Y. Yoon 
[5] [6]. 

The accumulation of high-resolution 
spectroscopic data motivates the use of more 
generic methods that could be applied for 
different wavenumbers and different instrument 
resolutions. So we have expressed the absorption 
coefficient in a general form using HITEMP 
database [7]. Then we have used the derivative 
formula instead of the integrated one because it 
realizes less time exe cution. Still a very important 
question rarely answered is what are for a 
considered problem the limits of this method, in 
other words the number of parameters we hope 
retrieve by fitting spectroscopic data. We propose 
to analyze the quantity of information contained 
in a spectrum by using SVD of Jacobian matrix 
[8] [9] [10] [11], then we will compare this a 
priori result with profile identification. 

Some hypotheses were made for this model 
resulting in a first approximation of the real 
radiative behavior of a gas. The main hypothesis 
is the local thermal stability and the establishment 
of temperature and concentration profiles. Then 
we neglect the particles emission-absorption 
(soot’s particles for example), the reflection at the 
air-gas interface, and the scattering effect 
compared with the emission-absorption one. 
Finally, the gas real index is always supposed 
equal to one.  

The spectrum is observed between 2379 cm-1 
and 2397cm-1, which is in the range of high 
sensitivity with respect to the temperature, so we 
hope pull out a good estimation of temperature’s 
parameters at least. For each wavenumber σ we 
measure, by a detector placed at dx = , the 
resulting signal of absorption and emission 
radiation of a quantity of CO2  situated between 0 
and d (see the figure 1). 
 
 

 
Figure 1: The observation 

DIRECT AND INVERSE PROBLEM 
These hypotheses are assumed for one-

dimensional model and enable us to express the 
radiation intensity ( )xL σ  of a gas measured at x 
emitted by the quantity of the gas situated at the 
left of the point x. This radiation intensity ( )xL σ  
depends on the temperature distribution T and the 
CO2 concentration profile C between 0 and x. 
That dependence is given by either of the two 
following expressions : 
• the differential formula : 
 

( ) ( ) ( ) ( )[ ]
( ) ;L0L

, xLxLxKx
dx

dL

0

0

=

−=

σ

σσσ
σ

  ( )1

    
• the integral formula frequently sees in the 

RTE literature  : 
 

( )
( )

( ) ( )
( )

∫
∫∫ σσ −

σσ

−

σ +=
x

0

dvvK
0

dvvK

0 dueuLuKeLxL

x

u

x

0  

( )2  
 

Where Kσ is the monochromatic absorption 
coefficient. This coefficient is expressed in the 
form: 
 

( ) [ ]
kT10

PCTaTaTaaTK 3
3

2
210 +++=σ . ( )3  

 
Where P is the pressure, the coefficients 
( )3210 a,a,a,a  depend on the wavenumber σ, 
and are obtained from numerical study over a 
high-resolution spectroscopic database 
(HITEMP). 

0L σ  is the black body emission expressed by 
Planck’s law: 
 

( )
1)

T
k

exp(

k
TL

2

3
10

−
σ

σ
=σ .  ( )4  

 
The measurement device is situated in the 

position d  (see figure 1), it supplies an array of 

radiation measurements ( ) Σ∈σσΣ = mesmes LL  for 

some set of wavenumbers Σ . We define the 
function: 
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( ) ( )( ) ( )( ) Σ∈σσΣ∈σσΣ == dLC,TfC,TF . ( )5  

So we have to solve the following inverse 
problem: 

 
Find the two profiles of temperature and CO2 
concentration (T,C) that satisfy 

              ( ) mesLC,TF ΣΣ = .   ( )6  

 
The least squares formulation of this problem 

is to find C)(T,m =  solution of: 
 

( ) .LmFmin
2,W

mes

m
ΣΣ −   ( )7  

 
W is a weight vector balancing each 
measurement. This is an ill-posed problem for 
which existence, uniqueness and stability of the 
solution are difficult to prove. This problem is 
studied by application of the non-linear least 
squares theory. The study of the linearized 
operator, by the sensitivity analysis, gives an idea 
of the behavior of the differential operator. First 
we have to compute the function ( )C,TFΣ  as it is 

defined in ( )5 . 
 
DISCRETISATION OF THE RTE AND 
SENSITIVITY ANALYSIS 

For a wavenumber Σ∈σ  we want to 
evaluate ( )C,Tf σ . Let ( ) Ni0ix ≤≤  be a uniform 

subdivision of the segment [ ]l,0  with step 

N
1

h = . We can approximate each function 

defined on [ ]l,0  by a piecewise constant function. 
So we associate a vector of N components to all 
of these functions: temperature ( ) Ni1iTT ≤≤= , 

CO2 concentration ( ) Ni1iCC ≤≤= . We consider 

the following notations, where we distinguish by 
the subscript m vectors associated to T and C 
profiles:  
 

)C,T(m = . 

( ) ( )( ) Ni1iii,mm C,TKKK ≤≤σ== . 

( ) ( )( ) Ni1i
0

i,mm TLLL ≤≤σ== . 

( ) ( )( ) Ni0iNi0i,mm xLRR ≤≤σ≤≤
== . 

( )mmmm R,L,Ku = .   ( )8  
 
And we note: 

 
( ) ( ) ( ) ( )( )Ni0iNi1iNi1i R,L,KR,L,Ku ≤≤≤≤≤≤== . 

)R,L,K(u = .    ( )9  
 
Notice that 
 

( ) ( ) .RdLC,Tf N,m== σσ   ( )10  

 
The differential formula gives a recurrent relation 
and enables to compute ( )C,Tf σ  efficiently. 
 

( ).0LLR 00,m σ==  

( ) .N..1i.LhKRhK1R i,mi,m1i,mi,mi,m =+−= − ( )11  

 
We define the Lagrangian function: 
 

( ) ( )∑
=

σ −+=Φ
N

1i
ii,miN KKKRm;u,u  

       ( )∑
=

−+
N

1i
ii,mi LLL  

                   ( )( ) .RLhKRhK1R
N

1i
iii1iii∑

=
− −−−+    

                ( ) 000 RLR −+ .  ( )12  
 
We notice that for all u : 
 

 ( ) ( )C,Tfm;u,u m σσ =Φ   ( )13  
 
Where ( )mmmm R,L,Ku =  is the solution of  the 

state-equations ( )8  and ( )11 . 
 
 
 
Let u  be the vector that: 
 

 ( ) 0m;u,u
u

=
∂
Φ∂ σ   ( )14  

 
That gives the following adjoint-state equations: 
 

( )
( )

.1,...,Ni                        RhKL

.1,...,Ni          RLRhK

.1,...,Ni             hK1RR

,1R

iii

1iiii

ii1i

N

==

=−=

=−=

−=

−

−  ( )15  
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This implies for muu = : 
 

 ( ) ( ),C,T
T
f

m;u,u
T i

m
i ∂

∂
=

∂
Φ∂ σσ        

 ( ) ( ).C,T
C
f

m;u,u
C i

m
i ∂

∂
=

∂
Φ∂ σσ  ( )16  

 
Those two equations lead up to the following 
relations: 
 

( ) ( ) ,
dT
dL

LC,T
T

K
KC,T

T
f

i
iii

i
i

i








+

∂
∂

−=
∂
∂ σσσ

  

( ) ( ).C,T
C
K

KC,T
C
f

ii
i

i
i ∂

∂
−=

∂
∂ σσ   ( )17  

 
Finally we will obtain the following formula: 
 

( ) ( )
i

i

i

i
K

T
TK

C,T
T
f σσ =

∂
∂

  

         ( )
i

ii2
i3i21 kT10

KPC
Ta3Ta2a ++−  

                      ( ) ,
T

kexpTLL
T
k

i

2
i

0
i2

i

2







 σσ− σ  ( )18  

( ) ( ) .
kT10
KP

TaTaTaaC,T
C
f

i

i3
i3

2
i2i10

i
+++−=

∂
∂ σ  

 
Therefore the derivative of the function is: 
 

( ) .
C
f

T
f

C,TDf
Ni1iNi1i 



















∂
∂









∂
∂

=
≤≤

σ

≤≤

σ
σ  ( )19  

 
Then for a set of wavenumbers Σ , the 

evaluation of ( )C,TFΣ  and its derivative 

( )C,TDFΣ  is an iterative procedure. ( )C,TDFΣ  is 
the sensitivity matrix [10] [11], its Singular Value 
Decomposition (SVD) gives: 
 

( ) tVUC,TDF Λ=Σ .  ( )20  
 
V contains the right singular vectors, U the left 
ones, and Λ  contains the singular values. We can 
read the sensitivity for parameters of different 
types on the components of these vectors. 
Sensitivity increases when we have high singular 

values. In order to avoid problems of weak 
sensitivity due to some scale differences, we 
normalize the different types of parameters. For 
Gaussian distribution of temperature and 
concentration (see figure 2), we plot (see figure 
3), from left to right from top to bottom, the first 
eight right singular vectors, each one has the first 
half of its components in temperature parameters 
space, and the others in the concentration 
parameters one.  We see that the look of the first 
right singular vector is nearly the same as 
temperature and concentration profiles, so 
Gaussian parameterizations of profiles is proper 
to use here. 
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Figure 2: Gaussian distribution profiles. 
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Figure 3: Right singular vectors for 
normalized parameters. 

 
 
NOISE EFFECT 

We note that for every temperature we have: 
 

   ( ) .00,TF =Σ   ( )21  
 

By a first order approximation we have : 
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 ( ) ( ) ( ) ( )[ ].0,TC,T.C,TDFC,TF 1−= ΣΣ   ( )22  
 
Let T1 tend to zero, by taking vector norms, we 
have: 

 
( ) ( ) ( ) ( ) .C,TC,TDFC,TF N2IN2I RR,RLR ΣΣ ≤   

     ( )23  
Let 
 

( )000 C,Tm =  , 

( )0
0 mFR ΣΣ = .  ( )24  

 
We note the greatest singular value: 
 

( ) ( ) ( ).C,TDFm IN2 R,RL01 Σ=λ   ( )25  

 
For some perturbation on measurements ε , 

we have to search the perturbation on the 
parameters mδ , which minimizes the following 
function ( )mJ δ : 
 

( ) ( ) ( ) ( ) .mmFR,mmFR
2
1

0
0

0
0 δ+−ε+δ+−ε+ ΣΣΣΣ

     ( )26  
Its associated linearized problem is: 
 

( ) ( ) ( ) .m.mDF,m.mDF
2
1

mJ 00lin δ−εδ−ε=δ ΣΣ  

     ( )27  
 
The decomposition of mδ  on the base of right 
singular vectors and the decomposition of ε  on 
the left singular vectors give: 
 

∑
=

δ=δ
N2

1i
iivam  

∑
=

ε=ε
I

1i
iiu .  ( )28  

 
The solution of the linearised problem satisfies: 
 

I1,...,  i  , a iii =δλ=ε   ( )29  
 
This equality combined with inequality ( )23  
gives the following estimation: 
 

.I1,..,i , )/()R(N/S)a(N/S dB1i
0

ii =λλ+≥ σ  
( )30  

NS signifies signal to noise ratio, ia  is the value 

of i-th parameter, 0
iR σ  is the value of i-th 

measurement, and iλ is the i-th singular value. 

When the number ( )iaNS  is positive a 
significant value of the i-th parameter is expected. 
So we can define the quantity of information non-
hidden by the noise as the number iN of 
parameters which still have a significant value: 
 

( )






 <λλ= σ )R(NSmin- icardi 0

j
jdB1iN . 

 ( )31  
 
This number depends on temperature and 
concentration distributions, and it differs from a 
wavenumber set to another. 
We consider Gaussian distributions for both 
temperature and concentration (see figure 2). 

We will show that some subsets of 
wavenumbers could contain almost all the 
information. So we consider the following four 
subsets of wavenumbers between 2379 cm-1 and 
2397  cm-1 (see figure 4): Peaks (29 
wavenumbers) corresponding to local maxima or 
‘turned back maxima’ of spectrum intensity, 
Troughs (32 wavenumbers) corresponding to 
local minima of spectrum intensity, Peaks and 
Troughs (61 wavenumbers), and all the wave 
numbers (901 wavenumbers). 
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Figure 4: Definition of Peaks and Troughs . 

 
 

In figure 5 we plot ( )dB1i λλ−  for the 

greatest eight singular values, and for each one of 
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the previous sets of wavenumbers,  the number iN, 
corresponding to a noise level of 1%, is evaluated 
in order to compare these sets. Peaks and Troughs 
set realizes iN=6, which is nearly the same 
number corresponding to the set of all 
wavenumber. Consequently the set of Peaks and 
Troughs contains nearly almost all of the total 
information. 
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Figure 5: Comparaison of  the four sets of 
wavenumbers for a Gaussian distribution. 

 
 
PARAMETRIZATION 

In order to discretize the differential 
equation, we use about 200 geometric points. This 
yields 200x2 parameters in order to reconstruct 
profiles, which is impossible to identify. 
Regularization is necessary to reduce the 
difficulty of this problem 
We have used several parameterizations or a 
priori profiles as a regularization method. The 
main example here is the parameterization of a 
Gaussian profile, it is characterized by four 
parameters per profile : 
 

( ) ( )



















α
−−−+= ∞∞

2

T

T
max

xxexpTTTxT  

( ) ( )




















α
−

−−+= ∞∞

2

C

C
max

xx
expCCCxC  ( )32  

 
When we have a good estimation of some 

parameters, such as ∞T  and ∞C , a sub-
parameterization is considered, then identification 
is made on the reduced set of parameters. 

For the new parameterization a sensitivity 
analysis is done to find the maximum number of 

estimable parameters associated to noise level of 
1%. For Gaussian parameterization, there are at 
most 4 retrievable parameters for a noise level of 
1%, see figure 6.  
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Figure 6: Number of retrievable parameters 

for Gaussian parameterization. 

 
The precedent study shows that the set of 

Peaks and Troughs contains lot enough of 
information relatively to the set of all 
wavenumbers. So it will be used for further tests. 

For Gaussian parameterization, we have to 
choose a subparameterization with only four 
parameters to identify. To guide the choice, we 
plot the first right singular vectors (see figure 7), 
corresponding to the greatest singular values. The 
first one indicates clearly to the first parameter 

maxT , so it has more chance to be retrieved. With 

maximal values maxT  and maxC , widths Tα  and 

Cα  are chosen to be retrieved. An appropriate 
estimation of other parameters is used; for 
example boundary values give an estimation of 

∞T  and ∞C .  
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Figure 7: Right singular vectors for Gaussian 

parameterization. 
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For this subparameterization, similar study 
for a noise level of 1% shows that we hope to 
identify 2 parameters. 
 
OPTIMIZATION AND IDENTIFICATION 

Identification is performed by optimizing the 
following objective function: 

 

( ) ( )( )2mes pLLW
2
1

pJ σσ
Σ∈σ

σΣ −= ∑  ( )33  

 
In this formula, σW  is the weight coefficient 
corresponding to σ , and p  refers to the 
parameterization. 

A trust region reflective method was used 
where Gauss-Newton and Conjugate Gradient 
algorithms are the main tools used for each 
iteration. 

In the following identification tests on 
synthetic data with noise, we try to retrieve 
profiles and see the effect of the noise on 
parameters values. 
Noise is generated as uniform random distribution 
with maximal amplitude equals to γ  percent of 
the maximal spectral measurement. 
The first identification result on synthetic data 
relative to a noise level of 1% affirms the 
sensitivity analyzing conclusion, (see table 1). So  
we have retrieved maxT  with a good precision, 

then comes Tα  with some error of 3.79%. The 
values of the other parameters have less precision. 
With a higher noise level of 10%, maxT  retrieved 
value still has a good precision of  0.325%. 
 
 

Table 1: synthetic test of noise effect . 

Noise 
level 

γ  

maxT  
K 

maxC  
% 

Tα  
cm 

Cα  
cm 

0 700 2 28 28 
1% 699.40 2.097 26.940 26.673 
10% 697.73 1.654 33.899 32.636 

 
 

The previous study is effected for other types 
of profiles for example double humps profiles and 
piecewise profiles, and every type of profile has 
its proper results So sensitivity analysis for 
double humps profiles shows that at most eight 

parameters of 400 parameters could be retrieved, 
but with parameterization of 10 parameters 5 
parameters could be retrieved which is relatively 
better. 

The following real case identification could 
conclude this study. 
 
REAL CASE 

Measurements are effected on the exhaust of 
Rolls -Royce Spey at DeRA, in order to develop 
non-intrusive method. 

 Chosen for being not very far from the 
reality, a Gaussian a priori profile is adopted to do 
inversion. So we hope to identify at most 4 
parameters. These are chosen to be the maximal 
value and the width of each profile. 
Compared with intrusive measurements which are 
direct measurements, we have attained reasonable 
results (see figures 8 and 9). 
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Figure 8: Identification result and intrusive 

measurement for temperature profile. 
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Figure 9: Identification result and intrusive 

measurement for concentration profile. 
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CONCLUSION 

Inversion of spectroscopic data of CO2 
emission gives good results for retrieving 
temperature and CO2 concentration profiles, when 
an a priori profile is used as a regularization way 
for the ill-posed problem. Adjoint state method 
accelerates Jacobian computation required by 
Gauss-Newton method, where conjugate gradient 
is used to minimize objective function. For higher 
noise level temperature profile is steadier than 
concentration one, and still be close to the 
solution. With real data, the identification result is 
too close to the intrusive measurements, that 
assures good confidence and accuracy in our 
inversion algorithme. 
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ABSTRACT

We propose a new method for reconstructing
defects in bulk materials, via the recovery of the
electronic volume density ne in the material, us-
ing doubly Compton-scattered gamma photons in
transmission imaging modality. We establish an
integral relationship between the photon flux den-
sity after a double scattering and the product of
electronic densities at two different sites. This pho-
ton flux density at different scattering angles can
be measured by an energy-position detector in a
fixed configuration. Thus the reconstruction of ne

can be formulated as an inverse problem of the in-
tegral relation, which is bilinear in the electronic
densities. This theoretical result opens the way for
a new imaging principle, which exploits scattered
radiation rather than discarding it as in most ex-
isting imaging procedures. In this new procedure,
the motion of the detector is no longer necessary
as it is the case of conventional tomography.

NOMENCLATURE

g(D,S|τ) : flux density at detection site D
due to incoming pencil source beam
having a trace at S on the detector.

G(D, τ) : flux density at site D for given τ .
l : distance slab-detector.
L : thickness of slab.
ne(M) : electronic density at site M.

also noted ne(D, τ).

n0
e, n

1
e : constant electronic density in surro-

unding medium and in defect.
Φ0 : constant incident flux density.
ρ : distance |DS|.
τ : cotangent of the scattering angle θ.

INTRODUCTION
The goal in non-destructive control is to obtain

information (location, form, representative param-
eters) about defects in bulk materials. This is up
to now done by X-ray or gamma ray transmission
imaging. In these methods of investigation, the
defect is represented by its linear attenuation dis-
tribution µ. The data consists of line integrals of
the attenuation density along lines joining source
points to detector points. A three dimensional re-
construction of the volume defect can be realized
if a complete set of data is obtained with various
directions of the incident source beam. However
this may not be always realizable in practical situ-
ations where the geometry of the piece of material
imposes severe restrictions on the motion of the
radiation source.

In this paper, we describe an alternative method
of investigation of defects. Instead of representing
the material under study by its absorption func-
tion, as usually done, we shall describe it alterna-
tively by its electronic density ne. Indeed at the
location of defects (inclusions, voids or cracks) ne

will change drastically and will exhibit discontin-
uous jumps in values. The distribution of scat-
tered photons will change accordingly. The deter-
mination of ne from single scattered photons (in-
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stead of non-scattered ones) has been introduced in
Compton Scatter Tomography [6]. But no analyti-
cal inversion procedure is available. In the present
work we propose an analytical inversion method for
obtaining ne from the series of doubly Compton-
scattered photon distributions at various scattering
angles. Moreover we show that in this procedure
the motion of the detector is no longer necessary
and consequently may be more interesting from the
point of view of operational level [2, 3].

In order to focus solely on the scattering aspect,
the attenuation mainly due to photoelectric effect
shall be neglected here. This hypothesis is accept-
able in the low energy range of gamma photons. In
a transmission imaging system with collimated de-
tector, if the material slab is of thickness L and lim-
ited by parallel planes, for incoming gamma pho-
tons perpendicularly to the slab to emerge parallel
to the incident direction, there must be at least
two Compton collisions. This is why we propose to
exploit the properties of double Compton scatter-
ing for determining ne, since higher order collisions
have much weaker probability of occurrence.

The paper is organized as follows. In the next
section, we establish the basic relation connecting
the flux density of photons G(D, τ) - image mea-
sured on the detector plane - to ne(r) - the elec-
tronic distribution in the bulk material. This re-
lation will be called also the ”imaging equation”.
Next, we introduce the concept of Transmission
Pencil Source Function (TPSF), which plays the
role of the well-known PSF in emission imaging.
Then images of cracks of simple form are computed
as illustrations with the use of the TPSF. In the fol-
lowing section, the inverse problem of determining
the volume extent of the crack using the measured
flux density G(D, τ), is considered. It is shown
that an analytical solution exists if one makes use
of the whole set of data collected at all scattering
angles θ. This theoretical result opens the way for
a new transmission imaging principle in which one
takes advantage of the double Compton scatter-
ing whereby the complete data is obtained without
moving the detector. Conclusions and outlook are
given in the last section.

IMAGING EQUATION
We consider an incident gamma-ray beam of ini-

tial energy E0 and of constant flux density Φ0 on
a slab of material of thickness L, in which the elec-
tronic density is ne(r). Normally the gamma rays
at this energy will go through the object, if no at-
tenuation is assumed. They are collected on the
plane of a collimated gamma camera, which has an
axis parallel to the incident beam, and located at
a distance l from the slab face.

However part of the gamma rays will undergo

O η

ζ
θ

θ

l Upper face
ξ

ζ

d ζ

Detector plane

of Slab

S

N

M

D

Incoming
Flux density

Lower face
of slabφ

N

N r

Figure 1: Schematic representation of the func-
tioning principle

Compton scattering, and actually two scattering if
they are to emerge parallel to the incident direc-
tion (see figure 1). They form images parameter-
ized by the scattering angle θ, or alternatively by
the outgoing photon energy E. The photon energy
recorded after two collisions with the same scatter-
ing angle θ is given by the Compton formula:

E =
E0

1 + 2ε(1− cos θ)
,

where ε = E0
mc2

is the ratio of the initial photon
energy to the rest energy of the electron. This for-
mula has the same form as the formula for one
collision, but with 2ε instead of ε.

Let Φ0 be the constant incident flux density.
Now the flux density of photons Φ(M), scattered
at a site M (ξM , ηM , ζM ) (first collision site) in the
bulk material into a solid angle dΩN is given by
the expression:

Φ0r
2
eP (θ)dΩNne(M)dM = Φ(M)dσN

where dΩN = dσN/MN2, dσN being
the elementary surface subtended at site
N (ξN , ηN , ζN )(second collision site). The
differential Compton cross section is the term
r2

eP (θ) where re is the classical electron radius
and P (θ), the so-called Klein-Nishina probability
function [1].

P (θ) =
1

2[1 + ε(1− cos θ)]2

[
1 + cos2 θ +

ε2(1− cos θ)2

1 + ε(1− cos θ)

]
. (1)
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The flux density of photons arriving at site N is
then obtained by dividing out dσN . This flux will
be scattered next at site N into the solid angle
dΩD. Finally the flux density photons collected at
detection site D ((ξD, ηD, 0) reads:

Φ0r
2
eP (θ)

ne(M)

MN2
dMr2

eP (θ)
ne(N)

ND2
dN.

In figure 1, we have given also the coordinate
system to be used in the calculations to come. The
scattering site M has coordinates:

ξM = ξD + r sin θ′ cos φ,
ηM = ηD + r sin θ′ sin φ,
ζM = ζN + r cos θ′.

where (r, θ′, φ) are the local spherical coordinates
centered at N.

The total flux density G(D, τ) on the detector is
the summation on contributions of:
• for given N, all sites M in the medium on a

cone of apex N, opening angle θ and axis Oζ,
• all sites N on a vertical at site D, verifying

l < ζN < ∞, since the slab is put at a distance l
from the detector.

Thus we introduce the corresponding integration
measures:

δ(Cone) = r−1δ(θ′ − θ)
δ(Line) = δ(ξN − ξD)δ(ηN − ηD).

Consequently the photon flux density at D is
given by:

G(D, τ) = [r2
eP (θ)]2

∫ ∞

l

δ(Line) dξNdηNdζN

∫
1

r
δ(θ′ − θ)r2drdθ′ sin θ′dφ

1

r2
ne(M)

1

ζ2
ne(N)Φ0.

(2)
(Recall that Φ0 is the incident flux density of pho-
tons.)

Some integrations are now performed in order
to eliminate the δ-functions. The result may be
expressed in terms of the constant:

K(τ) = [r2
eP (θ)]2 sin θ.

where τ = cot θ and reads as:

G(D, τ)

K(τ)
=

∫ ∞

l

dζN

ζ2
N

ne(D, ζN )

∫ ∞

0+

dr

r

∫ 2π

0

dφ

ne(ξD +r sin θ cos φ, ηD +r sin θ sin φ, ζN +cos θ)Φ0.

Introducing now the projection of site M on
the detector plane S, we observe that ξS = ξD +
r sin θ cos φ, ηS = ηD + r sin θ sin φ and ζS = 0. We
may put the result as:

G(D, τ) = K(τ)

∫ ∞

0+

dr

r

∫ 2π

0

dφ

∫ ∞

l

dζN

ζ2
N

ne(D, ζN )ne(S, ζN + r cos θ)Φ0, (3)

here this expression is evidently bilinear in the elec-
tron densities. Let us call ρ = r sin θ, the distance
between sites D and S,i.e. |D − S| = ρ, then we
can rewrite conveniently this expression as:

G(D, τ) = K(τ)

∫ ∞

0+

ρdρ

ρ2

∫ 2π

0

dφ

∫ ∞

l

dζN

ζ2
N

ne(D, ζN )ne(S, ζN + ρτ)Φ0,

this can be rearranged as an integral over S as:

G(D, τ) =

∫

beamsection

dSg(S,D|τ)Φ0, (4)

where g(S,D|τ), is defined as the Transmission
Pencil Source Function (TPSF) of the problem.
The TPSF represents the transmission image by
double Compton scattering of a unit flux density
pencil source at infinity incoming normally on the
detector plane. This function will play the role of
the PSF function in emission imaging. It is given
by:

g(S,D|τ) =
K(τ)

ρ2

∫ ∞

l

dζN

ζ2
N

ne(D, ζN )ne(S, ζM ).

(5)
where ζM = (ζN + ρτ). This function describes
thus the illumination of the material slab by an
incoming pencil beam and serves to explore the
structure of defects in the bulk.

For an arbitrary incoming beam with finite sec-
tion, e.g. from an extended source far away, φ0 =
φ0(S) and this must be taken care of in the inte-
gration standing in equation (4).

IMAGES OF SIMPLE SYSTEMS
The purpose of this section is to illustrate the

imaging mechanism of the TPSF on simple sys-
tems. As already mentioned, gamma rays can be
used to reconstruct variations of the electronic den-
sity at very small (atomic) scales. But for the local-
ization of macroscopic defects in materials, these
details are irrelevant and homogeneous medium
can be considered to have a constant electronic
density equal to its mean macroscopic value [4].
Defects may appear as cracks or voids where the
electronic density drops brutally to zero or filled
volumes with a different value of the electronic den-
sity. And this is precisely what we wish to detect.

1-Image of a homogeneous material slab
As the electronic density is assumed to be con-

stant and equal to n0
e, the TPSF can be explicitly
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Figure 2: TPSF Flux density at θ = 36 degrees
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Figure 3: TPSF Flux density at θ = 90 degrees

evaluated:

g(S,D|τ)

K(τ)(
n0

e
ρ

)2
=





Y (L− ρτ) (L−ρτ)
l(l+L−ρτ)

if τ > 0

Y (L + ρτ) (L+l+ρτ)
(l+L)(−ρτ)

if τ < 0
L

l(l+L)
if τ = 0.

(6)
Here Y (x) stands for the Heaviside unit step func-
tion. Rotational symmetry around the incident
pencil beam is reflected by the sole dependence on
ρ. This image will serve as basis for detecting de-
fects.Fig 2 and Fig.3 give a representation of the
TPSF at two scattering angles.

At 90 degrees scattering angle, the TPSF has a
very simple behavior, i.e. its varies as ρ−2.

Finally the form of the peak changes according
to the ratio l/L.

2-Image of a linear defect
Consider a linear defect situated on a line per-

pendicular to the detector plane at a site S0 on the
detector plane. The defect has a length h << L
and its middle point is at a distance ζ0 from S0.
On the defect there is an electronic density n1

e, dif-
ferent from the slab electronic density n0

e . The
question is now how would the TPSF detect this
defect? Two situations are possible:
• if the defect is not exactly positioned on the

direction of the incoming beam and the detection
site D different from S0, then the measured flux
density g(S,D|τ) is the same as in the case of the
homogeneous slab (see equation 6). But if D is
precisely at S0 then the measured flux density is,
for τ > 0, given by:

g(S,D|τ) =
K(τ)

ρ2
0

{
(n0

e)
2(L− ρ0τ)

l(l + L− ρ0τ)
− [(n0

e)
2 − (n1

e)
2]h

ζ2
0 − 1

4
h2

}
, (7)

where ρ0 = |S0D|. When n1
e → 0, the defect be-

comes a crack, and when h → 0 we get the limit
of the point defect. Then it is clear that the TPSF
cannot ”see” a point defect since we recover the
flux density of equation 6.
• if the probing pencil beam falls directly on the

defect, then one would measure, also for τ > 0 or
the scattering angle 0 < θ < π/2 :

g(S,D|τ) =
K(τ)

ρ2

{
(n0

e)
2(L− ρτ)

l(l + L− ρτ)
− [(n0

e)
2 − (n1

e)
2]h

(ζ0 − ρτ)2 − 1
4
h2

}
. (8)

Thus a linear vertical defect would cause a jump in
the recorded flux density as compared to the pat-
tern of a homogeneous slab. For τ < 0 or a scat-
tering angle larger than π/2, the main features of
the pictures remains the same but the expressions
are slightly modified.

3-Image of a rectangular defect
Having studied in detail the case of a linear per-

pendicular defect in the previous section, it is now
easy to treat many other cases. The simplest one
which can be generated is the case of the rectan-
gle perpendicular to the detector with center at
(ρ0, ζ0), with sides (h′, h) respectively parallel and
orthogonal to the detector.
• Despite the non-zero width h′, the behavior

of the TPSF with respect to this kind of defect is
exactly the same as in the case of the linear defect
of the previous subsection, if the incident pencil
beam does not cross the defect and if the detection
line (the line perpendicular to the detector at D)



4th International Conference on Inverse Problems in Engineering. Rio de Janeiro, Brazil, 2002.5

ζ o
ρ

L

h’

h

l

S D

Beam
Incoming pencil

SLAB

Detector

ρo

Figure 4: Rectangular defect plane with S and
D inside the plane.

crosses the defect. To see the spread of the defect
parallel to the detector one should move D along
the detector plane so that (ρ0 − h′/2) < ρ < (ρ0 +
h′/2).
• The interesting case occurs when the lines per-

pendicular to the detector at S and at D are inside
the rectangle and at a distance ρ < h′.

Then there are two values of the flux density
depending on τ :

a) if ρτ ≤ h and ρ < h′ we have:

g(S,D|τ) =
K(τ)

ρ2
{

2n0
en

1
e(

(ζ0 − ρτ)

(ζ0 − ρτ)2 − 1
4
h2
− ζ0

ζ2
0 − 1

4
h2

)+

(n1
e)

2(
(h− ρτ)

(ζ0 − 1
2
h)(ζ0 − ρτ + 1

2
h)

+

(n0
e)

2(
(L− ρτ)

l(l + L− ρτ)
− (h + ρτ)

(ζ0 + 1
2
h)(ζ0 − ρτ − 1

2
h)

}

b) but if ρτ > h and ρ < h′ we have:

g(S,D|τ) =
K(τ)

ρ2

{
(n0

e)
2(

(L− ρτ)

l(l + L− ρτ)

− h

(ζ0 − ρτ)2 − 1
4
h2
− h

ζ2
0 − 1

4
h2

)

+n0
en

1
e(

h

(ζ0 − ρτ)2 − 1
4
h2

+
h

ζ2
0 − 1

4
h2

)

}
(9)

From these results one can draw several conclu-
sions:

• for h → 0, we get the limit of an infinitely
thin horizontal defect: the flux density is that
of the homogeneous medium, in other words
it is ”invisible” by the TPSF. Also it is easy
to generalize to a horizontal disk defect or to
any horizontal planar defect: they cannot be
detected by the TPSF.

• for n1
e → 0, we get the limit of a rectangu-

lar crack. This crack does present a non-zero
”thickness” h with respect to the direction of
the incoming probing radiation.

• There are similar results for τ < 0.

4-Image of an arbitrary defect

From the previous considerations, we can make
general observations on how images are formed by
the TPSF. First of all, it must present a certain
”thickness” with respect to the incoming pencil ra-
diation. Then we can decompose the problem into
planar imaging problem by considering the inter-
section of the plane (π) which contains the two par-
allel lines perpendicular to the detector at D and
at S and the the slab of material to be investigated.

If these lines do not intersect the section of a
defect (Σ) in (π), then the flux density recorded
on the detector is that of a homogeneous medium.
Now if the perpendicular line at D intersects (Σ),
then the measured flux density has the pattern of a
linear perpendicular defect studied in the previous
subsection. Note that the height of such a defect
varies as site D moves on the detector plane, and
in the previous subsection we have looked at a par-
ticular section (Σ), which is a simple rectangle. Of
course, the interesting case would be the case where
both perpendicular lines at D and S intersect (Σ),
but this times the intersection lengths are no longer
equal. The general effect remains similar.

So in principle, a general image obtained of an
arbitrary defect of nonzero measure in the vertical
direction by the TPSF, can be constructed from the
TPSF image of a finite linear perpendicular defect.
The question is now how the defect in the bulk can
be reconstructed in space when a set of images, la-
belled by τ , or equivalently by the scattering angle
θ has been collected beforehand.

THE INVERSE PROBLEM

This is the problem of reconstructing the elec-
tronic density ne(r) from measurements made on
the detector. In this section, we show that this
problem has a solution, provided that certain work-
ing conditions are assumed. More precisely, we
show that the TPSF images can be used effectively
to reconstruct the electronic density as follows.
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Figure 5: Arbitrary object analysis

Introducing the one-dimensional Fourier repre-
sentation of the electronic densities:

ne(D, ζN ) =

∫ ∞

−∞
dw e2iπwζN ñe(D, w),

ne(S, ζ) =

∫ ∞

−∞
dw′ e2iπw′ζ ñe(S, w′),

in equation (5), the TPSF can be recast under the
form:

g(S,D|τ) =
K(τ)

ρ2

∫ ∫
dw dw′ ñe(D, w) ñe(S, w′)

Jl(w + w′) exp[2iπ(lw + lw′ + w′ρτ)], (10)

where:

Jl(w) =

∫ ∞

l

dζN

ζ2
N

e2iπ(w+w′)ζN = 2iπw

{e2iπlw [Ci(2πl|w|)− i ε(w) Si(2πl|w|)]− i

2πwl
},

ε(w) being the sign function of w [5]. Now since
τ ∈ R, we could use it as Fourier variable to invert
equation 10, and obtain:

∫ ∞

−∞
dτ e−2iπντ g(S,D|τ)

K(τ)
=

1

ρ2
ñe(S,

ν

ρ
)e

2iπl ν
ρ

∫ ∞

−∞
dw ñe(D, w)Jl(w +

ν

ρ
)e2iπlw.

Here the left hand side appears as a superposition
of TPSF images taken at various scattering angles,
however the right hand side remains a bilinear con-
struct in the electronic densities at two different

sites. To get a better insight, we transform the
right hand side by back Fourier transform into:

∫ ∞

−∞
dw ñe(D, w)Jl(w +

ν

ρ
)e2iπlw =

∫ ∞

l

dζ

ζ2
ne(D, ζ)e

2iπ ν
ρ
(ζ−l)

,

and end up, after another Fourier inversion with a
final form:

∫ ∞

−∞
dτ e−2iπντ g(S,D|τ)

K(τ)
=

1

ρ2
ñe(S,

ν

ρ
)

∫ ∞

l

dζ

ζ2
ne(D, ζ) e

2iπ ν
ρ

ζ
. (11)

Remark. One could exchange the roles of D and S:
the incoming pencil beam falls perpendicularly on
the detector at site D and S becomes the detection
site. Then one has, with the same separation ρ:

∫ ∞

−∞
dτ e−2iπντ g(D,S|τ)

K(τ)
=

1

ρ2
ñe(D,

ν

ρ
)

∫ ∞

l

dζ

ζ2
ne(S, ζ) e

2iπ ν
ρ

ζ
.

Inversion is in fact based on one of these equa-
tions. In general, we have thus a pair of inte-
gral equations which are quadratic in the unknown
functions ne(r). To our knowledge a general solu-
tion does not exist. However under certain prac-
tical hypotheses, an inversion procedure may be
constructed.

Let us consider equation (11), which describes
the imaging of the medium by the TPSF centered
at S, the measurement of flux density being made
at site D. If S is chosen in such a way that ñe(S, ν

ρ
)

is known, one may locate in the sample a vertical
line to the detector along which the material is ho-
mogeneous, i.e. free of defects. Then we have:

ne(S, ζ) =

{
n0

e if l < ζ < (L + l)
0 otherwise.

Then ñe(S, ν
ρ
) may be exactly evaluated:

ñe(S,
ν

ρ
) =

n0
eρ

πν
e
−iπ ν

ρ
(2l+L)

sin π
ν

ρ
L.

Hence
∫ ∞

l

dζ

ζ2
ne(D, ζ) e

2iπ ν
ρ

ζ
=

πνρ

n0
e

e
iπ ν

ρ
(2l+L)

sin π ν
ρ
L

∫ ∞

−∞
dτ e−2iπντ g(S,D|τ)

K(τ)
. (12)
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To extract now the electronic density at D, we per-
form inverse Fourier transformation by multiplying
equation (12) on both sides by

∫ ∞

−∞
d(

ν

ρ
) e

2iπ ν
ρ

ζ′
,

and integrate over ( ν
ρ
) to get the expression of the

electronic density at site (D, ζ′):

ne(D, ζ′) = ζ′
2

∫ ∞

−∞
d(

ν

ρ
) e

2iπ ν
ρ
( 2l+L

2 −ζ′) πνρ

n0
e

1

sin π ν
ρ
L

∫ ∞

−∞
dτ e−2iπντ g(D,S|τ)

K(τ)
. (13)

An alternative way of inverting consists of choos-
ing a fixed detection site D with a perpendicular
line along which the electronic density is constant.
Then one can calculate immediately:

∫ ∞

l

dζ

ζ2
ne(D, ζ) e

2iπ ν
ρ

ζ
= n0

eJl(
ν

ρ
).

Hence one deduces the Fourier transform ñe(S, ν
ρ
)

of ne(S, τ) and consequently:

ne(S, ζ′) =

∫ ∞

−∞
d(

ν

ρ
) e

2iπ ν
ρ

ζ′

ρ2

n0
eJl(

ν
ρ
)

∫ ∞

−∞
dτ e−2iπντ g(D,S|τ)

K(τ)
. (14)

This time we keep the detection site fixed, and
move around the incoming pencil beam to collect
the data before computing the reconstruction of
the defect. This is an equivalent procedure and the
choice between the two may depend on the practi-
cability of the measures at hand.

CONCLUSIONS AND OUTLOOK

In this work, we propose an analytical inverse
method to determine the electronic density from
double Compton scattering in transmission imag-
ing. This result is used for the detection of defects
in homogeneous medium. This detection procedure
does not require the motion of neither the incident
radiation source nor the material under investiga-
tion. This represents a real advantage in some non-
destructive controls in which the number of views
in conventional tomography is very limited.
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ABSTRACT 
In this paper we investigate the problem of 

reconstructing temperature and humidity profiles 
in a tropical atmosphere using the Inversion 
Coupled with Image (ICI) model. The analyses 
were done using the Advanced TIROS 
Operational Vertical Sounder (ATOVS) data 
during February of 2000. The results are 
compared with numerical weather prediction data. 
Emphasis is given in analysing the role of the 
channels combination used in the retrieval 
process. Different surface types (sea and land) 
and atmospheric conditions (clear and cloud sky) 
were also considered. 

 
INTRODUCTION 

The vertical structure of temperature and 
water vapor plays an important role in the 
dynamics and radiation exchange of the 
atmosphere. For years the radiosonde 
observations have been the primary source of data 
for monitoring the tropospheric conditions. 
Despite the importance of this observing system, 
there is still a lack of observation in several 
regions of the Earth. In this sense, retrievals of 
temperature and humidity profiles from satellite 
are important for a number of applications such as 
weather analysis and data assimilation in 
numerical weather prediction models. 

Interpretation of satellite radiances in terms of 
meteorological parameters requires the inversion 
of the radiative transference equation (RTE) 
where measurements of radiation performed in 
different frequencies are related to the energy 
from different atmospheric regions. The obtained 
solution is highly indeterminate for a set of 
observed radiances. The degree of 
indetermination is associated with the spectral 
resolution and the number of spectral channels. 
Moreover, usually this solution is very unstable 

with regard to noises in the measuring process 
[1,2]. Currently there is an effort to improve the 
spectral and spatial resolution of the sounders on 
board of meteorological satellites. Also, several 
methodologies and models have been developed 
to improve the satellite data processing. Due to 
the difficulty of obtaining correct RTE solutions, 
several approaches and methods were developed 
to extract information from satellite data [3-9]. 

Since May 1998 a new generation of 
radiometers for satellite retrieval of vertical 
temperature and humidity profiles became 
available. The ATOVS system consist basically 
of three instruments: the HIRS, composed of 20 
spectral channels in the infrared spectral range, 
the AMSU-A with 15 microwave channels and 
AMSU-B, composed of 5 channels also localized 
in the microwave spectral range. Table 1 shows 
the main characteristics of this radiometer and its 
meteorological applications. A complete descrip-
tion of the ATOVS system can be found in [10]. 

The main purpose of this work is to 
investigate the problem of reconstructing 
temperature and humidity profiles in a tropical 
atmosphere using data remotely collected by the 
ATOVS sounder. To accomplish this task, we 
chose the Inversion Coupled with the Image (ICI) 
model [11] developed at the Centre de 
Météorologie Spatiale (CMS), where it has been 
operational since 1996. 

 
THE ICI INVERSION SYSTEM 

The ICI was chosen because its easy 
implementation and simple conception to make 
experiments. The main ICI modules are: the guess 
profiles library search, the inversion module and 
the tuning module, responsible for model periodic 
calibration [11]. Figure 1 shows a schematic 
diagram of the ICI working system. 
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Table 1. Characteristics of ATOVS system: 
channels, spectral range (wavelength or 
frequency) and main meteorological applications. 

HIRS 
Chan. Wavelength (µm) Meteor. Application 

1-7 14.9-13.4 Temperature Sounding 
8 11.1 Surface Temperature  
9 9.6 Total Ozone 
10 12.4 Moisture Sounding 

11,12 6.5; 7.3 Moisture Sounding 
13-17 4.13-4.57 Temperature Sounding 
18-19 3.76-4.13 Surface Temperature 

20 0.7 Cloud Detection 
AMSU-A 

Chan. Frequency (GHz) Meteor. Application 
21,22 23.8;31.4 

23 50.3 
Total Water Content and 
Surface Characteristics 

24-34 52.8-57.3 Temperature Sounding 
35 89.0 Surface Characteristics 

AMSU-B 
Chan. Frequency (GHz) Meteor. Application 
36,37 89.0;150.0 Surface Characteristics 
38-40 183.0 Moisture Sounding 

 
 

 
Figure 1. Description simplified of the ICI 

inversion processing system. 
 
 
Pre-Processing and Data Sets 

In this study 15 days of NOAA-15 satellite 
data over Brazil were used for reconstructing 
temperature profiles during the period 23/02/2000 
to 08/03/2000. The meteorological data used in 
the initialization and validation process 
(radiosondage and numerical weather forecasting 
data) was supplied by the Brazilian Centre for 
Weather and Climate Forecast (CPTEC). Since 
the satellite raw data is received in the HRPT 
(High Resolution Picture Transmission) format, it 

is necessary to process it before the retrieval 
process. The ATOVS and AVHRR Processing 
Package (AAPP) model was used to perform the 
ingestion and pre-processing of the HRPT data 
[12,13]. This procedure supplies calibrated data of 
brightness temperature for all ATOVS channels, 
located in the terrestrial coordinates (latitude and 
longitude) and mapped for a common grid 
resolution. 

In order to use the infrared spectral channels 
in the retrieval process, it was necessary to 
perform cloud cover detection [14] in the study 
area. The microwave spectral channels generally 
are not affected by clouds, but in some 
frequencies (specially in the AMSU-B channels), 
the presence of rain and ice hydrometeors 
particles becomes important due to scattering and 
absorption processes. Thus a technique based in 
the 21, 22 and 35 AMSU-A channels brightness 
temperature differences was used to perform the 
precipitation and scattering identification over sea 
and land locations [15]. The areas identified as 
contaminated by precipitation or scatterings are 
not used in the current study. 

 
The Forward Model 

The interaction between the radiation that 
arrive in the satellite sensor and the atmosphere is 
described by the RTE. For a non-scattering 
atmosphere in local thermodynamic equilibrium, 
the RTE is written as: 
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where R is the spectral radiance; ν is the channel 
frequency; B is the Planck function which is a 
function of the temperature T and pressure p; ε  
the surface emissivity; τ the layer to space 
atmospheric transmittance function and the 
subscript s denotes surface [9,16]. 

During the retrieval process, the atmospheric 
radiative transfer model is used many times; thus, 
the forward model need to be fast enough to work 
in an operational inversion scheme but 
sufficiently accurate to maintain the retrieval 
quality. The ICI system uses the RTTOV-6 
model, a fast radiative transference code [17,18], 
where the transmittance is not calculated directly 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 
 

but rather through an approximation using a 
multi-regression method. 

If the satellite observed brightness temperature 
R of each channel is known, then R can be 
considered a nonlinear function of the 
atmospheric temperature profile (T), water vapour 
mixing ratio profile (q), surface skin temperature 
(Ts), surface emissivity (εs), ozone profile, 
uniformly mixed gases profiles, etc. That is, 
R = R(T,q,Ts,qs,…). The uniformly mixed gases 
are supplied by internal coefficients and a 
standard ozone profile is utilized (US standard 
atmosphere 1976). For the infrared spectral 
channels over sea, the emissivity is given 
according to the scanning secant, the average 
wind speed and the surface temperature, using 
values described in [19]. Over land the emissivity 
is considered as a constant and set to 1. In the 
microwave spectral region over sea, the 
emissivity is calculated using the algorithm 
FASTEM [20], which takes into account variables 
such as wind speed, skin surface temperature, etc. 
Over land, in the current study, the microwave 
emissivity information is provided through an 
atlas of emissivity and is dependent on the 
frequencies and scanning angles [21,22]. Thus, in 
general we have: 
 

,...ni,   ii 1  )( == xRR  (2) 
 
where n is the number of brightness temperatures 
and the vector x contains the 57 parameters to be 
estimated: 40 atmospherics temperatures (that 
correspond to 40 pressure levels in the 
atmosphere, from 1000 to 0.1 hPa), 15 
atmospheric water vapour mixing ratio levels 
(from 1000 to 300 hPa), one surface skin 
temperature and one surface water vapour mixing 
ratio. 
 
Inversion Scheme of the ICI Model 

One can separate the ICI retrieval process in 
two different steps; the first one is related to the 
guess selection using a least square optimization 
in the brightness temperature space, and in the 
second step the inversion process uses an 
Bayesian approach to retrieve the temperature and 
moisture vector. 

The selection of the guess profile is performed 
through a search in the library of temperature and 
moisture profiles. For each profile i, a distance di 
is computed as: 
 

))(())(( 1
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m
id xrrBxrr −−= −  (3) 

 
where rm and ri represent the vector of brightness 
temperature of the observed profile and the vector 
of brightness computed from the candidate to 
guess profile, respectively; and B is the brightness 
temperature covariance matrix that is calculated 
in agreement with the type of prevailing cloud 
coverage (clear, partially clear and cloudy) and air 
mass class (polar, middle latitude, tropical). The 
guess profile is defined as the average of the 10 
profiles that minimize the computed distances di. 
The library of guess profile is built sampling the 
radiosoundings and analyses profiles from the 15 
previous days provided in the local acquisition 
zone. The library contains approximately 2000 
profiles (temperature and moisture). 

The ICI inversion process consists of finding 
the most probable atmospheric profile x given the 
measurements rm, i.e. of maximizing the 
conditional probability of x given rm: 

)r|(x m  Pmax . According to the Bayes theorem, 
in the case of Gaussian error distributions, the 
most probable solution is that which minimizes 
the objective function: 
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where xb is the background profile; C is the error 
covariance matrix of the background; r(x) is the 
radiative transfer model or “forward model”; E is 
error covariance matrix of the combined 
measurement and forward model errors. 

An approach to obtain a minimum for 
Equation (4) is to use the Newtonian iteration 
method, which employs the following updating 
rule: 
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where J’(x) the gradient of J(x) with respect to x 
and J”(x) is their second derivative of the 
Equation (4). By matrix manipulation, one can 
find the following estimation scheme for this 
problem: 
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where K(x) contains the partial first-derivatives of 
r(x) with respect to the elements of x [23,24]. 
Iteration in Equation (6) ends when the increment 

)( 1 nn xx −+  is small enough and when 

)}({( 1+− n
m xrr  is of the order of the measurement 

error in all channels. 
 

RESULTS 
In practice an important factor that contribute 

to the retrieval accuracy is the correct selection of 
the spectral channels that will be used in the 
inversion process. Channels with large noise and 
those which cannot be properly simulated by the 
forward model generally downgrade the quality of 
the solutions. However, the mere exclusion these 
channels may also eliminate useful information.  

Figure 2 shows the error statistics concerning 
the mean (bias) and the standard deviation (stdev) 
of the difference between the simulated and 
measured brightness temperature. In practice, 
these errors are caused by various sources such as 
forward models approximations, measurement 
errors, among others [25]. As expected, the error 
levels vary considerably from channel to channel. 
The accuracy also depends on the surface type 
(sea and land). In general, surface channels yield 
the worst result due to their high sensitivity to 
surface parameters such as the emissivity and the 
surface temperature. The channels associated with 
the water vapor absorption band (moisture 
channels) also show a larger error (stdev). We can 
also see that the values of standard deviation are 
higher over land, especially in the AMSU 
channels. This occurs because the surface 
parameters have lower variability and easier to be 

estimated over sea. However, one can notice that 
the forward model underestimates the brightness 
temperature, althought a bias correction scheme 
was applied in the measured brightness 
temperature prior to its use in the inversion 
process. 

 
 

Table 2. Channels selection used in the ICI 
inversion process. 
Case Channel Selection 

 Clear Sky Cloud Sky 
T1 2-8; 13-16; 25-32 2-3; 25-32 

T2 
2-8; 11-16; 

25-32; 38-40 
2-3; 25-32; 

38-40 

T3 
2-8; 10-16; 

24-32; 37-40 
2-3; 24-32; 

37-40 

T4 
2-8; 11-16; 25-32; 

38-40 + TPW 
2-3; 25-32; 

38-40 + TPW 
 
 
To study the performance of ICI viz-a-viz the 

selection of spectral channels used in the retrieval, 
we considered four different strategies (see Table 
2). For the T1 case, we used only temperature 
sounding channels. In the T2 case, a combination 
of temperature and moisture channels were used, 
but the surface channels were not included. In the 
T3 case, some surface channels were added, and, 
finally, for the T4 case, instead of surface 
channels, additional information was used in the 
guess choice process. This additional information 
takes the form of a  “pseudo channel” 
constraining the integrated atmospheric water 
vapor content (i.e., the total precipitable water-

 
 

 
Figure 2. Error statistics concerning the mean (bias) and the standard deviation (stdev) of the difference 
between the simulated and measured brightness temperature. Statistics performed for the NOAA-15 
satellite from 28/02/2000 to 08/03/2000. 
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TPW). The TPW over sea is estimated from 
channels 21,22 e 23 [15], while over land a 
multiple-regression algorithm using various 
channels is applied. 

 
Temperature Retrievals 

Figures 3 and 4 show the temperature mean 
RMS error for retrievals over, respectively, land 
and sea, for clear and cloudy sky conditions, and 
test cases T1, T2 and T3. As expected, since the 
channels errors (stdev) are smaller over sea 
(Figure 2), we found that at the lower surface 
levels (up to 700 hPa), the temperature estimates 
are less accurate over land than over sea. On the 
other hand, the impact of the cloud cover type 
(cloudy or clear) was not significant, which 
means that the information supplied by the 
infrared channels produces a small improvement 
on the retrieved profile.  

Concerning the different channel selection 
strategies, we observed that T1 yielded the worst 
results for all situations while T2 and T3 showed 
the smallest error level, respectively, over land 
and sea. This result suggests that the use of 
surface channels (as in T3 case) is only useful 
over sea although other cases need to be evaluated 
in order to obtain a statistically significant result. 

Table 3 shows the values of RMS error (from 
1000 to 10 hPa) for the guess and retrieval 
profiles (T3 case). We notice a considerable error 
decrease as the result of the inversion process. 
The largest improvement in the temperature 
profile is observed over land for clear sky 
conditions. 

 
 

Table 3. RMS error for guess and inversion 
profile for the case T3 for the follow variables: 
temperature (from 1000 to 10 hPa) and moisture 
(from 1000 to 500 hPa). 

Temp. (K) Moist. (g/kg) Surf. type 
Guess Invers. Guess Invers. 

Sea clear 1.03 0.82 1.00 0.91 
Land clear 1.18 0.88 1.32 1.29 
Sea cloud 1.09 0.86 0.99 0.92 

Land cloud 1.07 0.87 1.21 1.20 
 
 
The previous analysis concern the statistics of 

the mean error, but for meteorological purposes it 
is also important to know the horizontal structure 
of the retrieved fields. Our results showed that the 
retrieved temperature fields for different pressure 

levels were similar to the observation (true) fields 
at the same levels, with a RMS error not 
exceeding  2 K, except in a few locations near the 
surface. 
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Figure 3. Mean RMS error for temperature profile 
over land (T1, T2 and T3 channel configurations): 
a) clear sky condition (1292 profiles) and b) cloud 
sky conditions (1664 profiles). 
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Figure 4. Mean RMS error for temperature profiles 
over sea (T1, T2 and T3 channel configurations): a) 
clear sky condition (1279 profiles) and b) cloud sky 
conditions (847 profiles). 
 

 
Moisture Retrievals 

In addition to the problems already 
mentioned for retrieving the temperature 
profiles, the moisture inversion process involves 
additional difficulties. The moisture fields 

usually are subject to a large spatial and 
temporal variability, especially in tropical 
regions, which makes difficult the comparison 
with observed data, necessary for validation 
purposes. Moreover the water vapor channels 
present a larger noise level. 

Figures 5 and 6 show the mean RMS error 
for moisture retrievals over, respectively, land 
and sea, for four different channels 
configurations. As in the case of temperature 
retrieval, we found that at the lower surface 
levels (up to 700 hPa), the temperature estimates 
are less accurate over land than over sea. Also, 
the error levels found for different cloud 
coverages were similar. As expected, when the 
moisture sensitive channels were not used (T1 
case), the error levels are larger in all situations. 
Overall, the best results were obtained with the 
T4 channel configuration, except over land for 
cloudy condition, because the TPW channel was 
not used. 

Differently from the temperature retrieval 
cases, the impact caused by the moisture 
inversion process in the mean error level decrease 
is small for almost all situations (Table 3). 
However, a qualitative analysis of individual 
horizontal fields show that the ICI inversion 
system identifies properly the structure of the 
moisture field. The areas with higher and lower 
water vapor contents are correctly represented, 
mainly in over sea. On the other hand, there are 
some regions where the error became significant, 
especially in soundings over land. 

 
CONCLUDING REMARKS 

In this paper we investigated the problem of 
retrieving atmospheric temperature and moisture 
profiles from satellite data. Emphasis was given 
in the analysis the role of different channel 
combination used in the retrieval process. 
Different surface type (sea and land) and 
atmospheric conditions (clear and cloud sky) 
were also considered. 

The results showed that it is easier to retrieve 
temperature and moisture profiles over sea than 
over land. This occurs because over land, the 
forward model is less accurate due to the 
difficulty of estimating surface parameters such as 
the emissivity and the surface temperature. 
Surprisingly, we found the atmospheric 
conditions do not affect significantly the accuracy 
of the inversion process. Also even without most 
of the infrared channels (cloudy sky situations) it 
is possible to obtain accurate retrievals. We also 
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observed that the use of TPW as additional source 
of information improve considerably the error 
statistics of moisture soundings over sea. Finally, 
we stress that the present results and conclusions 
are representative of the period and region in 
study and, therefore, further studies are necessary 
to obtain more general conclusions. 

ACKNOWLEDGEMENTS 
This work was supported by FAPESP-Brazil. 

The first author thanks the CNPq-Brazil by the 
financial support given through of the PhD 
program 142400/1998-0. NJF and FMR also 
acknowledge the support given by CNPq thought 
the research Grant 300486/96-0 and 300171/97-8, 
respectively. 

 
 

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5
RM S er ror  (g/ kg)

20 0

40 0

60 0

8 0 0

1 00 0

P
re

ss
ur

e 
(h

P
a)

T1

T2

T3

T4

 
(a) 

 

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5
RM S er ror  (g/ kg)

20 0

40 0

60 0

8 0 0

1 00 0

P
re

ss
ur

e 
(h

P
a)

T1

T2

T3

T4

 
(b) 

 

Figure 6. Same as Fig. 4 but for moisture profile. 

 
 
 

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5
RM S er ror  (g/ kg)

20 0

40 0

60 0

8 0 0

1 00 0

P
re

ss
ur

e 
(h

P
a)

T1

T2

T3

T4

 
(a) 

 

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5
RM S er ror  (g/ kg)

20 0

40 0

60 0

8 0 0

1 00 0

P
re

ss
ur

e 
(h

P
a)

T1

T2

T3

 
(b) 

 

Figure 5. Same as Fig. 3 but for moisture profile. 
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ABSTRACT  
Polymeric emulsions are well characterized by the 

knowledge of their particle size distributions (PSD).  
Elastic-light-scattering (ELS) measurements can be in-
verted to estimate the PSD in the range from 50 nm. up 
to several micrometers.  The relative refractive index of 
the particles is required in computation procedures to 
obtain the PSD.  Small differences in the assumed refrac-
tive index may cause significant differences in the result-
ing PSD. From the scattering data, the refractive index 
can be determined. In this paper we present the corre-
sponding technique. We consider polymeric emulsions 
where the non-absorption assumption is reasonable.    

We  propose a methodology  based on Tikhonov 
regularization applied  only to the distribution. However, 
we solve the minimization problem simultaneously  with 
respect to the distribution and the refractive index. To 
select the regularization parameter, we include the Gen-
eralized Cross Validation technique. From simulated 
ELS measurements we show that the problem is solved 
successfully. 

 
NOMENCLATURE  
 
A matrix form of operator T 
D particle diameter 
f particle size distribution (PSD) 
f vector form of PSD 
g noisy ELS measurement 
H matrix form of L 
I light scattering intensity 
J functional 
q smoothing restriction on f 
m relative particle refractive index 
n1 particle refractive index 
n2 solvent refractive index 
S  Lorentz-Mie scattering function 
T Operator that represents the integral equation 
Greeks 
ε experimental error 

γ regularization parameter 
θ scattering angle 
Superscript 
~ estimated values 
* adjoint 
 
INTRODUCTION  

Emulsion polymerization systems are typically com-
posed by three coexisting phases: a continuous (usually 
aqueous) phase, monomer droplets, and polymer parti-
cles. In particular, the size of the polymer particles 
greatly affects the properties of the final material. So, the 
knowledge of the  emulsion particle size distribution 
(PSD)  is important to characterize the material.  

The most popular technique for the determination of 
PSDs is elastic light scattering (ELS) [1], since it is an 
easy to perform and non-destructive experimental tech-
nique. The emulsion sample is illuminated by a mono-
chromatic beam and the scattered light, averaged over 
time, is measured as a function of the scattering angle. 
This angular intensity, having the same wavelength as 
the incident beam, is influenced by the size, the shape 
and the optical contrast of the particles (Mie theory 
[2]).The difficulty associated with this technique is re-
lated to the inversion of the measurements to extract the 
desired information from the data. Size, shape, and opti-
cal contrast can be described by a large number of pa-
rameters, which  cannot  completely be extracted from 
the intensity spectrum stem from a light scattering ex-
periment. The reasons of this fact are the ill-posed nature 
of the problem and the statistical noise of experimental 
data. The ill-posed nature of the problem is due to the 
lack of identifiability of the parameter. This problem is 
mentioned in the literature as existence of singularities 
[3]. In our case the refractive index seems to be identifi-
able. 

The determination of the PSD from ELS measure-
ments, assuming that all parameters in the model are 
known exactly has been studied by several authors [4,5]. 
Since the inverse problem can be stated as linear, several 

mailto:gfrontin@fi.mdp.edu.ar
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regularization methods can be applied [6]. There is a 
large variety of inversion techniques for light scattering 
data [7,8]. In general, these techniques are classified as 
either analytical or empirical. Analytical techniques in-
volve formal solutions of integral equations that describe 
the light scattering process, and require the use of a pri-
ori information regarding the distribution function be-
cause of the ill-posed nature of the inverse problem. Em-
pirical inversion techniques generally require that a pa-
rametric model of the light scattering process be devel-
oped. The parameters are then adjusted within physically 
realistic bounds so that a least squares fit of the measured 
data is obtained. 

We are interested in the problem of determining PSD 
and relative refractive index of polydisperse colloidal 
particles. In this case the inverse problem is non-linear. 
Some previous publications have considered this prob-
lem. Schnablegger and Glatter [3], reported a methodol-
ogy to retrieve PSD and refractive index from ELS in the 
presence of scattered light reflected from the walls of the 
sample holder. They represented the sought distribution 
by a series of β-spline functions and imposed to the solu-
tion smoothing and positive constraints, and determined 
the regularization parameter by means of  a sensitivity 
plot constructed from the residuals. Jones et. al. [10], 
combined analytical and empirical inversion techniques 
to obtain optical parameters and PSD. They chose an 
orthonormal base to expand the solution and followed a 
procedure consisting in sequential steps. First, the re-
trieval of the refractive index through the use of the un-
constrained solution, then, the retrieval of the PSD 
through the use of the constrained solution, and finally 
the retrieval of the absorption index by matching the 
measured and calculated scattering patterns. They con-
cluded from simulated experiments that this procedure 
gives the best results for narrow distributions.   

Our goal is to develop a more general and analytical 
methodology to estimate simultaneously PSD and refrac-
tive index from ELS measurements. Our approach in-
volves techniques for the automatic determination of the 
regularization parameter, and yields good results with 
fewer empirical considerations.  

 
THE DIRECT PROBLEM 

Consider a given particle of a particular shape, size 
and composition, which is illuminated by a light beam of 
a specific wavelength, intensity and polarization. The 
determination of the resulting electromagnetic field from 
the scattering process, based on the solution of Maxwell 
equations is called the 'direct problem'.  The most impor-
tant problem in the theory of absorption and scattering 
by small particles that can be solved using a mathemati-
cal closed formulae is that by a sphere of arbitrary radius 
and refractive index. This formulae was derived by 
Mie[11] and other authors [12].  The angular scattered 
intensity due to a polydisperse system can be regarded as 
a linear combination of Lorenz-Mie form factors 
S(θ,D,m), where θ is the scattered angle, D is the particle 

diameter, and m is the relative complex refractive index 
of the particles in the solvent. If we proceed and regard 
the coefficients of the linear combination as a continuous 
function f(D) that represents the emulsion PSD , we ob-
tain the  integral  expression that has to be evaluated to 
find the angular-dependent scattering curve of the 
polydisperse system, as 

 

∫=
max

min

)(),,(),(
D

D

dDDfmDSmI θθ , 

ℜ⊂Θ=∈ ],[ 21 θθθ      (1) 
 

For the calculations of the direct problem we use the 
computer programs reported in the literature [13]. A 
similar program is also given in [14].  

The complex relative refractive index m is defined as 
the ratio of the complex refractive index of the particle n1 
to that of the solvent n2 . Because of the small value of 
the imaginary part of the refractive index (i. e. , absorp-
tion coefficient), less than 0.01 for polymeric emulsions, 
m is approximated by its real value (i. e., scattering coef-
ficient). Scattering and absorption coefficients are usu-
ally referred as optical constants. We use this approxima-
tion since for the range of wavelengths of the incident 
beam commonly used in the experimental equipment, the 
absorbed light by the polymer particles can be neglected 
for the materials we are considering. 

As a concluding remark, it can be said that the avail-
ability of reliable optical constants is critical for the use 
of Mie theory.  

 
THE INVERSE PROBLEM 

In practice, it often occurs that the particles responsi-
ble for the scattering cannot be analyzed directly. From a 
study of the scattered field, we then have to determine 
the characteristics of the particles.  

In this article, we consider that the particle character-
istics to be determined from the scattered intensity spec-
trum, I(θ,m), are f(D) and m. All other parameters are 
assumed known. It is obvious from Eq. (1) that the rela-
tion between I(θ,m) and f(D) is linear. Contrarily, m ap-
pears in the kernel in a non-linear way, therefore I(θ,m) 
is non-linear in m. Thus, the determination of all the un-
knowns needs the solution of  a non-linear inverse prob-
lem.  

There are two aspects to be taken into account to 
solve this class of non-linear inverse problem. The first 
one, the relations described in last paragraph, will allow 
us to derive a quasi-analytical solution. The second is 
that the problem ill posedness is only with respect to 
f(D). This property can be described by the fact that 
small perturbations on m produces large differences in 
I(θ,m) when one evaluates the direct problem, behavior 
opposite to that observed for ill posedness. On the other 
hand, the decay rate of the singular values of the kernel 
of the integral equation, which can be used as a measure 
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of the degree of ill-posedness [5], is practically not af-
fected by the value of m. 

  
Regularization of the Inverse Problem 

The general formulation of the inverse problem ad-
dressed in last paragraphs is the following.  

Consider the integral equation 
 

∫ ==
max

min

  ),,()(),,(])[(
D

D

mIdDDfmDSfmT θθ    

  (2) 

Θ∈θ

 
where the distribution f(D) and the parameter m  are the 
unknowns. The set of admissible parameters is  
 
P  ={(m,f): m ε [M0,M1], fε L2([Dmin, Dmax];ℜ)}. 
 
 Noisy measurements g(θ) are available, with ex-

perimental error ε(θ), i.e. : 
 

)(),()( θεθθ += omIg    (3) 

where  is the actual value of parameter m. om
We propose to find the solution of the problem opti-

mizing the following functional   
 

22
22  ])[(),(

LL
q(f)gfmTfmJMin γ+−=

P
(4) 

 
Eq. (4) shows that we apply Tikhonov’s regulariza-

tion [15] only to f(D). q(f) is the smoothing restriction 
included as the a-priori information about the sought 
distribution and  γ  the regularization parameter which 
weighs this inclusion. 

The possible local minima are found solving the 
equations: 

 

0),( =
∂
∂ fmJ
f

,       0),( =
∂
∂ fmJ
m

. 

 
In the first equation, m is fixed, and the derivative must 
be interpreted as a functional derivative because f  is a 
function (see Appendix A). The solution of this equation 
is the classical for linear inverse problems, i.e. 
 

( ) gmTqmTmTf *)()(*)( 1−+= γ .  (5) 
 
In the second equation, for fixed f, J(m,f) is a function of 
the real variable m.  We proceed as follows to solve it.  
Writing J(m,f) in terms of the scalar product we obtain 
 

( ) ( 22 )(),(])[(,])[(),( LL fqfqgfmTgfmTfmJ +−−= ) . 
 
Differentiating with respect to m we have  
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Since the above equation holds for every , we 
obtain the formula 

δm∈ℜ
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∂
∂ gfmTfmT
m

)   (6) 

 
Substitution of Eq. (5) into Eq. (6) yields: 
 

( ) .*]*)()(*)()[( 1 





 +

∂
∂ − gmTqmTmTmT
m

γ   

( )( ) 0 ]*)()(*)()[(. 1 =−+ − ggmTqmTmTmT γ .  (7) 
 

In fact, the solution of this single equation [Eq. (7)] in 
terms of m, for a specific value of the regularization pa-
rameter γ, gives an estimation of the parameter .  Nu-
merically this is calculated easily since the unknown m is 
one-dimensional. Evaluation of Eq. (5) using  gives 
the estimation of the PSD, . 

m~

m~

f~

Although γ, m, and f must be determined to solve the 
problem, a prior selection of the regularization parameter 
must be performed, since γ is constant in the minimiza-
tion problem (Eq. 4), as usual in Tikhonov’s regulariza-
tion. The relation between the selection of the regulariza-
tion parameter and the quality of the estimations is ana-
lyzed in the next section.   

 
Selection of the Regularization Parameter 

We follow two different approaches for the selection 
of the regularization parameter. The first one can be ap-
plied in any situation since no estimation on noise level 
is needed. It involves an iterative procedure which be-
havior is robust and gives good estimations of the prob-
lem unknowns. The second approach is more analytical 
and needs no iterations. However, it needs one to assume 
bounds on the perturbation of the sought parameter and 
on the measurement noise which greatly affects the qual-
ity of the solution. Thus, its application in real experi-
ments may be more difficult.  
 

Iterative method. For any γ  Eq. (7) can be solved  
and the value of  determined. It has been noticed that 
regardless the γ  value, the solution  is nearly the 
same. In fact, this is true as long as γ is in a range where 
multiple solutions in Eq. (7) are avoided. Contrarily, the 
estimated distribution obtained evaluating Eq. (6) 
for each γ may differ greatly.  It is necessary to obtain 
the optimal value of the regularization parameter to re-
trieve the correct distribution. The Generalized Cross 
Validation (GCV) technique developed by Golub et. al. 

m
m~

 (D) f~
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[16] for the selection of the regularization parameter for 
linear inverse problems could be used. This is possible 
since once m is determined, the inverse problem stated 
by Eq.(2) becomes linear.  

We propose an iterative procedure for the selection of 
the regularization parameter, γ, to find the estimation of 
the unknown parameter in the kernel, m , and the un-
known distribution , that can be summarized as fol-
lows 

~

f~

 
1. Select an initial value of the regularization pa-

rameter, . 0γ
2. Find m such that Eq. (7) is fulfilled. 1

~

3. Find a new value of the regularization parameter 
 applying the GCV technique, for the linear 

problem stated using . 
1GCVγ

1
~m

4. Repeat steps 2 and 3 finding and  for 
i=1, 2 . . .  , until the parameters values stay in-
variant. Call  and the final values.  

im~
iGCVγ

m~ γ
5. Find f~  evaluating Eq. (6) . 

 
The application of this iterative process gives, in few 
steps,  good estimations of the solution of the inverse 
problem.  

 
One step method. We analyzed an alternative 

method based on Neubauer’s technique [17] to select the 
optimal regularization parameter that can be used when 
good estimations of the modeling error and  the noise 
level present in the measurement are known.  

Let   be the exact value of parameter m  . As a 
consequence of the uncertain value of parameter m in the 
kernel, there is an error h that can be considered as a 
modeling error, given by 

om

 
hmhmTmT o ~)()()( ≤=− .   (8) 

 
Let also εδ =  be the noise level present in the meas-
urement. Neubauer [17] derived a method for choosing 
the regularization parameter that takes into account this 
situation. (See the appendix). The constant value of  γ in 
Eqs. (4), (6) and (7) should be changed by γ(m) , the op-
timal regularization parameter that corresponds to the 
problem defined to each value of m. Notice that an addi-
tional term containing  dγ(m)/dm will appear in Eqs. (5) 
and (7). The simultaneous solution of Eq. (7) and Eq. (A-
3) gives, in one step, the values of m  and of the regu-
larization parameter γ

~

Neub= γ( ). Finally, as before,  
is found from Eq. (6). It should be said that Neubauer’s 
method is derived for 

m~ f~

22)( L ffL 2L2 =  in Eq. (4).  

In practice, h(m) can never be known exactly, since 
 is unknown, then a superior bound  should be 

estimated. In this case the obtained solution my differ 
greatly form the optimal. 

)( omT h~

  
COMPUTATIONS AND RESULTS 

To illustrate the validity of the regularization method 
to obtain the refractive index and the PSD of a polymeric 
emulsion from the knowledge of the scattered intensity 
spectrum, we consider two examples. 

In order to compare the results for situations involv-
ing random measurement errors, we assume normally 
distributed uncorrelated errors with zero mean and con-
stant standard deviation. The simulated noisy measure-
ments can be expressed, in the discrete domain, as 

 
iii εgg +=ε      (9) 

 
where = I(θig i) is the exact solution of the direct prob-

lem for the exact value of the parameter  and the ex-
act distribution f, corresponding to a particular scattered 
angle θ

om

i, and  the noise added at that angle. Let us 
write the discrete version of the inverse problem stated 
by Eq. (4) as  

iε

 
HfffAgJ T

f
γε +−= 2

,
)(mMin

m
  (10) 

 
where vector gε represents the scattered intensitiy for all 
measured angles, matrix  A(m) the discrete form of the 
operator T(m) , H=KTK and Kf  is the discrete form of 
q(f). We consider in all cases q(f) as the second deriva-
tive of  f. 
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FIGURE 1.Real (- - -) and Estimated (     ) PSD for Example I   
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FIGURE 2. Light Scattering Spectrum for Example I   
 

 
The first example corresponds to a polystyrene emul-

sion in water ( =1.1867) having spherical particles 
with diameters in the range of 50 nm to 2550 nm distrib-
uted as a broad number PSD, as the one shown in Figure 
1. The simulated spectrum g (Figure 2) corresponds to 
70 equally spaced scattered angles from 12º to 150º, 
where the noise standard deviation σ

om

ε

ε is equal to 1% of 
the mean value of the measurements. We use this data to 
retrieve  and f, the solution of the inverse problem.  om

 
The results obtained following the iterative method 

are =1.1867 and as in Figure 1 (solid line), for γm~ f~  = 
4.0E5.  The iterative process is shown for different val-
ues of γo in Table 1. For the  value obtained for each 
step we applied the GCV technique to obtain a new value 
of the regularization parameter, γ

m~

GCV . The last two col-
umns show that the convergence of the method is 
achieved from any initial value. 

In order to help understanding the behavior of the 
methodology we plot the evolution of a function that we 
call Jγ(m) in Figure 3. Jγ(m) is the functional J(m,f) given 
by Eq. (4) in which Eq. (5) was introduced. For each  γ  
we find a curve Jγ(m) vs. m, which minimum occurs at 

. This value is in fact the same found  solving Eq. (7). m~
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FIGURE 3  Evolution of the functional for Example I   
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gε Table 1. Results of the iterative method for Example I   

0γ  1
~m  

1GCVγ  
2

~m  
2GCVγ  

3
~m  γ  m~  

1.0 E-1          undetermined  

1.0 E 0 1.1895 1. E 5 1.1875 3.2E5 1.1869 4.0E5 1.1867 

1.0 E 1 1.1890 1.6 E  1.1875 3.2E5 1.1869 4.0E5 1.1867 

1.0 E 2 1.1885 2. E 5 1.1870 4.0E5 1.1867 4.0E5 1.1867 

1.0 E 3 1.1885 2. E 5 1.1870 4.0E5 1.1867 4.0E5 1.1867 

1.0 E 4 1.1850 3.2E 5 1.1870 4.0E5 1.1867 4.0E5 1.1867 

1.0 E 5 1.1875 3.2E 5 1.1870 4.0E5 1.1867 4.0E5 1.1867 

1.0 E 6 1.1860 5.0E 5 1.1865 5.0E5 1.1866 5.0E5 1.1866 

1.0 E 7 1.1845 1.0E 4 1.1850 3.2E5 1.1869 4.0E5 1.1867 

1.0 E 8 1.1830 5.0E 3 1.1885 2.0E5 1.1872 4.0E5 1.1867 

1.0 E 9 1.1805 2.5E 3 1.1870 4.0E5 1.1867 4.0E5 1.1867 

1.0E 10 1.1745 8.0E 2 1.1885 2.0E5 1.1872 4.0E5 1.1867 
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FIGURE 4. Real (- - -) and Estimated (     ) PSD for Example I  ob-
tained by the one step method 
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one step method 
 

 
The results stem from applying the one step method 

are , =1.1867 and as in Figure 4. This 
solution was obtained using the exact norm of the model-

41.1 ENeub =γ m~ f~
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ing error h(m), not available in real experiments. We 
tried for several values of  with no success, showing 
that the one step method is not appropriate for this case. 
The difference between the retrieved PSDs in Figures 1 
and 4 is due to the fact that in the one step method 

h~

22

22
)( LL ffq = , as we said in the previous section. 

θ  

2
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FIGURE 6. Real (- - -) and Estimated (     ) volumePSD  for  

Example II  obtained by the iterative method. 
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FIGURE 7. Light Scattering Spectrum for Example II   
 
 
The second example was taken from the literature 

[3]: a bimodal gaussian distribution shown in Figure 6 
represents the volume distribution of an emulsion. Its 
actual relative refractive index is mo=1.25.  The simu-
lated measurements, shown in Figure 7, were generated 
with additive noise with statistical parameters as in the 
first example. 

For this case we show the results obtained using the 
iterative procedure. The result for the steps found for two 
different starting points are shown in Table 2. Figure 8 
shows the functional behavior for some specific values 
of the regularization parameters. 

 
Table 2. Results of the iterative method for Example II   

0γ  1
~m  

1GCVγ  ~m  
2GCVγ  

3
~m  γ  m~  

1.0 E 6 1.242 2.5E 7 1.250 3.1E5 1.252 3.1E5 1.252 

 1.0E 11 1.278 5.6E 7 1.254 3.5E5 1.252 3.1E5 1.252 

 

Thus, the solution obtained is =1.252, γ=3.1E5 and 
the estimated PSD as in Figure 6 in solid line.   

m~
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FIGURE 8.  Evolution of the functional for Example II   

CONCLUSIONS 
An inversion technique that retrieves the particle size 

distribution and the relative refractive index of non-
absorbing spherical particles from simulated measure-
ments of elastic light scattering has been developed. The 
general formulation of the problem takes the form of a 
non-linear inverse problem since the Fredholm equation 
representing the light scattered has an unknown parame-
ter in its kernel. 

gε  The solution is obtained by means of an iterative 
procedure that improves the values of the refractive in-
dex and the regularization parameter, based on the gen-
eralized cross validation technique. Attempts to use a 
non-iterative method based on Neubauer’s approach [17] 
were less successful. 

Because of the ill-posed nature of the inverse light 
scattering problem, a-priori information regarding the 
PSD was used as in Tikhonov regularization. No a-priori 
information about the refractive index was necessary. 
High accuracy of the resulting refractive index for scat-
tering data with typical error level was observed.  

The methodology proposed seems to be more general 
and simpler to be implemented than those presented in 
Refs [3] and [10] . We consider that it is not convenient 
to include the non-negativity restrictions in the optimiza-
tion process as Ref. [3] does. If this would be done, the 
non-linear formulation changes and the estimation of the 
refractive index could not be achieved with the same 
accuracy. For cases were the measurement error is 
higher, non-negativity restriction could be added for a 
second optimization problem considered after determin-
ing the value of the refractive index. 

 
APPENDIX A 

 
As f is a function the derivative must be interpreted as 

a functional derivative, for example the Frèchet deriva-
tive.  For the sake of completeness, we recall the defini-
tion. 
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Let X and Y be Banach spaces, and D an open set in X 
. The mapping F:D⊂X→Y is Frèchet differentiable at x 
εD if there is a linear operator T from X to Y such that  
 

0
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0
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=
−−+

→ h
ThxFhxF

h
 

 
 

APPENDIX B 
 
Generalized Cross Validation (GCV)  

One of the most popular methods for the determina-
tion of the regularization parameter is the GCV due to 
Golub et. al.  [16]. 

For the regularized linear inverse problem in discrete 
form given by  

HffgAf T

f
γε +− 2

Min ,  (A-1) 

the GCV criterion for the selection of the regularization 
parameter γ is to minimize the function V(γ) 
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where  
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KKH T=

= UTg, λi (i=1,..., p)  are the eigenvalues of  
XTX, λi=0, i>p. U is defined by the  singular value de-
composition (SVD) of X→X=UDVT where X=AK-1, 
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Neubauer’s Method 
For the regularized linear inverse problem in discrete 

form given by  

IffgfA T

f
γε +− 2)(mMin , 

where  hm ≤− AA )(    and  δε ≤− gg
))(( mA

 defines the 
existence of errors in the model and the data 

, the regularization parameter γ is selected as the 
value that satisfies ([14]): 
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ABSTRACT

Inverse problems in different applications of
the particle transport theory are briefly men-
tioned and a short review is presented re-
garding to approaches based on analytical so-
lutions of the direct problem, manipulations
of the equation itself and the so-called “ex-
plicit methods”, for radiative-transfer prob-
lems. In particular, numerical results obtained
for boundary conditions, source term, albedo,
phase function, reflection coefficients and opti-
cal thickness estimation are discussed.

INTRODUCTION

Investigations on inverse problems in trans-
port theory can be dated of many years ago.
In a Case’s paper [1] the question of getting
an expression for the scattering kernel, for ex-
ample, was already discussed. According to
McCormick [2], the research on inverse prob-
lems governed by the linear integrodifferential
transport equation dates back at least to the
late 1960s. Very good reviews of the develop-
ment in this field can be found in some of the
McCormick’s works [2, 3, 4, 5], who has made
many contributions to the field of the inverse
problems in transport theory.

Since the transport equation is the basis for
modeling a wide class of problems, the tech-
niques developed can be associated to different
applications: radiative transfer, neutral and
charged particles, time-dependent and time-
independent models, and so on. In this sense,
we note, for example, the works of Badruzza-
man [6] in nuclear geophysics, more specifically
nuclear oil well logging; inverse time-dependent
problems related to photon transport in an in-
terstellar cloud [7]; estimation of the optical
properties of sea water [8] and several other

works related to radiative transfer applications,
as listed later on in this paper.

In our opinion, an important issue to be em-
phasized is the considerable number of explicit
expressions and techniques based on manipula-
tions of the transport equation itself or of an-
alytic solutions to direct problems [9], which
have been obtained in trying to solve these
problems. We can mention, for example, an
important result obtained by Siewert [10] who
presented a closed-form expression to estimate
the scattering-to-total cross-section ratio for a
semi-infinite homogeneous medium, consider-
ing isotropic scattering, using only external an-
gular flux measurements. Of course, due to
the complexity of the general model, the tech-
niques may be associated to approaches based
on numerical schemes [11, 12], however, even
to models which include multidimensional ap-
plications [13]; multigroup equations [14]; po-
larization effects [15, 16, 17] and different ge-
ometries [18], the so-called explicit techniques
have been successfully applied.

In this work, without seeking to do a com-
plete review, but in order to give instead a
general idea of the use of semi-analytical tech-
niques for solving inverse problems in transport
theory, we restrict ourselves to the classical ra-
diative transfer problem and we review some
interesting results obtained in reconstructing
boundary conditions, source terms, scatter-
ing coefficients and optical properties of the
medium.

FORMULATION

We consider the equation of transfer [19] for
the radiation intensity I(τ, µ), written as
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µ
∂

∂τ
I(τ, µ) + I(τ, µ) =

$

2

L∑
l=0

βlPl(µ)

×
∫ 1

−1

Pl(µ′)I(τ, µ′)dµ′ + S(τ) (1)

where τ ∈ (0, τ0) is the (dimensionless) opti-
cal variable, µ ∈ [−1, 1] is the cosine of the
polar angle (as measured from the positive τ
axis) used to describe the direction of propa-
gation of the radiation and $ is the albedo for
single scattering. In addition, the βl are the
coefficients in a Legendre polynomial expan-
sion of the scattering law. For direct problems
in radiative transfer, we normally supplement
Eq. (1) with boundary conditions of the form

I(0, µ) = F1(µ) + ρs1I(0,−µ)

+ 2ρd1

∫ 1

0

I(0,−µ′)µ′dµ′ (2a)

and

I(τ0,−µ) = F2(µ) + ρs2I(τ0, µ)

+ 2ρd2

∫ 1

0

I(τ0, µ′)µ′dµ′ (2b)

for µ ∈ (0, 1]. Here F1(µ) and F2(µ) are con-
sidered given, S(τ) is an inhomogeneous source
term and ρsβ and ρdβ , for β = 1 and 2, are coef-
ficients for specular and diffuse reflection.

An Inverse Boundary Condition Problem

From the field of radiation therapy, where
one may want to predict the angular shape
and strength of an exposing radiation beam
incident on the surface of the body that will
give rise to a desired internal dose, can come
a motivation for solving an inverse boundary-
condition problem. For the problem consid-
ered, we suppose that the radiation density

Φ(τ) =
∫ 1

−1

I(τ, µ)dµ (3)

is known at certain positions {τi} within the
medium, and we then seek to determine what
functions F1(µ) and F2(µ) for µ ∈ (0, 1] can in-
duce such a radiation density. Based on specific
features of the method, the homogeneous ver-
sion of this problem (S(τ) = 0) was first solved

by the LTSN method [20] and later a more
general approach was proposed [21], based on
spectral methods, where the desired boundary
data were computed from

F1(µ) =
K1∑
k=0

akHk(µ) (4a)

and

F2(µ) =
K2∑
k=0

bkHk(µ) (4b)

for µ ∈ (0, 1]. Here {Hk(µ)} denotes a set of
basis functions that has to be specified. The
constants {ak} and {bk} are to be found sim-
ply by constraining the approximate form of
the radiation density to match the desired ra-
diation density Φ(τ) at K1 +K2 + 2 positions
given by {τi}:

K1∑
k=0

akΞ1
k(τi) +

K2∑
k=0

bkΞ2
k(τi) = Φ(τi). (5)

In Eq. (5), for i = 1, 2, . . . ,K1 + K2 + 2 and
k = 0, 1, 2, . . . ,Kα, α = 1 and 2,

Ξαk (τ) =
∫ 1

−1

Υα
k (τ, µ)dµ, (6)

where Υα
k (τ, µ) satisfy an the homogeneous ver-

sion of Eq. (1) with boundary conditions such
that

Υα
k (0, µ) = δ1,αHk(µ) + ρs1Υα

k (0,−µ)

+ 2ρd1

∫ 1

0

Υα
k (0,−µ′)µ′dµ′ (7a)

and

Υα
k (τ0,−µ) = δ2,αHk(µ) + ρs2Υα

k (τ0, µ)

+ 2ρd2

∫ 1

0

Υα
k (τ0, µ′)µ′dµ′ (7b)

for µ ∈ (0, 1]. We note that, even though meth-
ods for solving direct problems are very impor-
tant in this kind of approach (since we may
need to solve K1 + K2 + 2 times the direct
problem), the solution given by Eqs. (4) is inde-
pendent of the method used to solve the basic
problems which define the functions Υα

k (τ, µ).
In Ref. [21] the spherical harmonics method
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was used to get numerical results for test cases
defined by variations of the function

F1(µ) =
√

(1− µ2) +
1

1 + µ2
+ µ log(µ)e−µ

(8)

and F2(µ) = 0 along with $ = 0.99, τ0 = 10.0,
L = 99, ρs1 = 0.1, ρd1 = 0.2, ρs2 = 0.3, and
ρd2 = 0.4. In addition

Hk(µ) = P2k(µ) (9)

for k = 0, 1, . . . ,K1 and various values of K1.
In Table 1, some results obtained [21] with a
N = 199 approximation of the spherical har-
monics method, are showed.

Table 1: Direct and Inverse Results for Bound-
ary Data

ξ F1(ξ) F̂1(ξ)
0.00 2.00 1.88
0.10 1.78 1.80
0.20 1.68 1.67
0.30 1.60 1.60
0.40 1.53 1.54
0.50 1.46 1.45
0.60 1.37 1.37
0.70 1.26 1.26
0.80 1.13 1.13
0.90 0.95 0.94
1.00 0.50 0.47

The complete analysis of the results of this
problem is presented in Ref. [21], where it can
be seen that the radiation density estimates are
much better than the boundary conditions esti-
mates. From there, we can also note that more
accurate results for the boundary conditions
were obtained for simpler expressions, based
on Eq. (8), of the incoming intensity. An im-
portant tool used to check the ill-conditioning
was the condition number estimates of the lin-
ear system involved, given by Eq. (5). Based
on that, either the number or the position of
the measurements were changed. In addition,
for some test cases, non-physical results were
obtained, pointing out the important issue of
existence and uniqueness analysis of solutions.

Similar approach was used in order to es-
timate boundary conditions in hydrologic op-
tics [22].

An Inverse Source Problem

If the boundary functions are now consid-
ered known, one can seek to determine the
inhomogeneous source term S(τ), in Eq. (1),
given that we know the results I(0,−µ) and
I(τ0, µ), for µ ∈ (0, 1]. In this case, Siewert [23]
chose two sets – (i) Hermite cubic splines and
(ii) the Legendre polynomials Pk(2ξ − 1) – of
basis functions Hk(ξ), defined on the interval
[0, 1], to write

S(τ) =
K1∑
k=0

akHk(τ). (10)

In solving this problem, Siewert [23] was
able to deduce the unknown source term for
three considered test problems

S1(τ) = [1 + (τ/τ0)2]4, (11)

S2(τ) = 1 + sin(πτ/τ0) (12)

and

S3(τ) = 2 + sin(2πτ/τ0) (13)

where it was allowed radiation incident on both
sides of the layer and both specular and diffuse
reflection on each of the surfaces. Anisotropic
scattering (L = 24) was also considered. It was
reported [23] that for those test cases, it was
possible to reduce the accuracy of the exiting
(known) distributions to just two figures and
still obtain meaningful results for the desired
source term. In addition, good results were
obtained for the source term by using only 10
points on each of the two boundaries where the
exiting distributions were known. Finally, it
was also possible to deduce the source term
from the exiting intensity known only in one
of the two surfaces.

We note that, in regard to inverse problems
in radiative transfer, to the best of our knowl-
edge, the inverse source problem is the one to
which some existence and uniqueness results
are available [24], even though it is regarding to
the case of a semi-infinite plane-parallel layer.
In fact, it was showed that the problem is ill-
posed and under certain constraints (bounded
by an exponential function) related to the in-
tensity and the source the problem has at most
one solution, which involves the analytic con-
tinuation of exiting intensity [24].
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The optical thickness

We consider now the problem [25] defined
by the homogeneous version of Eq. (1), subject
to boundary conditions as Eqs. (2) for the par-
ticular case where the coefficients ρsβ = 0 and
ρdβ = 0, for β= 1 and 2, and we assume we
know $, the order L, the coefficients βl that
define the scattering law and (from experimen-
tal data) the exiting intensities

I(0,−µ) = G1(µ) (14a)

and

I(τ0, µ) = G2(µ) (14b)

for µ ∈ (0, 1].
Different approaches can be referenced in

regard to estimation of optical thickness [26,
27]. However, recently, based on the method of
elementary solutions [28], an explicit expres-
sion for the optical thickness τ0 was found by
Siewert [25], for this anisotropic case, in terms
of the incoming and exiting intensities and the
discrete eigenvalues νj , written as

τ0 = νj ln
{
M(0, νj)/M(τ0, νj)

}
(15)

where, for j = 0, 1, . . . ,K1

M(0,±νj) =
∫ 1

0

φ(±νj , µ)F1(µ)µdµ

−
∫ 1

0

φ(∓νj , µ)G1(µ)µdµ (16)

and

M(τ0,±νj) =
∫ 1

0

φ(±νj , µ)G2(µ)µdµ

−
∫ 1

0

φ(∓νj , µ)F2(µ)µdµ. (17)

Here

φ(±νj , µ) =
$νj

2

L∑
l=0

βlPl(µ)gl(±νj)
1

νj ∓ µ
,

(18)

and gl(ξ) denotes the Chandrasekhar polyno-
mials [19] defined by the three-term recursion
formula

(2l + 1−$βl)ξgl(ξ) = (l + 1)gl+1(ξ) + lgl−1(ξ)
(19)

and the starting values

g0(ξ) = 1 and g1(ξ) = (1−$)ξ. (20a,b)

In addition, the discrete eigenvalues can be
computed as zeros of the dispersion func-
tion [25]

Λ(z) = 1 +
∫ 1

−1

Ψ(ξ)
dξ
ξ − z

, z /∈ [−1, 1],

(21)

where the characteristic function is

Ψ(ξ) =
$

2

L∑
l=0

βlPl(ξ)gl(ξ). (22)

According to Ref. [25], without adding noise
to the solution of the direct problem, by using
Eq. (15), it was possible to get numerical re-
sults for the optical thickness with five figures
of accuracy, what can be considered a good test
for the correctness of derived expressions. Of
course, by adding 5% of random noise to the
solution of the direct problems this accuracy is
lost, but still meaningful results are obtained.
In addition, simpler results than the ones given
by Eqs. (16) and (17), were found for the con-
servative case $ = 1.

The scattering coefficients

Following a previous work [29] and using
simple iterative procedures along with some re-
sults derived by McCormick [30], such that, for
$ ∈ (0, 1),

4
∫ 1

0

[G2(µ)F2(µ)−G1(µ)F1(µ)]dµ =

$
L∑
l=0

(−1)lβl[I2
l (τ0)− I2

l (0)] (23)

and

4
∫ 1

0

[G2(µ)F2(µ)−G1(µ)F1(µ)]µ2dµ =

$
L∑
l=0

(−1)l(2l + 1)(βl/hl)[J2
l (τ0)− J2

l (0)],

(24)

where

Il(τ) =
∫ 1

−1

I(τ, µ)Pl(µ)dµ, (25a)
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Jl(τ) =
∫ 1

−1

I(τ, µ)Pl(µ)µdµ, (25b)

and

hl = 2l + 1−$βl, (26)

Siewert [25] worked on the determination of the
coefficients of the scattering law. Two cases
were considered: (i) the binomial scattering
law

p(cos Θ) =
K + 1

2K
(
1 + cos Θ

)K (27)

which can be rewritten in terms of Legendre
polynomials as

p(cos Θ) =
L∑
l=0

βlPl(cos Θ), (28)

and where the β coefficients can be computed
as [31]

βl =
(2l + 1

2l − 1

)(K + 1− l
K + 1 + l

)
βl−1, (29)

for l = 1, 2, ..., with β0 = 1; (ii) the Henyey-
Greenstein law

p(cos Θ) =
L∑
l=0

(2l + 1)glPl(cos Θ). (30)

It should be noted that while Eqs. (23) and (24)
require the intensity on the two boundaries of
the medium to be known, the optical thickness
τ0 is not needed. Again, numerical results were
obtained with five figures of accuracy, without
adding noise to the solution of the direct prob-
lem. By adding 5% of random noise to the solu-
tion of the direct problem this accuracy is lost,
but still meaningful results are obtained. In
these problems, the approach used for solving
the direct problem is a version of the discrete-
ordinates method [32, 33]. Finally, the conser-
vative case $ = 1 was also treated.

We note that simultaneous estimation of ra-
diation phase function and albedo has been
also investigated, for example, for Chalhoub
and Campos Velho [34].

The albedo and the reflection coefficients

Looking back again to Eq. (1), we consider
now the particular case of isotropic scattering

µ
∂

∂τ
I(τ, µ) + I(τ, µ) =

$

2

∫ 1

−1

I(τ, µ′)dµ′,

(31)

for τ ∈ (0, τ0) and µ ∈ [−1, 1], and boundary
conditions written as

I(0, µ) = F1(µ) + 2ρd1

∫ 1

0

I(0,−µ′)µ′dµ′

(32a)

and

I(τ0,−µ) = 2ρd2

∫ 1

0

I(τ0, µ′)µ′dµ′ (32b)

for µ ∈ (0, 1]. If we then assume we know the
function F1(µ) and the surface results

R(µ) = (1− ρd1)I(0, µ) (33a)

and

T (µ) = (1− ρd2)I(τ0, µ), (33b)

for µ ∈ (0, 1], we seek to determine the single-
scattering albedo $ and the two coefficients for
diffuse reflection ρd1 and ρd2 [35].

This problem has been also solved [35],
based on previous results [29], in a collection
of exact expressions and the use of Newton’s
method. Although numerical results were dis-
cussed [35] for half-space and finite-media ap-
plications, equal and unequal coefficients, in
particular we chose to comment here, the case
of equal reflection coefficients, where the solu-
tion involves to solve a cubic (algebraic) equa-
tion for ρ, viz.

(c+ d̂ρ)(α̂ρ2 + β̂ρ+ γ̂) = (δ + ε̂ρ)

× [(a+ bρ)2 − (â+ b̂ρ)2] (34)

and then compute the albedo from either of
equations

$[(a+ bρ)2 − (â+ b̂ρ)2] = c+ d̂ρ (35a)

and

$(α̂ρ2 + β̂ρ+ γ̂) = δ + ε̂ρ, (35b)

where the constant coefficients presented in
Eqs. (34) and (35) are clearly defined in
Ref. [35].

The determination of the reflection coeffi-
cients is of interest to the knowledge of the ra-
diative properties of a material and it could
be cited as a boundary condition inverse prob-
lem, in the sense of “parameter estimates”; dif-
ferently of the “function estimates” proposed
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in Eqs. (4). Same kind of application is also
of interest in rarefied gas problems, when one
would like to determinate the accommodation
coefficients, which are used to describe the gas-
surface interaction [36].

CONCLUDING COMMENTS

Some inverse problems in radiative transfer
were commented here, where, in general, the
optical thickness, the albedo, the coefficients
of the scattering law, the reflection coefficients,
the boundary conditions and the source term
are to be determined. We chose to comment
on solutions based on either explicit formulas
or explicit methods, where the solution of the
inverse problem is constructed in terms of the
direct problem or manipulations of the equa-
tion itself. We intended to emphasize some
aspects: (i) the fundamental point of having
good solutions for direct problems – easy to
implement, accurate and fast solutions. In this
regard we could expect that some of the results
here showed, may be improved once methods
more recently developed for dealing with the
direct problems [32] could be used in a more ef-
ficient way. For the boundary condition prob-
lem, for example, a new analytical version of
the discrete-ordinates method [32], based on
“half-range” quadrature schemes, seems more
appropriate to deal with the known disconti-
nuity present in the boundary conditions of
the problem. (ii) explicit results can always be
used as starting points when it comes to the so-
lution of more complex models, mostly based
on iterative procedures; (iii) as mentioned in
the beginning of this paper, since different ap-
plications in transport theory are based on the
same model, we believe the results commented
here can be used in some other fields of the
general area of transport theory.
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ABSTRACT 

In the present work the source-detector 
methodology is used for the estimation of the 
scattering and total extinction (absorption + 
scattering) coefficients as well as the first 
coefficient of anisotropic scattering.  

The source-detector methodology is an 
explicit formulation for inverse radiative transfer 
problems that consists on formulating and solving 
a nonlinear system of equations derived from the 
direct problem and an adjoint problem. 

The mathematical formulation  and test case 
results for homogeneous media are presented. 

 
NOMENCLATURE 
a surface in which the source is located 

(a = 0  or a = L)  
A amplitude of the strength of the 

external collimated radiation source 
b surface for which the boundary 

condition is written (b = 0  or b = L). 
)(', µakbg  measurement obtained by the detector  

q* reference value for S(x,µ) 
S(x,µ) internally distributed source 
x spatial coordinate 
 
 

Greek letters 
 
φ  Radiation Intensity 

µ direction cosine of the radiation 
beam with the positive x axis  

σs(x,µ’,µ) scattering coefficient 
σs

R(x, µ’, µ) reference value for σs(x) 
σt(x)  total extinction coefficient 

(absorption + scattering) 
σt

R (x)  reference value for  σt(x) 
 
INTRODUCTION 

Several outstanding examples of the 
application of inverse radiative transfer problems 
can be found in different areas of human activity 
such as biomedical engineering [1-3] and 
environmental engineering [4-7]. 

Most of the work on inverse radiative transfer 
problems published so far involves the estimation 
of radiative properties [8-14], internal sources 
[15-17], and boundary condit ions or properties 
[18-21], and they are based on experimental data 
of the radiation intensity, or some related quantity 
such as radiative heat flux. In some cases 
detectors can even be placed inside the medium 
under analysis [22,23]. 

A lot  of effort has been devoted to the 
estimation of anisotropic scattering phase 
function [24-28], with a particular interest on a 
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special case in which the phase function is based 
on one parameter, the asymmetry factor [29-34]. 

In the present work we use the source-detector 
methodology for the estimation of the extinction 
and scattering coefficients.  

The source-detector methodology consists on 
a explicit formulation for the inverse radiative 
transfer problem in participating media. For each 
pair source-detector a non-linear equation is 
derived using a convolution of the direct problem 
(source problem) with the solution of the adjoint 
problem (detector problem). In both problems the 
modeling of scattering, absorption and emission 
phenomena is done with the linearized Boltzmann 
equation, but in the latter reference values are 
available for the unknowns that we want to 
determine, being therefore included in the 
formulation. This approach results in a system of 
non-linear equations with the unknowns explicitly 
represented. This system of equations is called 
Inverse Transport Equation (ITE). 

In a previous work [35] the particular case of 
isotropic scattering was considered. Here the 
formulation is extended to the case of anisotropic 
scattering. Test case results are presented for the 
estimation of one coefficient of the expansion of 
the phase function in Legendre polynomials. 
 
THE SOURCE-DETECTOR 
METHODOLOGY 

The source-detector methodology for the 
analysis of inverse radiative transfer problems 
involves the formulation and solution of the 
following problems [35-38]: (I) source problem; 
(ii) detector and auxiliary problems, and (iii) 
inverse transport equation (ITE). 
 
The Source Problem 

Consider a plane-parallel, gray, anisotropic 
scattering slab of thickness L, with transparent 
boundaries subjected to an external collimated 
radiation source that may be positioned in 
different locations around the medium. These 
locations are represented by the index ko=1, 2, … 
Io for the boundary at x=0, and by kL=1, 2, ... IL 
for the boundary at x=L. In a compact form we 
write ka=1, 2, ... Ia, where a=0 or a=L. 

The mathematical formulation of the one-
dimensional steady-state radiative transfer 
problem in a participating medium, i.e. a medium 
in which absorption, emission, and scattering 
takes place, is given by the linearized Boltzmann 
equation, that for the case of azimuthal symmetry 
is given by [39] 

 

µ
∂ φ µ

∂
σ φ µ

 
 

  
 a k
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a k
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x x
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 0   < <x L ,  − ≤ ≤1 1    µ  (1a) 

)(    ),( ,, µδµφ aa kb
ab

ka fAb =  (1b) 

 
where ),(, µφ xaka  is the radiation intensity, x is 

the spatial coordinate, µ is the direction cosine of 
the radiation beam with the positive x axis, σt(x) 
is the total extinction coefficient (absorption + 
scattering), σs(x,µ’,µ) is the scattering coefficient, 
S(x,µ) is an internally distributed source, A is the 
amplitude of the strength of the external 
collimated radiation source and )(, µakbf  

represents its dependence with the polar angle. 
The indices a and b represent, respectively, the 
surface in which the source is located (a = 0 or a 
=  L) and the surface for which the boundary 
condition is being written (b = 0  or b = L).  
 In the present work we have used the discrete 
ordinates method for the solution of the source 
problem.  
 
The Detector and Auxiliary Problems 

Consider that for a given position of the 
external radiation source, detectors are placed at 
positions around the medium represented by the 
index k0’ = 1, 2, ... I0’ for the boundary at x = 0 
and kL’ = 1, 2, ... IL’  for the boundary at x = L. In 
a compact form we write ka’ = 1, 2, ..., Ia’, where 
a’ = 0 or a’ = L. 

Now an adjoint problem is formulated by 
reversing the direction of radiation transfer, i.e. by 
replacing µ by -µ in problem (1), 

),(  )( 
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φ µ δ µ      * ' , '
'

, '( , ) ( )a k
a b

b ka ab g=  (2b) 
 

 
where )( xR

tσ , ),',( µµσ xR
s

 and q* are reference 

functions for the unknowns )( xtσ , )( xsσ  and 

),( µxS  respectively.  



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

By imposing the coincidence of the location 
of the detector, ka’ = 1, 2, …, Ia’, with those for the 

source, ka = 1, 2, …, Ia, function )(', µakbg  
represents the measurement that would be 
obtained by the detector for the strength of the 
source located at that position. In fact, for a given 
source problem in which the external source is 
located at position ka, the calculated values for the 

intensities of the exit radiation, 
),0(

'0

,
k

ka a µφ
 with 

µ<0, and 
),(

'

,
L

a
k

ka L µφ
 with µ >0, are used as the 

values for 
)(

'
',

a
a

k
kbg µ

in Eq. (2b). 
Problem (2) is the detector problem. By 

reversing again the direction of radiation transfer, 
and defining an auxiliary function 

φ µ φ µ    0( , ) ( , )*x x= −  (3) 

one obtains from the detector problem the 
following auxiliary problem 
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),'(    ),( ,
'

',' 0
'

µφδδµφ ab a
aa

a kb
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 Observe that for each source problem there is 
a set of detector problems, and consequently 
auxiliary problems. Therefore, the function 

',' 0 akaφ  has also a dependence on the indices (a, 
ka)  that represent a particular source problem. 
Just to keep the presentation simple we have 
omitted the representation of the dependence of 
the solution of the detector, and auxiliary 
problems on a specific source problem. 
 The formulations of the source and auxiliary 
problems, given respectively by Eqs (1a) and  
(4a), are very similar. In the former are used the 
unknown radiative properties and source, while in 
the latter reference values for these unknown 
functions are employed. Therefore, the same 
computational programs developed for the 
solution of the source problem can be used for the 
solution of the auxiliary problem. 
 
The Inverse Transport Equation (ITE) 

The first step on the derivation of the inverse 
transport equation consists on multiplying Eq. 

(1a), that models the source problem, by the 
solution of the correspondent adjoint problem, i.e. 
the detector problem, ),(* ',' µφ xaka , and then 
integrating the resulting expression both in the 
spatial and angular domains, i.e. x=[0,L] and µ=[-
1,1], respectively, yielding 
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Note that for each pair source detector, 

represented by the location of the source at the 
position given by the indices (a, ka) and by the 
location of the detector at the position given by 
the indices (a’, ka’), there is one equation 
corresponding to Eq.(5). Therefore, in fact Eq. (5) 
represents a system of nonlinear equations. 
Taking into account all possible combinations of 
source and detector locations there is a total of It 
nonlinear equations where ( ) ( )''00 LLt IIIII +×+= .  

The nonlinearity of the equations results from 
the fact that the unknowns σt,, σs and S appear in 
Eq. (5) multiplying the solutions of the source and 
detector problems that themselves depend on the 
value of the unknowns. 

Integrating by parts the first term on the left 
hand side of Eq. (5), and introducing the 
formulation of the detector problem given by Eq. 
(2a) one obtains. 
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Defining the deviations from the reference 
values 

)x()x()x( R
ttt σ−σ=σ∆  (7a) 

),',x(),',x(),',x( R
sss µµσ−µµσ=µµσ∆  (7b) 

and using the definition of the auxiliary function, 
Eq. (3), we obtain from Eq. (6),  
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We call the system of equations represented 
by Eq. (8) as the Inverse Transport Equation 
(ITE). Solving this system of equations we obtain 
estimates for the unknowns. Observe that on the 
right hand side of Eq. (8) we use the experimental 
data on the exit radiation intensity. 

The formulation described here for the inverse 
radiative transfer problem of estimating the 
scattering and total extinction coefficients along 
with the internal radiation source is an explicit 
formulation. As one can see from Eq.(8) the 
unknowns explicitly appear in the formulation of 
the inverse problem. 
 
Solution of the ITE 

In the present work we are interested only on 
the estimation of the coefficients of total 
extinction σt and scattering σs. Therefore, we 
consider S(x,µ)=0. 

Considering a homogeneous medium and a 
representation of the anisotropic scattering 
coefficient in terms of Legendre polynomials  
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Eq. (8) is written as 
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 The system of nonlinear equations (10) can 
be solved using a Gauss-Newton linearization 
scheme or a more robust algorithm such as the 
MART (Multiplicative Algebraic Reconstruction 
Technique) that was developed for tomographic 
image reconstruction. More details on the solution 
of the ITE can be seen in Refs. [35-38]. 
 
RESULTS 

In the present work we have considered the 
linear anisotropic scattering phase function, with 
Eq. (9) being written as  
 
 )'(),'( 21 µµσµµσ AAss +=  (11) 

 
with 11 =A  for the isotropic scattering term. 

Therefore 1A  is considered known 
In Table 1 are presented the estimates for the 

scattering and total extinction (absorption + 
scattering) coefficients as well as the estimated 
values of the anisotropic scattering phase function 
coefficient 2A . 

All computational implementation has been 
done with Borland C++ Builder and each 
simulation has taken approximately six hours of  
CPU time on a IBM compatible personal 
computer with 200 MHz Pentium processor. 

In Table 1 the experimental values correspond 
to the exact values of the unknown properties that 
we want to estimate. In all test cases we have as 
initial guesses  

R
tt σσ =0 ,  R

ss σσ =0  and RAA 2
0
2 =   (12) 
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As reported by Kauati et al. [35] to achieve 
convergence we have used sequentially cycles of 
properties estimation with the source–detector 
methodology. Considering k as the cycle counter, 
as soon as new estimates are obtained, k

ts , k
sσ   

and kA2 , they are used as the reference values for 

a new cycle of iterations of the source detector 
methodology, i.e  
 

 k
t

R
t

k

σσ =
+1

, k
s

R
s

k

σσ =
+1 and kR AA

k

22

1

=
+

  (13) 

 
 

Table 1 – Test Case Results  
 

Coeff. Reference Experimental Estimate 
σs 0.9000 0.9000 0.896066 
σt 1.0000 1.0000 1.000079 

2A  0.48520 0.4000 0.424091 

σs 0.9000 0.9000 0.898902 
σt 1.0000 1.0000 1.000006 

2A  0.48520 0.1000 0.105832 

σs 0.9000 0.7000 0.689847 
σt 1.0000 1.0000 1.000371 

2A  0.48520 0.1000 0.159318 

σs 0.7000 0.7000 0.7006618 
σt 1.0000 1.0000 0.999828 

2A  0.1000 0.48520 0.442454 

σs 0.5000 0.7000 0.695907 
σt 1.0000 0.9000 0.900088 

2A  0.48520 0.3000 0.326594 

σs 0.1000 0.1000 0.100260 
σt 0.3000 0.5000 0.499996 

2A  0.48520 0.5000 0.491172 

 
 
 The cycles of the source-detector 
methodology are continued until the values for 
the estimated parameters do not vary within a 
tolerance. 

Even though we have considered only 
noiseless data (except for the noise due to the 
numerical approximation for the solution of the 
direct problem and round – off errors) it can be 
observed from Table 1 that deviations can be 
observed in the estimation of 2A .  We have tried 
to estimate higher order terms of anisotropic 
scattering but results were poor. A more in-depth 
investigation is necessary. 

CONCLUSIONS 
In the present work we demonstrate the 

feasibility of using the source-detector 
methodology for simultaneously estimating the 
scattering and total extinction coefficients along 
with the first coefficient of anisotropic scattering, 
when the anisotropic phase function is 
represented in a series of Legendre polynomials. 

In the next step of this research  the effects of 
the level of noise in the experimental data will be 
investigated. 
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ABSTRACT
In this paper we consider tomographic imaging

of moving fluids with electrical impedance tomog-
raphy (EIT). In EIT the conductivity distribution
is reconstructed based on electrical measurements
from the boundary of the object. In order to re-
construct time-varying targets with EIT we use the
state estimation approach which allows the change
of the target during the observations. The use of
state-space formalism in EIT also enables the infer-
ence of underlying physical parameters in the tar-
get evolution. In this paper we propose a novel ap-
proach for estimating velocity fields based on EIT
measurements. The velocity field is parametrized
and the parameters of the velocity are estimated
simultaneously with the conductivity distribution.
The numerical studies show that it is possible to
estimate the velocity based on EIT data - at least
with some accuracy.

INTRODUCTION
Process tomography is a non-intrusive imaging

technique used in process industry. Typical appli-
cations in which tomographic imaging is used are
fluid flow in pipelines and mixing and foaming pro-
cesses. In process tomography the target is recon-
structed based on boundary measurements. One of
the modalities used in process tomography is the
electrical impedance tomography (EIT). In EIT we
apply electric currents to the electrodes on the sur-
face of the object and measure the corresponding
voltages on the electrodes. The conductivity distri-
bution is reconstructed based on the boundary volt-
age data.

However, in the case of moving fluids the final
goal of the imaging procedure is not usually the
conductivity distribution. Instead, parameters as-

sociated with the process dynamics are often in the
focus of interest. Such parameters are for exam-
ple the velocity field and the total mass flow rate.
The traditional method for reconstructing velocity
fields based on EIT is called the cross-correlation
method [1, 2, 3], which is based on post processing
the reconstructed conductivity images.

In this paper we propose a novel approach for
estimating velocity fields in process tomography.
In our approach we consider the velocity primarily
as an unknown function and reconstruct it together
with the conductivity distribution. For this end the
EIT is formulated in the state-space formalism.

We have previously used the state-space for-
malism in EIT in the case that the velocity field
is known a priori [4]. The use of state estimation
approach in EIT have been shown to be advanta-
geous, especially in the case that the rate of the
change of the target is high in comparison to rate
of the measurements [4, 5, 6, 7, 8].

In the state estimation paradigm the object is
modeled as a stochastic process. The physical
model that approximates the target evolution is
written in the operator form and the discrepancies
due to the approximation are included in the model
as a stochastic process. The observation model
with the evolution model constitute the state-space
representation and the reconstruction problem can
be written as the state estimation problem.

The structure of this paper is following. First,
we review the observation model of EIT. Next,
we formulate the convection-diffusion (CD) model
which we use as the evolution model in the case of
moving fluid. We consider both the case that the
velocity is known and the case that the velocity is
unknown. Next, we consider the associated nonlin-
ear state estimation problem. Finally, we show two
numerical examples.
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OBSERVATION MODEL
In EIT alternating currents I` are applied to

electrodes on the surface of the object and the re-
sulting voltages U` on these electrodes are mea-
sured. The conductivity distribution σ is recon-
structed based on the voltage measurements. In
stationary EIT the conductivity distribution σ =
σ(x) is assumed to be a function of the spatial vari-
able only, so that when different measurement sets
are obtained, they correspond to the same target.
The observation model of EIT is conventionally
written as

V = U(σ) + v, (1)

where V is a vector including the RMS-values of
the measured voltages, U is a model between the
conductivity σ and the measurements and v is ad-
ditive observation noise. In order to reconstruct the
conductivity σ based on the voltage data V the con-
ductivity distribution and the model U = U(σ)
must be discretized. In the following we identify
the actual infinite dimensional distribution σ with
the finite dimensional vector of coordinates of the
approximation of σ with respect to some basis. We
denote the number of basis functions by N . The
EIT reconstruction problem is ill-posed and spatial
regularization is required in practically all cases in
stationary reconstruction. In the Tikhonov regular-
ization approach the conductivity is computed by
minimizing the functional

Ξ(σ) = ‖V − U(σ)‖2 + α2‖R(σ − σ∗)‖2 (2)

with respect to σ. In (2) α is the regularization pa-
rameter, R is the regularization matrix and σ∗ is a
prior guess for σ.

In order to reconstruct the conductivity distri-
bution σ based on voltage observations we need
to fix the forward model of EIT. There are several
models, which are referred to as electrode mod-
els. In this paper we use the most accurate known
model, the complete electrode model [9, 10]

∇ · (σ∇u) = 0, x ∈ Ω (3)

u+ z`σ
∂u

∂n
= U`, x ∈ e`, ` = 1, . . . , L (4)

∫

e`

σ
∂u

∂n
dS = I`, x ∈ e`, ` = 1, . . . , L (5)

σ
∂u

∂n
= 0, x ∈ ∂Ω\ ∪L`=1 e` (6)

where u = u(x) is the electric potential, e` is the
`thelectrode, z` is the contact impedance between

the `thelectrode and the object, U` is the potential
on `thelectrode, I` is the injected current and n is
outward unit normal. In addition, to ensure the ex-
istence and uniqueness of the solution the follow-
ing conditions are required

L∑

`=1

I` = 0 ,

L∑

`=1

U` = 0. (7)

The forward problem of EIT is to compute the
potential u = u(x) and the voltages U`, given the
conductivity distribution σ, the contact impedances
z` and the current pattern I = (I1, . . . , IL). The
forward problem can be approximated using the
finite element method (FEM). The weak form of
the complete electrode model (3–7) was given in
[10] and its FEM implementation for example in
[11]. Usually the conductivity distribution is ap-
proximated by a piecewise constant function and
an associated basis. However, we use the piece-
wise linear approximation as in [4].

In stationary EIT the voltage measurements V
correnspond to set of several different current pat-
terns. The set of current patterns used for one sta-
tionary reconstruction is called the frame. In pro-
cess tomography, however, the target can change
very rapidly. Consequently, the assumption of tar-
get being (even approximately) non-varying during
each frame is not necessarily valid. In state esti-
mation approach, or dynamical EIT, we take into
account the change of the object. We approximate
that the conductivity distribution does not change
during each current injection, but varies between
consecutive current patterns. That is, we consider
the observation model (1) in the case that the mea-
surements correspond to a single current pattern at
time t instead of several current patterns. Thus, we
write the time dependent observation model of EIT

Vt = Ut(σt) + vt, (8)

where Vt, Ut, σt and vt are the voltage measure-
ments, the forward model, the discretized conduc-
tivity distribution and the observation noise at time
t, correspoindingly.

It is important to notice that the time-
dependent observation model (22) is highly under-
deterministic, because the number of unknown pa-
rameters is considerably higher than the number of
observations at time t. Thus, it is unlikely to obtain
a feasible reconstruction for σt by applying spatial
regularization to the case of time-dependent obser-
vation model – unless the spatial prior information
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is very specific. Our approach to the problem is fol-
lowing: We add temporal prior information to the
reconstruction. In other words, we link the states
σt and σt+1 corresponding to times of consecutive
current injections. This is performed by modeling
the time dependence of the conductivity distribu-
tion. In the next section we model the evolution of
the conductivity distribution in the case of moving
fluid by using the stochastic convection-diffusion
equation. When we have the observation model
and the stochastic evolution model for the conduc-
tivity we can reconstruct the conductivities σt by
using state estimation. Furhermore, in the follow-
ing sections we show that the state estimation ap-
proach also enables the estimation of parameters
associated with the transition from the state σt to
σt+1, that is, estimation of the velocity field.

EVOLUTION MODEL
In this section we model for the conductivity

distribution in the case of moving fluid. First we
review the convection-diffusion model in the case
that the velocity field is know. Next, we introduce
an approach for modeling the process in the case
that the velocity field is unknown.

Evolution model in the case of a priori
known velocity field

Consider a system with moving fluid. We
model the time-varying concentration distribution
c = c(x, t) by the stochastic convection-diffusion
equation

dc = −v̄ · ∇c dt+∇ · κ∇c dt + dB(t), (9)

where v̄ is the velocity field, κ is the diffusion co-
efficient and B(t) is Brownian motion [12]. The
stochastic process dB(t) represents the discrepan-
cies between the model and the actual system. In
this section we assume that the velocity field v̄ is
known a priori.

We also set the following initial and boundary
conditions

c(x, 0) = c0(x), x ∈ Ω (10)

c(x, t) = cin(x, t), x ∈ ∂Ωin (11)
∂c

∂n
(x, t) = 0, x ∈ (∂Ω\∂Ωin) , (12)

where cin(x, t) is the time-varying concentration
on the input boundary ∂Ωin and n is the outward
unit normal. Although the input concentration
cin(x, t) is written as a Dirichlet condition, it is the

primary unknown variable in the model. Thus we
consider cin(x, t) as a stochastic process and write

cin(x, t) = c̄in(x, t) + η(x, t), x ∈ ∂Ωin , (13)

where c̄in(x, t) represents the known part of the in-
put that we can either measure (indirectly) or ap-
proximate, and η(x, t) is a stochastic process. Usu-
ally c̄in(x, t) is the spatial/temporal average mean
of cin(x, t) or its estimate.

In [4, 13] we solved the initial value/boundary
value problem (9-12) numerically by using the
FEM. We do not show the details here but we note
that the procedure is straightforward. Following
the FEM scheme the numerical solution of the CD
problem is obtained in the recursive form

ct+1 = F̄tct + s̄t+1 + ψt+1 (14)

where ct ∈ RN includes the discretized values of
the concentration at time t, F̄t ∈ RN×N is the evo-
lution matrix, s̄t ∈ RN includes contribution of the
known part of the input of the system and ψt ∈ RN
is the state noise process in this representation. At
this point we remark that F̄t, s̄t+1 and ψt+1 all de-
pend on velocity field and diffusion coefficient.

In the case of a multi-phase system the target
possesses also contrast with respect to conductiv-
ity. The relation between the conductivity σ and
the concentration c depends on the process and
it is usually nonlinear. In this paper we assume,
for simplicity, that the contrast in concentration is
small enough to justify an affine approximation be-
tween the conductivity and the concentration. Fur-
thermore, since the associated constant of this ap-
proximation can be absorbed into the observations,
we write σ = λc. In that case we obtain an ap-
proximation for the state equation in terms of the
conductivity

σt+1 = Ftσt + st+1 + wt+1, (15)

where Ft = F̄t, st+1 = λs̄t+1 and wt+1 =
λψt+1.

Evolution model with unknown velocity
field

Next we consider the CD model in the case
that the velocity is an unknown function. First, we
write a parametric form for velocity field v̄. That is
we represent v̄ as a linear combination of K basic
functions

v̄(x, t) =

K∑

k=1

βt,kv̄k(x), (16)
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where v̄k(x) is the kthbasic function for velocity
and βt,k is the corresponding (unknown) coeffi-
cient at time t. For further use we define the vector
βt = [βt,1, . . . , βt,K ]T . Since the coefficients βt,k
are unknown we model them as random variables.
In this paper we use the random walk model, that
is βt+1,k = βt,k + εt,k, or

βt+1 = βt + εt, (17)

where εt = [εt,1, . . . , εt,K ]T is Gaussian noise vec-
tor.

Next we substitute the representation (16) into
the CD equation (9). As in the previous section
we solve the CD equation numerically by using the
FEM. If we again assume the linear dependence
between the conductivity σ and the concentration c
we obtain – equivivalently to (15) – the evolution
equation for the conductivity

σt+1 = F (βt, t)σt + s(βt, t) + w(βt, t), (18)

where the evolution matrix F , input term s and the
state noise w are now functions of the random vari-
able βt.

Next we introduce a new state variable θt de-
fined as

θt :=

[
βt
σt

]
∈ R(K+N)×1 . (19)

Furthermore, by stacking the equations (17) and
(18), we obtain
[
βt+1

σt+1

]
=

[
βt

F (βt, t)σt + s(βt, t)

]

+

[
εt

w(βt, t)

]
(20)

which is clearly the evolution model for the vari-
able θt. For convenience we write the equation (20)
in the form

θt+1 = f(θt) +$t(θt), (21)

where the nonlinear function f and state-dependent
noise $ are defined as the first and second term
on the right hand side in the equation (20), corre-
spondingly.

By definition (19) the variable θt includes the
conductivity distribution and the velocity parame-
ters at time t. In the next section we consider the
estimation of θt based on EIT observations.

STATE ESTIMATION
In this section we consider estimation of the

state variable θt introduced in the previous section.
For this end, we first define the model U ∗t (θt), that
maps the variable θt to voltage observations. Since
the measured voltages do not explicitely depend on
the velocity of the fluid – or the coefficients βt –
the observation model can simply be written in the
form

Vt = U∗t (θt) + vt, (22)

where U∗t (θt) = U(σt), that is, the function
U∗t (θt) does not depend on βt.

The evolution model (21) and the observation
model (22) constitute the so-called state-space rep-
resentation, based on which the state variable θt
can be estimated given the voltage data Vt, t =
1 . . . , T . Both of the evolution model and the ob-
servation model are nonlinear and thus, nonlinear
state estimation is required.

In the case of linear models the state estimation
problem is to find the conditional expectation of θt
based on a set of observations Vj , j ∈ J where
J denotes a subset of the available/usable obser-
vations. We denote the expectation of θt based on
observations Vj , j ∈ J , J = {1, . . . , k}, by
θ̂t|k. Some of the estimates can be computed re-
cursively. For example, the linear on-line estimator
θ̂t|t is given by Kalman filter algorithm. Similarily,
the so-called fixed-lag Kalman smoother gives an
on-line – but not real time – estimate θ̂t|t+q , where
the lag q > 0 defines the number of future obser-
vations taken into account in computation of the
estimate of θt. Equivalently, we can write θ̂t−q|t
which means that at the (present) time t we obtain
an estimate for the variable θ̂t−q . For reference of
linear filtering and smoothing theory, see for exam-
ple [14, 15].

In the nonlinear case the conditional expecta-
tions can not be computed recursively. However
there is a variety of suboptimal algorithms which
have been used for nonlinear state estimation. The
simplest algorithm is the linearized Kalman fil-
ter where both the evolution model and the ob-
servation model are linearized in advance and the
Kalman filter is applied to the linearized models.
A more advanced way is to use the so-called ex-
tended Kalman filter (EKF), where the models are
linearized in each time step. The EKF algorithm is
of the form [15]

θ̂t|t−1 = f(θ̂t−1|t−1) (23)
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Cθ̃t|t−1
= JftCθ̃t−1|t−1

JTft + C$t−1
(24)

Kt = Cθ̃t|t−1
JTU∗t (JU∗t Cθ̃t|t−1

JTU∗t + Cvt)
−1(25)

Cθ̃t|t = (I −KtJU∗t )Cθ̃t|t−1
(26)

θ̂t|t = θ̂t|t−1 +Kt(Vt − U∗(θ̂t|t−1)) (27)

In equations (23–27) C(·) are covariance matrices.
Especially, Cvt is the covariance of the observa-
tion noise and C$t is the covariance of the state
noise. The matrices Jft and JU∗t are the Jacobians
of nonlinear functions f and U∗t , correspondingly,
evaluated at the predictor θ̂t|t−1, that is,

Jft =
∂ft
∂θ

∣∣∣∣
θ=θ̂t|t−1

, JU∗t =
∂U∗t
∂θ

∣∣∣∣
θ=θ̂t|t−1

(28)

Furthermore, since in our case the state noise $
is state-dependent, the covariance of C$t is also
evaluated in the predictor in each time step. The
construction of the Jacobian Jft is straightforward
but tedious work. Thus, we don’t show the deriva-
tion here. The computation of the Jacobian JU∗t is
considered e.g. in [11].

In the linear case the fixed-lag smoother have
been shown to give essentially better results than
the Kalman filter since the smoother also takes into
account the observations of the future. We refer to
the following algorithm as the extended fixed-lag
smoother (EFLS), because it is a modification of
the fixed-lag smoother where the predictor θ̂t|t−1

is used as the linearization point – similarly as in
EKF. The EFLS estimates θ̂t−q|t are given by re-
cursions

θ̂t−i|t = θ̂t−i|t−1 +Kt−i(Vt − U∗(θ̂t|t−1) (29)

Kt−i = C
(i,0)

θ̃t|t−1
JTU∗t (JU∗t Cθ̃t|t−1

JTU∗t + Cvt)
−1(30)

C
(i+1,0)

θ̃t+1|t
= C

(i,0)

θ̃t|t−1
(I −KtJU∗t )TJTft , (31)

where the inner iteration i = 0, . . . , q is performed
for all t and where the covariance matrix

C
(0,0)

θ̃t|t−1
= Cθ̃t|t−1

(32)

is obtained from the filter equations (24) and (26).
We still remind that in equations (23-27) and

(29-29) the estimates θ̂t|j are not conditional ex-
pectations for θt as in the linear case.

NUMERICAL STUDIES
In this section show two numerical examples

of the simultaneous estimation of conductivity and

velocity based on EIT measurements. In the first
example we form the target evolution by using
parabolic flow field in the pipe. When solving the
inverse problem the velocity field is known to be
parabolic, that is, the number of basic functions for
velocity equals to one. In the second example we
have a non-parabolic velocity field, and in the in-
verse problem the velocity is represented with three
basic functions. In both cases the true velocity field
is stationary.

In order to make the computations in feasible
time, we study two-dimensional cases in this pa-
per. However, the extension to three dimensions is
straightforward. We have already studied the state
estimation approach in 3D [16].

Case 1: Parabolic velocity field
The first task was to form the target evolution.

We assumed that the velocity field is parabolic.
The parabolic flow at x-direction is of the form

vx(x, y) =
3

2
vx,mean

[
1−

( |y − y0|
R

)2
]

(33)

where vx,mean is the spatial average of the velocity,
y0 is the y-coordinate of the center of the pipe and
R is the radius of the pipe. We choosed that the av-
erage velocity is vx,mean = 450cm/s. It is worth
to notice that with this flow rate the flow is actually
turbulent and the velocity profile is not parabolic.

Next we computed the time-varying conductiv-
ity distribution. We assumed that the conductiv-
ity in the input layer σin(x, t) = λcin(x, t) con-
sists of poorly conducting “bubbles” in a homoge-
neous background. The occurrence of the bubbles
was such that the distribution of the bubble cen-
ters across the input boundary was uniform and the
time difference between consecutive occurences of
the bubbles was narrow Gaussian distribution. The
conductivity distributions were computed at time
intervals t = 1, . . . , 64 so that the actual time step
∆t between t and t+ 1 was 5ms.

After the time-varying conductivity distribu-
tion was constructed, the voltage observations
were computed from the FEM approximation of
(3–7). The electrical potential u inside the pipe
was approximated with second order basis func-
tions in the FEM solution [17]. The placement
of the electrodes is shown in Figure 1. The cur-
rents were injected from opposite electrode pairs
and for each current injection the voltages were
measured on all opposite electrode pairs. The or-
der of the current patterns was randomized and
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the time step between consecutive measurements
was 5ms. All the voltage measurements corre-
sponding to each current injection were assumed
to be made simultanously and instantly. Thus, the
conductivity was non-varying during each current
injection. We computed the voltages correspond-
ing to 64 current injections. Zero-mean Gaus-
sian observation noise was added to the computed
voltages. The observation noise consisted of two
parts. First, we added to each observation noise
with std 1% of the value of the corresponding
observation. Secondly, we added to all observa-
tions noise with std 0.1% of the maximum voltage.

Figure 1: The FEM mesh of the EIT computa-
tions. The thick lines represent the placement of
the electrodes.

Next we solved the inverse problem. That is,
we estimated the velocity profile and the conduc-
tivity distribution based on the noisy observations.
We assumed that the velocity is known to be of the
form (33), but the average velocity vx,mean was un-
known. Thus, we had one unknown parameter for
the velocity field. We computed the EFLS esti-
mates for the states θt as described above. In the
evolution model the diffusion coefficient was as-
sumed to be known. The input of the system σin

was unknown. Thus, we used the best homoge-
neous estimate σ0 for computing “known source
term” st. The fluctuations of the input were con-
sidered as a stochastic process as in equation (13)
and the estimated variances of the input fluctua-
tions were included in the state noise covariance
matrix C$t as in [4]. We assumed that the velocity
field is stationary, that is, we set the variance of the
noise εt in equation (17) equal to zero. As an initial
quess for vx,mean we used 200cm/s. The variance
of the inital state was set to be “large”. The co-
variance matrix Cvt was constructed knowing the
variances of the measurement noise. In EFLS al-
gorithm we chose the lag q to be 6.

Figure 2 represents the true and the recon-
structed conductivity distribution at some time
steps. The reconstructions of the conductivities

are quite feasible. Furthermore, Figure 3 repre-
sents the profile of the reconstructed velocity at
x-direction at the final time step t = 64. The
stationary parabolic field is reconstructed very ac-
curately. Figure 4 shows the time evolution of the
estimated mean velocity. As the time evolves the
fluctuations of the estimate get smaller.

Figure 2: Left) True conductivity distribution,
Right) the estimated conductivity distribution at
time intervals t = 16, 20, . . . , 44.
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Figure 3: Profile of the true velocity at x-direction
(solid line) and the Profile of the estimated velocity
at x-direction (dashed line).
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Figure 4: Time evolution of the estimate for the
mean velocity (dashed line). The solid line repre-
sents the true mean velocity.

Case 2: Estimation of three velocity pa-
rameters

In this example the velocity field was set
be non-symmetric with respect to y-axis of the
pipe. The velocity at y-direcition was zero, and
the velocity at x-direcition was independent of x-
coordinate. The velocity profile was of the form of
the function plotted with dashed line in Figure 5.
In the inverse problem we had three basic func-
tions for v̄. The profiles of the basic functions are
shown in figure 5. In other respects we proceeded
the exactly as in the first example.
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Figure 5: The profiles of the three basic functions
for the velocity field

Figure 6 represents the true and the reconstructed
conductivity distribution at certain time intervals.
Again, the conductivities are tracked relatively
well.

Figure 6: Left) True conductivity distribution,
Right) the estimated conductivity distribution at
time intervals t = 16, 20, . . . , 44.

Figure 7 represents the profile of the reconstructed
velocity at x-direction at the final time step t = 64.
The estimated profile is quite feasible. The reason
for the bias in the estimate is due to the subopti-
mality of the nonlinear state estimation algorithm
– and perhaps partly due to nonuniqueness of the
solution.
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Figure 7: Profile of the true velocity at x-direction
(solid line) and the Profile of the estimated velocity
at x-direction (dashed line).

CONCLUSIONS
This paper is the first step towards simultane-

ous estimation of the velocity fields and conduc-
tivity distributions in based on EIT measurements.
The main aim of this study was to find out if the di-
rect estimation of velocity fields is possible. Based
on the numerical studies our answer is: Yes – at
least whith some accuracy. Evidently, there are still
several issues that should be improved in the mod-
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eling and the reconstruction. However, some of the
extensions are relatively straightforward and their
implementation only necessitates small changes to
the overall estimation scheme.

In the numerical studies we considered only
cases where the velocity was stationary. It is yet to
be investigated is it possible to track velocities also
in the nonstationary case. Furthermore, in our ex-
amples we only had a small number of basic func-
tions for velocity. It is evident that if the number
of basic functions is increased too much the esti-
mation problem has not unique solution. However,
as in stationary estimation, the spatial regulariza-
tion can also be used in state estimation, for ref-
erence, see [6, 18]. That is, if we have also spa-
tial prior information about the target we can take
it into account in order to obtain a unique solution.
Moreover, it is not obvious how to choose the basic
functions for velocity. Our suggest is to use com-
putational fluid dynamics (CFD) for constructing
the basis. The use of CFD in this sense can be in-
terpretated as the use of more specific prior infor-
mation in the inverse problem.

Finally, we note that our nonlinear state esti-
mation algorithm, EFLS, is far from optimal and it
can be improved.
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ABSTRACT
Electrical-capacitance tomography (ECT) is a

novel technique for the non-invasive internal
visualization of industrial processes involving
electrically non-conducting mixtures. One of the
most promising potential applications of ECT is
the measurement of gas-oil-water multiphase flow
through pipes. ECT is based on the inversion of
mutual capacitance measurements taken between
a number of electrodes, placed around a particular
cross-section of the pipe (which must have
insulating walls in this area), in order to find the
electrical permittivity distribution (reflecting the
mixture composition). A new inversion algorithm
based on a set of integral equations (equivalent to
the differential model formulation) is presented
here. Using these integral equations and
expanding the unknown permittivity with respect
to an orthonormal basis conveniently chosen in a
Sobolev space of functions defined in the sensor
cross-section, the inverse problem of determining
the permittivity reduces to solving a quadratic
optimization problem with quadratic constraints.

NOMENCLATURE
c i, j modified data values
Ci, j inter-electrode mutual capacitances
V electric potential
Ri radius of the region boundaries
Si circular arc corresponding to electrode i
L2, H1 function spaces

Greek symbols
∆ Laplace operator

∇ gradient operator
ε electrical permittivity

INTRODUCTION
Oil wells typically produce not just oil, but a

complex multiphase mixture having variable
amounts of oil, gas and water. The determination
of the quantity of each component actual being
produced by each specific well is of the greatest
importance for the efficient exploitation of the
reservoirs. The conventional way of doing this is
by separating the mixture and measuring each
individual component using single-phase
flowmeters. However, the three-phase separators
needed are excessively bulky and expensive.

Multiphase flow measurement techniques that
do not require mixture separation have emerged
in the last decade [8]. Among the most promising
approaches currently under investigation is one
based on multiphase flow visualization using
tomographic methods [3], in particular electrical-
capacitance tomography (ECT). The main
advantage of the tomographic methods lies in
their inherently non-invasive and flow-regime
independent operation.

ECT is an emerging technique aimed at the
non-invasive internal visualization of electrically
non-conducting mixtures in industrial processes
like mixing, separation and multiphase flow
[10,11]. Only the application to flow imaging will
be considered here. The basic principle of this
method is to place a sensor containing an array of
between 8 and 16 contiguous sensing electrodes
around the pipe carrying the process fluids, at the
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cross-section to be investigated (see fig. 1). The
pipe wall should be electrically non-conducting in
the zone of the electrodes. The electrodes are
typically 10 cm long. The sensor also has a an
outer cylindrical metallic screen covering the
whole thing, which is always kept at an electric
potential of zero volts. The sensing electrodes are
connected to an apparatus that allows all the
mutual capacitances between the different
electrode pairs to be measured, and from this set
of measurements the electrical permittivity
distribution inside the sensor is obtained using a
suitable inversion algorithm. The permittivity
distribution reflects the spatial arrangement of the
phases in the flow. Image reconstruction can thus
be regarded as an inverse permittivity problem.

Fig.1  Cross-section of sensor

For 2-phase flows like gas-oil, the permittivity
distribution directly determines the distribution of
each phase, whereas for 3-phase ones like gas-oil-
water, the distribution of an additional parameter
(i.e. conductivity, etc.) must be obtained first
through a different tomographic modality [1] in
order to resolve each phase distribution.

To measure the mutual capacitance Ci, j
between electrodes i and j, a sinusoidal voltage of
magnitude V is applied to electrode i (source)
keeping the rest at zero potential, and the electric
charge Q induced on electrode j (detector) is
measured. Ci, j is then given by

i

j
ji V

Q
C =,                         (1)

Because Ci, j = Cj, i, there are only
n = ½ N (N - 1) independent mutual capacitance
values, where N is the number of electrodes. For a
12-electrode sensor n = 66.

The use of the cylindrical guards at the ends of
the sensing electrodes (and assuming that the
phase distribution changes slowly in the axial
direction) allows the sensor to be represented by a
two-dimensional (2-D) model [9]. Assuming that
the flow changes negligibly during the time

required for one set of 66 measurements, and that
the frequency of the excitation voltage is so small
that the corresponding wavelength is much larger
that the sensor dimensions, a static model can be
considered.

PROBLEM FORMULATION
The forward problem is to determine the

mutual capacitances Ci, j given a known
permittivity distribution inside the pipe. The
inverse problem involves finding an unknown
permittivity distribution inside the pipe based on
the knowledge of all the ½ N (N - 1) mutual
capacitances Ci, j (note that in the pipe itself and in
the area between the pipe and the screen the
permittivity distribution is known).

Mathematical Model
The sensor is modeled (fig.2) as a dielectric

region Ω made of three subregions: a circle Ω1

and two adjacent concentric rings Ω2 and Ω3,
representing the interior of the pipe, the pipe wall
and the area between the pipe and the screen,
respectively. The electrodes, being very thin and
having very small gaps between them, are
modeled as equipotential surfaces (lines in the
2-D model) covering the entire boundary between
Ω2 and Ω3. The screen is modeled as an
equipotential line on the outer perimeter of Ω3.

Ω 1

Ω 2

Ω 3

R3

R2

R1

Ω

Fig.2  Sensor model

Let z = (x,y) and Ω = Ω1 ∪  Ω2 ∪  Ω3 where
Ω1 = {z : |z| < R1},  Ω2 = {z : R1 < |z| < R2} and
Ω3 = {z : R2 < |z| < R3}.

Each one of the subregions Ωi (i = 1,2,3) has
an electrical permittivity εi(z). For i = 2,3 the
function εi(z) has a known constant value εi,
whereas it is unknown for i = 1.

We shall consider that electrode i lies on the
arch Si defined by

      Si = {z: |z| = R2, 2π(i-1)/N ≤ arg(z) ≤ 2πi/N }

We shall denote by V (i)(z), i = 1,2,..,N, the
potential produced in Ω when the potential in
electrode i is set to 1 and that of the remaining
electrodes is set to zero.
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We shall consider that Vj
(i)(z) = V (i)(z) and

ε(z) = εj(z) if z ∈  Ωj (j = 1,2,3). εj(z) is constant εj
for j = 2,3.

The electric potential V(i)(z), i = 1,2,..,N in the
model must satisfy the following:

0))(( )( =∇∇ i
kk Vzε  in  z ∈  Ωk  (k = 1,2,3)  (2)

and the boundary conditions
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where 1n  is the exterior normal unitary vector to
the circle |z| = R1.

The Inverse Problem
In what follows, our model will be determined

by the boundary value problem (2)-(5). We can
describe the inverse problem as follows:

Given ½ N (N - 1) values Ci, j (i, j = 1,2,…,N)
(i < j), of the mutual capacitances between the
electrodes Si and Sj, determine approximately the
value of ε1(z) using the model (2)-(5).

The direct problem consists in calculating the
solution V (i)(z) of the boundary value problem
(2)-(5) and the mutual capacitance values Ci, j, for
a known permittivity ε1(z).

The direct problem is a well posed problem in
the Hadamard sense and is numerically stable [6],
but the inverse problem is an ill-posed problem in
the sense that small errors in the data may
produce a large error in the reconstructed
solution. On the other hand, the numerical
discretization of the problem can also lead to
significant deviations in the calculation of ε1(z),
and in this case regularized algorithms [5] have to
be used. We will propose an algorithm that will
take into account the ill-posedness and the
numerical instability in the solution of the inverse
problem.

The mutual capacitance values are given by

ds
n

zVzKC
jS

i

ji ∫ ∂
∂= )()(
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, ε             (6)

where n2 is the exterior normal unitary vector to
the circle |z| = R2 and K is a constant with units of
inverse potential and i ≠ j.

We shall observe that is possible to obtain
from (6) the relation
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where −
jS  and +

jS  denote the arc jS  obtained

as a limit set of points from Ω3 and Ω2,
respectively.

The fact that the function V3
(i) is decoupled in

the model (2)-(5) and is an harmonic function in
Ω3, with boundary conditions given in (3), means
that we can calculate V3

(i) independently, which
allows us to obtain the value of the right-hand
side of (7) from the knowledge of the mutual
capacitance values measured experimentally Ci, j.
For that reason, if we denote

                        ds
n

Vc
jS

i

ji ∫
− ∂
∂=

2

)(
2

,                      (8)

then, the new equivalent problem that we will
consider is the following:

Given ½ N (N - 1) values ci, j (i, j = 1,2,…,N)
(i < j), obtained using (7) and (8), determine
approximately the value of ε1(z) using the model
(2)-(5).

Uniqueness
In order to give sense to the uniqueness of the

inverse problem solution, we shall consider the
auxiliary boundary value problem:

0))(( =∇∇ Vzε   in    Ω1 ∪  Ω2         (9)

under the continuity conditions defined in (4)-(5)
on |z| = R1, and

)()( zzV φ=                      (10)
for |z| = R2.

To every fixed ε1(z) corresponds a Dirichlet-
Neumann type operator

)|(|)|(|: 2
2/1

2
2/1 RzHRzHT =→= −

ε

 that associates the value of the normal derivative

)()()( zz
n
VT Ψ=
∂
∂=φε                 (11)

where )( 21
1 Ω∪Ω∈ HV  and .2Rz =
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Theorem 1. If the Dirichlet-Neumann
operators corresponding to two continuous
functions ε1(z) and ε1

* (z) coincide for all possible
boundary conditions (10), then ε1(z) = ε1

* (z) in
|z| ≤ R1.

Proof. Suppose that in addition to the system
(4)-(5) and (9)-(11) we have another analogous
system denoted by (4')-(5') and (9')-(11'), obtained
by substituting ε1

* and V* for ε1 and V,
respectively. If we subtract (9), (10) and (11)
from (9'), (10') and (11'), respectively, then for the
harmonic function W2 = V2

* - V2 in R1 < |z| < R2,

we have that 0)()(
2

2
2 =

∂
∂= z

n
WzW in |z| = R2.

As a consequence of the theorem about
analythic continuation for harmonic functions, it
follows that W2(z) ≡ 0, and therefore
V2

*(z) = V2(z) in R1 < |z| < R2.
Then, from (4), (5) and (4'), (5'), we can

conclude that, in |z| = R1:
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Using (13) and following the line of reasoning
of reference [2], the relations given below can be
obtained
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Applying Green's formula to the functions V1

and V1
*, and to the Green's function d(z,ξ )

corresponding to the Dirichlet problem for the
Laplace operator in |z| < R1, the following relation
is obtained [2]

(15)
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which is valid for the pairs (V1, ξ1) and (V1
*, ξ1

*).
Using this two relations (one for each pair) and
(14), the following equality is obtained

ξξξ ξ
ξ

dzdWzW
R
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11 ∇⋅∇= ∫
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     (16)

for |z| < R1, where W1 = V1
* - V1.

From (16), we conclude that W1(z) is harmonic
in |z| < R1, and, since W1(z) = 0 in |z| = R1 then
W1(z) ≡ 0 in |z| < R1, which takes us to the
conclusion that V1 = V1

*.
But then, subtracting conveniently equations

(9) and (9'), as well as the boundary conditions (5)
and (5'), we get

0)|)()(|( 1
*
11 =∇−∇ Vzz εε  in  |z|<R1  (17)

0)(|)()(|
1

1*
11 =

∂
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n
Vzz εε  in  |z|=R1  (18)

By Green's formula, we conclude that
| ε1(z) - ε1

* (z) | |∇ V1|2 = 0 in |z| < R1. Thus, V1(z)
must be constant in the open set ω of |z| < R1

composed by the points where ε1(z) ≠ ε1
* (z),

regardless the value of the boundary condition
φ (z) in (10). It is clear that this cannot happen
except if ω is the empty set, i.e. ε1 ≡ ε1

*.!
In our case, where we have as data of the

problem only some averages of the normal

derivative )(
2

2 z
n
V
∂
∂

 over arcs in |z| = R2, when

the function V2 is the solution of the problem
(4), (5), (9), (10) corresponding to a very limited
set of boundary conditions (10), obviously there
cannot be uniqueness in the recovery of ε1(z). For
other issues related with this result of uniqueness
we refer to [1,4].

PROBLEM SOLUTION
From now on we will consider that the

solution V3
(i) is known. In the scheme of the

solution we will introduce several auxiliary
functions whose analytical or numerical
calculation can be constructed independently.
Fundamental Relations

To construct the algorithm for the solution of
the inverse problem we have first to find a set a
relations between the functions V1

(i), V2
(i) and ε1,

that allow us to obtain ε1 approximately from the
data {ci, j}, i, j = 1,2,…,N, given by (7) and (8).

We will classify the relations in two different
types: (a) those that allow us to obtain V2

(i) and

2

)(
2

n
V i

∂
∂

 in |ξ| = R1 from the data {ci, j} and also
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ensure that V2
(i) and 

2

)(
2

n
V i

∂
∂

 in |ξ| = R1 are the

restriction and the normal derivative of a
harmonic function in Ω2 that satisfies the
boundary conditions (3) in |ξ| = R2; and (b) those
that allow us to obtain simultaneously V1

(i), ∇ V1
(i)

and ε1 approximately from the minimization of an
objective functional, in such way as to satisfy
equation (2) in Ω1 and the boundary conditions
(4) and (5), taking into account the a priori
information that we have about ε1(z) in terms of
bounds.

If we apply Green's formula to the Laplace
operator in Ω2 and the functions V2

(i)(ξ) and
N(z,ξ), where

; )(),( ξδξ −=∆ zzN  2, Ω∈ξz  (19)
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  in   21      , Ω∈= ξRz   (20)

0),( =ξzN  in  22      , Ω∈= ξRz  (21)

δ(z-x) being Dirac's delta function, and we take
the limit when ozz → with |zo| = R1, then we
obtain for i = 1,2,…,N
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where |ξ| = R1 and |ξ1| = R2, which express the
relation that must exist between the boundary
values of a harmonic function in Ω2 and its
normal derivative in |ξ| = R1, for the boundary
condition (3) to be satisfied in |ξ1| = R2.

Now, in order to find a relation between ε1(z),

∇ V1
(i)(z) and )(
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 we consider the

boundary problem
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Making the change of variables
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then u(i) satisfies the boundary problem

∆u(i) = 0  in  |z| < R1
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whose solution is given by
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with |z| < R1.

From (23) and (24) and the boundary
conditions (5) we obtain
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If we apply Green’s formula to the function
V1

(i), and the Green’s functions d(z, ξ) and n(z, ξ)
for the Dirichlet and Neumann problems in
|z| < R1, respectively, we have
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Relation (22) is of type (a), whereas (25)-(27)
are relations of type (b).

Theorem 2. For every strictly positive and
continuously differentiable function ε1(z) in
|z| ≤ R1, the solution to the boundary value
problem (2)-(5) is unique and coincides , for each
i = 1,...,N, with the solution of the system of
integral relations (22), (25)-(27).

Proof. Using Green's formula in a convenient
way [2], integral relations (22), (25)-(27) are
obtained for the solution of the boundary value
problem (2)-(5). It is easy to see that the solution
to this problem is unique for each i = 1,...,N.

Suppose now that V(i) satisfy the integral
relations (22), (25)-(27). Obviously, (2) is
obtained from (22) and (25).

If we suppose that V2
(i)(z) = g(z) in |z| = R2,

then from Green´s formula and from (25) we get
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in      |z| = R2                       (32)

where χi is the characteristic function of the arc Si.
If we consider the harmonic function W2

(i) in
R1 < |z| < R2 that satisfies the Dirichlet condition
g - χi in |z| = R2 and the null Neumann condition
in |z| = R1, then, applying Green's formula to W2

(i)

and to the Green's function N(z,ξ ) in the ring
R1 < |z| < R2, and using (32), it is deduced that
W2

(i)(z)  ≡ 0 and, therefore, g ≡ χi, from where the
boundary condition (3) in |z| = R1 is obtained.

In order to obtain the boundary conditions (4)
and (5), equalities (22) and (25) are substituted

into (26) and (27), resulting in the following
relations
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From (33) and (34), and applying
conveniently Green’s formula to the function V1

(i),
the following equalities are deduced in |z| < R1:
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Repeating the same line of thought used with
(32), (4) and (5) can be obtained from (35) and
(36).!

Scheme of the Algorithm for the Solution
of the Inverse Problem

We will explain the process of reconstruction
of the permittivity coefficient in several steps. 

If we look for the function V2
(i) as
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and using the boundary condition (3) in |z| = R2
and considering the experimental data Ci, j, then,
solving a system of linear equations we can find
the coefficients an

(i), bn
(i), cn

(i) and dn
(i), for

0 ≤ n ≤ ½(N-2).  Once we find these coefficients
that determine V2

(i), we are able to calculate both
V1

(i) and ∇ V1
(i) aproximately using equalities (25)-

(27). We can note that in these equalities appear
in explicit form the coefficients of (37). We will
find V1

(i) in the form

∑
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k
i

k
i zWAzV

1
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1 )()(              (38)

where { } ∞
=1)( kk zW  is an orthonormal basis in

the Sobolev space H1(Ω1) and the number M
should be chosen appropriately [2] and it is
assumed that (38) is an approximation to V1

(i) in
H1(Ω1).

To find the coefficients Ak
(i) of (45) we will

minimize the functional
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where the norm in (39) is taken in the square-
integrable function space L2(Ω1),

1V
!

= (V1
(i),.., V1

(N)), and for z = (x,y) and ξ = R1 eiτ,
the functions
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Note that with the minimization of  )( 1Vl
!

 we
are ensuring that relations (25)-(27) are
approximately met.

The minimization problem is solved under the
restrictions:

0 ≤ εmin ≤ ε1(z) ≤ εmin                (44)

If we choose { } ∞
=1)( kk zW  as an orthonormal

basis in H1(Ω1) such that { } ∞
=1)( kkk zWγ  is an

orthonormal basis in L2(Ω1) for some adequate
coefficients γk [6], then besides avoiding the
instability of the numerical differentiation, we
have that the problem of minimizing the
functional )( 1Vl

!
 subject to the restriction (44) is

equivalent [2] to solving N quadratic optimization
problems:

222  
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subject to the quadratic constraints
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The matrices Fi , Ai , Bi , D and N are described
in detail in [2]. We can observe that the
coefficients in these matrices depend of the values
of the coefficients in (38) and on the Fourier
coefficients of the fuctions (40)-(43) with respect
to {Wk (z)}. Once we obtain the coefficients of
V1

(i), we can use (25) to find an approximation of
the permittivity of the form
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If we have the partition ( )M
kk

~

1=ω  of |z| < R1,
then expression (48) can be used to obtain an
average value ε1

k of ε1(z) for each element of the
partition. It is possible to prove that we can take

MM ~=  and equal to the maximum number of
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elements of a partition in which each component
ωk is such that the change of ε1

k in ωk can be
detected by the instrument used to measure the
mutual capacitances.

CONCLUSION
Obviously the function V1

(i) depends implicitly
in a non-linear way on the unknown permittivity
ε1(z), and, therefore, obtaining ε1(z) from the
measurements (6) consists formally in solving the
nonlinear equation

CA
!

=)( 1ε
where the operator A acts on a space of functions
defined in Ω1 and takes its values on ℜ  N (N -1) / 2.

The traditional general method to solve this
kind of problem is to discretize the operator A
into an operator A~  acting in ℜ  N (N -1) / 2 on itself,
and after that minimizing the functional

obsCA
!

−)~(~
1ε                      (49)

on a set vectors 1
~ε  that correspond to an

approximate representation of the function ε1, and
where obsC

!
 corresponds to the vector of data

obtained as a result of the measurement of the
mutual capacitances and the formulas (7) and (8)
[1, 7-10].

The problem with considering the functional
(55) is that it is a nonlinear functional that can
have multiple extreme points, and, according to
(6), (7) and (8), in the definition of A~  appears
implicitly an ill-posedness due to the derivatives
of V2

(i) involved in the definition of {cij}, and it is
well known that the process of derivation is an ill-
posed problem and numerically unstable.

To avoid these difficulties we have developed
a new algorithm with the following advantages
over the traditional method:
•  The traditional method based on minimizing
(49) is fully iterative and the forward problem
must be solved on each iteration, while in the
proposed direct method we have to do many of
the calculations only one time, which should
result in a more efficient algorithm.
•  The proposed procedure allows calculating the
accumulated error in each step more efficiently.
This error is composed basically of the truncation
error that we have when we approximate the
series by a partial sum, plus the error coming
from the measured data.

•  In the non-linear functional case (49) the
regularization techniques employed have an
empiric character, because there are no theoretical
results applicable. On the other hand, in the new
method proposed we end up with a quadratic
optimization problem with quadratic constraints,
whose solution has been more thoroughly studied.
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